1
|
Sil BK, Jamiruddin MR, Paul PK, Aekwattanaphol N, Nakpheng T, Haq MA, Buatong W, Srichana T. Ascorbic acid as serine protease inhibitor in lung cancer cell line and human serum albumin. PLoS One 2024; 19:e0303706. [PMID: 39042609 PMCID: PMC11265676 DOI: 10.1371/journal.pone.0303706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/30/2024] [Indexed: 07/25/2024] Open
Abstract
Serine proteases (SPs) are distributed among all living cells accounting for almost one-third of all proteases. Dysregulation of SPs during inflammation and/or infection can result in devastating consequences, such as skin and lung inflammation, neuroinflammation, arthritis, as well as metastasis of cancerous cells. Such activities are tightly regulated by various inhibitors known as serine protease inhibitors (SERPIN). The thermodynamic investigations previously revealed that L-ascorbic acid binds to trypsin more firmly than pepsin and the binding force of L-ascorbic acid is driven by hydrogen bonds and van der Waals forces. However, the physiochemical effects of such interaction on trypsin and/or pepsin have not yet been reported. Ascorbic acid, also known as vitamin C, is one of the essential nutrients and most common food supplements, fortificants, and preservatives. The aim of this study was to explore the inhibitory effects of ascorbic acid on serine proteases at various concentrations on the in-vitro digestion and/or hydrolysis of intercellular matrix of cell monolayer and human serum albumin (HSA). The inhibitory effects of ascorbic on trypsin are investigated by qualitative and quantitative analysis using SDS-PAGE imaging and NIH densitometric software. Upon the addition of ascorbic acid in both indicator systems, the detachment and/or dissociation of cell monolayer and the digestion of HSA were inhibited in the presence of EDTA-Trypsin. The inhibitory effect of ascorbic acid on the digestion of intercellular matrix and/or hydrolysis of HSA showed a dose-dependent trend until it reached the maximum extent of inhibition. At an equal concentration (2.5mg/mL) ascorbic acid and EDTA-Trypsin exhibited the most potent inhibitory effect on the in vitro digestion of protein either in the form of intercellular matrix in cell monolayer and/or HSA respectively. Overall, our results based on two indicator systems strongly indicate that ascorbic acid may function as a serine protease inhibitor (SERPIN) beyond other important functions.
Collapse
Affiliation(s)
- Bijon Kumar Sil
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | | | - Pijush Kumar Paul
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Nattanit Aekwattanaphol
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Md. Ahsanul Haq
- Immunobiology, Nutrition and Toxicology Lab, Nutrition Research Division, icddr,b, Dhaka, Bangladesh
| | - Wilaiporn Buatong
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
2
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|
3
|
Liu X, Tan S, Liu H, Jiang J, Wang X, Li L, Wu B. Hepatocyte-derived MASP1-enriched small extracellular vesicles activate HSCs to promote liver fibrosis. Hepatology 2023; 77:1181-1197. [PMID: 35849032 DOI: 10.1002/hep.32662] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/04/2022] [Accepted: 07/06/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIMS Liver fibrosis is a chronic disease characterized by different etiological agents; dysregulated interactions between hepatocytes and HSCs contribute to this disease. β-arrestin 1 (ARRB1) plays an important role in liver fibrosis; however, the effect of ARRB1 on the crosstalk between hepatocytes and HSCs in liver fibrosis is unknown. The aim of this study is to investigate how ARRB1 modulates hepatocyte and HSC activation during liver fibrosis. APPROACH AND RESULTS Normal and fibrotic human liver and serum samples were obtained. CCl 4 -induced liver fibrosis and methionine-choline deficiency-induced NASH models were constructed. Primary hepatocytes and HSCs were isolated, and human hepatic LO2 and stellate LX2 cells were used. Small extracellular vesicles (EVs) were purified, and key proteins were identified. ARRB1 was up-regulated in hepatocytes and associated with autophagic blockage in liver fibrosis. ARRB1 increased the release of hepatocyte-derived small EVs by inhibiting multivesicular body lysosomal degradation and activating Rab27A, thereby activating HSCs. Proteomic analyses showed that mannan-binding lectin serine protease 1 (MASP1) was enriched in hepatocyte-derived small EVs and activated HSCs via p38 mitogen-activated protein kinase (MAPK)/activating transcription factor 2 (ATF2) signaling. ARRB1 up-regulated MASP1 expression in hepatocytes. MASP1 promoted liver fibrosis in mice. Clinically, MASP1 expression was increased in the serum and liver tissue of patients with liver fibrosis. CONCLUSIONS ARRB1 up-regulates the release of hepatocyte-derived MASP1-enriched small EVs by regulating the autophagic-lysosomal/multivesicular body pathway and Rab27A. Hepatocyte-derived MASP1 activates HSCs to promote liver fibrogenesis through p38 MAPK/ATF2 signaling. Thus, MASP1 is a pivotal therapeutic target in liver fibrosis.
Collapse
Affiliation(s)
- Xianzhi Liu
- Department of Gastroenterology , the Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , Guangdong Province , China
- Guangdong Provincial Key Laboratory of Liver Disease Research , Guangzhou , China
| | - Siwei Tan
- Department of Gastroenterology , the Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , Guangdong Province , China
- Guangdong Provincial Key Laboratory of Liver Disease Research , Guangzhou , China
| | - Huiling Liu
- Department of Gastroenterology , the Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , Guangdong Province , China
- Guangdong Provincial Key Laboratory of Liver Disease Research , Guangzhou , China
| | - Jie Jiang
- Department of Gastroenterology , the Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , Guangdong Province , China
- Guangdong Provincial Key Laboratory of Liver Disease Research , Guangzhou , China
| | - Xing Wang
- Department of Gastroenterology , the Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , Guangdong Province , China
- Guangdong Provincial Key Laboratory of Liver Disease Research , Guangzhou , China
| | - Leijia Li
- Department of Gastroenterology , the Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , Guangdong Province , China
- Guangdong Provincial Key Laboratory of Liver Disease Research , Guangzhou , China
| | - Bin Wu
- Department of Gastroenterology , the Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , Guangdong Province , China
- Guangdong Provincial Key Laboratory of Liver Disease Research , Guangzhou , China
| |
Collapse
|
4
|
Kumar D, Romero Y, Schuck KN, Smalley H, Subedi B, Fleming SD. Drivers and regulators of humoral innate immune responses to infection and cancer. Mol Immunol 2020; 121:99-110. [PMID: 32199212 PMCID: PMC7207242 DOI: 10.1016/j.molimm.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
The complement cascade consists of cell bound and serum proteins acting together to protect the host from pathogens, remove cancerous cells and effectively links innate and adaptive immune responses. Despite its usefulness in microbial neutralization and clearance of cancerous cells, excessive complement activation causes an immune imbalance and tissue damage in the host. Hence, a series of complement regulatory proteins present at a higher concentration in blood plasma and on cell surfaces tightly regulate the cascade. The complement cascade can be initiated by B-1 B cell production of natural antibodies. Natural antibodies arise spontaneously without any known exogenous antigenic or microbial stimulus and protect against invading pathogens, clear apoptotic cells, provide tissue homeostasis, and modulate adaptive immune functions. Natural IgM antibodies recognize microbial and cancer antigens and serve as an activator of complement mediated lysis. This review will discuss advances in complement activation and regulation in bacterial and viral infections, and cancer. We will also explore the crosstalk of natural antibodies with bacterial populations and cancer.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Apoptosis/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bacterial Infections/immunology
- Complement Activation
- Complement System Proteins/immunology
- Complement System Proteins/metabolism
- Humans
- Immunity, Humoral
- Immunity, Innate
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Neoplasms/immunology
- Receptors, Complement/immunology
- Receptors, Complement/metabolism
- Tumor Escape
- Virus Diseases/immunology
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yeni Romero
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Kaitlynn N Schuck
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Haley Smalley
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
5
|
Jalal PJ, King BJ, Saeed A, Adedeji Y, Mason CP, Ball JK, Irving WL, McClure CP, Tarr AW. Elevated serum activity of MBL and ficolin-2 as biomarkers for progression to hepatocellular carcinoma in chronic HCV infection. Virology 2019; 530:99-106. [PMID: 30798068 DOI: 10.1016/j.virol.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is an uncommon but significant outcome of chronic hepatitis C virus (HCV) infection. A serum biomarker for predicting progression to HCC would have a major impact on patient monitoring and clinical management. We explored circulating liver-expressed lectins, ficolin-2, ficolin-3 and mannose binding lectin (MBL), as potential biomarkers for the development of HCC. The activity of these three lectins were analysed in HCV positive patients who developed HCC (n = 31) with comparable HCV-positive HCC-negative patients (n = 106) and healthy controls (n = 79). Serum binding activity of ficolin-2 and MBL were elevated compared to controls. Analysis of pre-HCC onset samples revealed that MBL levels were significantly elevated up to 3 years, and ficolin-2 was elevated up to 1 year, prior to diagnosis of HCC over controls. This preliminary study identifies MBL and ficolin-2 as potential biomarkers for the development of HCC in chronic HCV infection.
Collapse
Affiliation(s)
- Paywast J Jalal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, UK; Biology Department, Faculty of Science, University of Sulaimani, Iraq
| | - Barnabas J King
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, UK
| | - Amanj Saeed
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, UK; Biology Department, Faculty of Science, University of Sulaimani, Iraq
| | - Yemisi Adedeji
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, UK
| | - Christopher P Mason
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, UK
| | - Jonathan K Ball
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, UK
| | - William L Irving
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, UK
| | - C Patrick McClure
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, UK
| | - Alexander W Tarr
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & University of Nottingham, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, UK.
| |
Collapse
|
6
|
Abu-Izneid T, Rauf A, Bawazeer S, Wadood A, Patel S. Anti-Dengue, Cytotoxicity, Antifungal, and In Silico Study of the Newly Synthesized 3- O-Phospo-α- D-Glucopyranuronic Acid Compound. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8648956. [PMID: 30627577 PMCID: PMC6304533 DOI: 10.1155/2018/8648956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/21/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023]
Abstract
The aim of the current study was to synthesize new bioactive compounds and evaluate their therapeutic relevance. The chemical structure of compound 7 (methyl 3-O-phospo-α-D-glucopyranuronic acid was elucidated by physical and advance spectral technique. Also, this compound was assessed for various in vitro biological screening. The results showed that compound 7 has promising antifungal activity against selected fungal strains. Computational study was also carried out to find antimalarial efficacy of the synthesized compounds. Compounds (2-7) were tested for cytotoxicity by MTT assay, and no considerable cytotoxicity was observed. Molecular docking study was performed to predict the binding modes of new compound (7). The docking results revealed that the compound has strong attraction towards the target protein, as characterized by good bonding networks. On the basis of the acquired results, it can be predicted that compound (7) might show good inhibitory activity against dengue envelope protein.
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University of Science and Technology, Al Ain Campus, UAE
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Saud Bawazeer
- Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdul Wadood
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA
| |
Collapse
|
7
|
Li J, Li H, Yu Y, Liu Y, Liu Y, Ma Q, Zhang L, Lu X, Wang XY, Chen Z, Zuo D, Zhou J. Mannan-binding lectin suppresses growth of hepatocellular carcinoma by regulating hepatic stellate cell activation via the ERK/COX-2/PGE 2 pathway. Oncoimmunology 2018; 8:e1527650. [PMID: 30713782 DOI: 10.1080/2162402x.2018.1527650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022] Open
Abstract
Mannan binding lectin (MBL), initially known to activate the complement lectin pathway and defend against infection, was recently shown to be potentially involved in the development of several types of cancer; however, its exact role in cancers, especially its effect on tumor microenvironment remain largely unknown. Here, using a murine hepatocellular carcinoma (HCC) model, we showed that MBL was a component of liver microenvironment and MBL-deficient (MBL-/-) mice exhibited an enhanced tumor growth compared with wild-type (WT) mice. This phenomenon was associated with elevation of myeloid derived suppressed cells (MDSCs) in tumor tissue of MBL-/- mice. MBL deficiency also resulted in an increase of activated hepatic stellate cells (HSCs), which showed enhanced cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production. Pharmacological inhibition of COX-2 in vivo partially abrogated the MBL deficiency-promoted tumor growth and MDSC accumulation. Mechanistic studies revealed that MBL could interact directly with HSCs and inhibit HCC-induced HSCs activation via downregulating the extracellular signal-regulated kinase (ERK)/COX-2/PGE2 signaling pathway. Furthermore, MBL-mediated suppression of HCC is validated by administration of MBL-expressing, liver-specific adeno-associated virus (AAV), which significantly inhibited HCC progression in MBL-/- mice. Taken together, these data reveal that MBL may impact on tumor development by shaping the tumor microenvironment via its interaction with the local stromal cells, and also suggests its potential therapeutic use for the treatment of HCC.
Collapse
Affiliation(s)
- Junru Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huifang Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunzhi Liu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Ma
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Liyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, USA
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong, China
| | - Daming Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, Guangdong, China.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangdong, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Klassert TE, Goyal S, Stock M, Driesch D, Hussain A, Berrocal-Almanza LC, Myakala R, Sumanlatha G, Valluri V, Ahmed N, Schumann RR, Flores C, Slevogt H. AmpliSeq Screening of Genes Encoding the C-Type Lectin Receptors and Their Signaling Components Reveals a Common Variant in MASP1 Associated with Pulmonary Tuberculosis in an Indian Population. Front Immunol 2018. [PMID: 29515573 PMCID: PMC5826192 DOI: 10.3389/fimmu.2018.00242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is a multifactorial disease governed by bacterial, host and environmental factors. On the host side, growing evidence shows the crucial role that genetic variants play in the susceptibility to Mycobacterium tuberculosis (Mtb) infection. Such polymorphisms have been described in genes encoding for different cytokines and pattern recognition receptors (PRR), including numerous Toll-like receptors (TLRs). In recent years, several members of the C-type lectin receptors (CTLRs) have been identified as key PRRs in TB pathogenesis. Nevertheless, studies to date have only addressed particular genetic polymorphisms in these receptors or their related pathways in relation with TB. In the present study, we screened the main CTLR gene clusters as well as CTLR pathway-related genes for genetic variation associated with pulmonary tuberculosis (PTB). This case-control study comprised 144 newly diagnosed pulmonary TB patients and 181 healthy controls recruited at the Bhagwan Mahavir Medical Research Center (BMMRC), Hyderabad, India. A two-stage study was employed in which an explorative AmpliSeq-based screening was followed by a validation phase using iPLEX MassARRAY. Our results revealed one SNP (rs3774275) in MASP1 significantly associated with PTB in our population (joint analysis p = 0.0028). Furthermore, serum levels of MASP1 were significantly elevated in TB patients when compared to healthy controls. Moreover, in the present study we could observe an impact of increased MASP1 levels on the lectin pathway complement activity in vitro. In conclusion, our results demonstrate a significant association of MASP1 polymorphism rs3774275 and MASP1 serum levels with the development of pulmonary TB. The present work contributes to our understanding of host-Mtb interaction and reinforces the critical significance of mannose-binding lectin and the lectin-complement pathway in Mtb pathogenesis. Moreover, it proposes a MASP1 polymorphism as a potential genetic marker for TB resistance.
Collapse
Affiliation(s)
| | - Surabhi Goyal
- Institute of Microbiology and Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Abid Hussain
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | | | | | | | | | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Ralf R Schumann
- Institute of Microbiology and Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Carlos Flores
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
9
|
Patel S. A critical review on serine protease: Key immune manipulator and pathology mediator. Allergol Immunopathol (Madr) 2017; 45:579-591. [PMID: 28236540 PMCID: PMC7126602 DOI: 10.1016/j.aller.2016.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Proteolytic activity is fundamental to survival, so it is not surprising that all living organisms have proteases, especially seine protease. This enzyme in its numerous isoforms and homologues, constitutes the quintessential offence and defence factors, in the form of surface proteins, secreted molecules, gut digestive enzymes, venom in specialised glands or plant latex, among other manifestations. Occurring as trypsin, chymotrypsin, elastase, collagenase, thrombin, subtilisin etc., it mediates a diverse array of functions, including pathological roles as inflammatory, coagulatory to haemorrhagic. This review emphasizes that despite the superficial differences in mechanisms, most health issues, be they infectious, allergic, metabolic, or neural have a common conduit. This enzyme, in its various glycosylated forms leads to signal misinterpretations, wreaking havoc. However, organisms are endowed with serine protease inhibitors which might restrain this ubiquitous yet deleterious enzyme. Hence, serine proteases-driven pathogenesis and antagonising role of inhibitors is the focal point of this critical review.
Collapse
|
10
|
Dobó J, Pál G, Cervenak L, Gál P. The emerging roles of mannose-binding lectin-associated serine proteases (MASPs) in the lectin pathway of complement and beyond. Immunol Rev 2017; 274:98-111. [PMID: 27782318 DOI: 10.1111/imr.12460] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mannose-binding lectin (MBL)-associated serine proteases (MASPs) are the enzymatic constituents of the lectin pathway of the complement system. They are complexed with large pattern recognition molecules (PRMs) such as MBL, other collectins, and ficolins. The main function of two of the three MASPs has crystallized lately: MASP-1 autoactivates first, then it activates MASP-2, and finally both participate in the formation of the C4b2a convertase. In addition to this, both enzymes are involved in several other processes which are subject to intense research nowadays. Notably, MASP-1, as a promiscuous enzyme, has been implicated in the coagulation cascade, in the kinin generating contact system, and in cellular activation through protease-activated receptor (PAR) cleavage on endothelial cells. The third protease MASP-3 has emerged recently as the protease responsible for pro-factor D activation in resting blood, providing a fundamental link between two complement pathways. At present all three MASPs have at least one well-defined role and several other possible functions were implicated. Defect or more likely over-activation of MASPs may culminate into diseases such as ischemia-reperfusion injury (IRI); hence, MASPs are all potential targets of drug development.
Collapse
Affiliation(s)
- József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - László Cervenak
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
11
|
Konstantinell A, Bruun JA, Olsen R, Aspar A, Škalko-Basnet N, Sveinbjørnsson B, Moens U. Secretomic analysis of extracellular vesicles originating from polyomavirus-negative and polyomavirus-positive Merkel cell carcinoma cell lines. Proteomics 2016; 16:2587-2591. [PMID: 27402257 DOI: 10.1002/pmic.201600223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/16/2023]
Abstract
Extracellular vesicles or exosomes constitute an evolutionarily conserved mechanism of intercellular signaling. Exosomes are gaining an increasing amount of attention due to their role in pathologies, including malignancy, their importance as prognostic and diagnostic markers, and their potential as a therapeutic tool. Merkel cell carcinoma (MCC) is an aggressive form of skin cancer with a poor prognosis. Because an effective systemic treatment for this cancer type is currently not available, an exosome-based therapy was proposed. However, comprehensive secretome profiling has not been performed for MCC. To help unveil the putative contribution of exosomes in MCC, we studied the protein content of MCC-derived exosomes. Since approximately 80% of all MCC cases contain Merkel cell polyomavirus (MCPyV), the secretomes of two MCPyV-negative and two MCPyV-positive MCC cell lines were compared. We identified with high confidence 164 exosome-derived proteins common for all four cell lines that were annotated in ExoCarta and Vesiclepedia databases. These include proteins implicated in motility, metastasis and tumor progression, such as integrins and tetraspanins, intracellular signaling molecules, chaperones, proteasomal proteins, and translation factors. Additional virus-negative and virus-positive MCC cell lines should be examined to identify highly representative exosomal proteins that may provide reliable prognostic and diagnostic biomarkers, as well as targets for treatment in the future. Data are available via ProteomeXchange with identifier PXD004198.
Collapse
Affiliation(s)
- Aelita Konstantinell
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | - Jack-Ansgar Bruun
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Randi Olsen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Augusta Aspar
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Baldur Sveinbjørnsson
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
12
|
Sheiko MA, Rosen HR. Hepatic Fibrosis in Hepatitis C. HEPATITIS C VIRUS II 2016:79-108. [DOI: 10.1007/978-4-431-56101-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Luna JM, Scheel TKH, Danino T, Shaw KS, Mele A, Fak JJ, Nishiuchi E, Takacs CN, Catanese MT, de Jong YP, Jacobson IM, Rice CM, Darnell RB. Hepatitis C virus RNA functionally sequesters miR-122. Cell 2015; 160:1099-110. [PMID: 25768906 DOI: 10.1016/j.cell.2015.02.025] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/26/2014] [Accepted: 01/30/2015] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) uniquely requires the liver-specific microRNA-122 for replication, yet global effects on endogenous miRNA targets during infection are unexplored. Here, high-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) experiments of human Argonaute (AGO) during HCV infection showed robust AGO binding on the HCV 5'UTR at known and predicted miR-122 sites. On the human transcriptome, we observed reduced AGO binding and functional mRNA de-repression of miR-122 targets during virus infection. This miR-122 "sponge" effect was relieved and redirected to miR-15 targets by swapping the miRNA tropism of the virus. Single-cell expression data from reporters containing miR-122 sites showed significant de-repression during HCV infection depending on expression level and site number. We describe a quantitative mathematical model of HCV-induced miR-122 sequestration and propose that such miR-122 inhibition by HCV RNA may result in global de-repression of host miR-122 targets, providing an environment fertile for the long-term oncogenic potential of HCV.
Collapse
Affiliation(s)
- Joseph M Luna
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Troels K H Scheel
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Disease and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Tal Danino
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katharina S Shaw
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Aldo Mele
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Eiko Nishiuchi
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Constantin N Takacs
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Maria Teresa Catanese
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Center for the Study of Hepatitis C, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ira M Jacobson
- Center for the Study of Hepatitis C, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA.
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
14
|
Beltrame MH, Boldt ABW, Catarino SJ, Mendes HC, Boschmann SE, Goeldner I, Messias-Reason I. MBL-associated serine proteases (MASPs) and infectious diseases. Mol Immunol 2015; 67:85-100. [PMID: 25862418 PMCID: PMC7112674 DOI: 10.1016/j.molimm.2015.03.245] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
MASP-1 and MASP-2 are central players of the lectin pathway of complement. MASP1 and MASP2 gene polymorphisms regulate protein serum levels and activity. MASP deficiencies are associated with increased infection susceptibility. MASP polymorphisms and serum levels are associated with disease progression.
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. After binding of mannan-binding lectin (MBL), ficolins or collectin 11 to carbohydrates or acetylated residues on pathogen surfaces, dimers of MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2) activate a proteolytic cascade, which culminates in the formation of the membrane attack complex and pathogen lysis. Alternative splicing of the pre-mRNA encoding MASP-1 results in two other products, MASP-3 and MAp44, which regulate activation of the cascade. A similar mechanism allows the gene encoding MASP-2 to produce the truncated MAp19 protein. Polymorphisms in MASP1 and MASP2 genes are associated with protein serum levels and functional activity. Since the first report of a MASP deficiency in 2003, deficiencies in lectin pathway proteins have been associated with recurrent infections and several polymorphisms were associated with the susceptibility or protection to infectious diseases. In this review, we summarize the findings on the role of MASP polymorphisms and serum levels in bacterial, viral and protozoan infectious diseases.
Collapse
Affiliation(s)
- Marcia H Beltrame
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Angelica B W Boldt
- Department of Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Sandra J Catarino
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Hellen C Mendes
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Stefanie E Boschmann
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Isabela Goeldner
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Iara Messias-Reason
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
15
|
Megyeri M, Jani PK, Kajdácsi E, Dobó J, Schwaner E, Major B, Rigó J, Závodszky P, Thiel S, Cervenak L, Gál P. Serum MASP-1 in complex with MBL activates endothelial cells. Mol Immunol 2014; 59:39-45. [PMID: 24472859 DOI: 10.1016/j.molimm.2014.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 11/16/2022]
Abstract
The complement system plays an important role in the induction of inflammation. In this study we demonstrate that the initiation complexes of the lectin pathway, consisting of mannose-binding lectin (MBL) and associated serine proteases (MASPs) elicit Ca(2+) signaling in cultured endothelial cells (HUVECs). This is in agreement with our previous results showing that the recombinant catalytic fragment of MASP-1 activates endothelial cells by cleaving protease activated receptor 4. Two other proteases, MASP-2 and MASP-3 are also associated with MBL. Earlier we showed that recombinant catalytic fragment of MASP-2 cannot activate HUVECs, and in this study we demonstrate that the same fragment of MASP-3 has also no effect. We find the same to be the case if we use recombinant forms of the N-terminal parts of MASP-1 and MASP-2 which only contain non-enzymatic domains. Moreover, stable zymogen mutant form of MASP-1 was also ineffective to stimulate endothelial cells, which suggests that in vivo MASP-1 have the ability to activate endothelial cells directly as well as to activate the lectin pathway simultaneously. We show that among the components of the MBL-MASPs complexes only MASP-1 is able to trigger response in HUVECs and the proteolytic activity of MASP-1 is essential. Our results strengthen the view that MASP-1 plays a central role in the early innate immune response.
Collapse
Affiliation(s)
- Márton Megyeri
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Karolina út 29, H-1113 Budapest, Hungary
| | - Péter K Jani
- 3rd Department of Medicine, Research Lab, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Erika Kajdácsi
- 3rd Department of Medicine, Research Lab, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Karolina út 29, H-1113 Budapest, Hungary
| | - Endre Schwaner
- 3rd Department of Medicine, Research Lab, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Balázs Major
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Karolina út 29, H-1113 Budapest, Hungary
| | - János Rigó
- 1st Department of Obstetrics and Gynecology, Semmelweis University, Baross u. 27, H-1088 Budapest, Hungary
| | - Péter Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Karolina út 29, H-1113 Budapest, Hungary
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - László Cervenak
- 3rd Department of Medicine, Research Lab, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Karolina út 29, H-1113 Budapest, Hungary.
| |
Collapse
|