1
|
Pompilio A, Lupetti V, Puca V, Di Bonaventura G. Repurposing High-Throughput Screening Reveals Unconventional Drugs with Antimicrobial and Antibiofilm Potential Against Methicillin-Resistant Staphylococcus aureus from a Cystic Fibrosis Patient. Antibiotics (Basel) 2025; 14:402. [PMID: 40298549 PMCID: PMC12024424 DOI: 10.3390/antibiotics14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Antibiotic therapy faces challenges from rising acquired and biofilm-related antibiotic resistance rates. High resistance levels to commonly used antibiotics have been observed in methicillin-resistant Staphylococcus aureus (MRSA) strains among cystic fibrosis (CF) patients, indicating an urgent need for new antibacterial agents. This study aimed to identify potential novel therapeutics with antibacterial and antibiofilm activities against an MRSA CF strain by screening, for the first time, the Drug Repurposing Compound Library (MedChem Express). Methods/Results: Among the 3386 compounds, a high-throughput screening-based spectrophotometric approach identified 2439 (72%), 654 (19.3%), and 426 (12.6%) drugs active against planktonic cells, biofilm formation, and preformed biofilm, respectively, although to different extents. The most active hits were 193 (5.7%), against planktonic cells, causing a 100% growth inhibition; 5 (0.14%), with excellent activity against biofilm formation (i.e., reduction ≥ 90%); and 4, showing high activity (i.e., 60% ≤ biofilm reduction < 90%) against preformed biofilms. The potential hits belonged to several primary research areas, with "cancer" being the most prevalent. After performing a literature review to identify other, already published biological properties that could be relevant to the CF lung environment (i.e., activity against other CF pathogens, and anti-inflammatory and anti-virulence potential), the most interesting hits were the following: 5-(N,N-Hexamethylene)-amiloride (diuretic), Toremifene (anticancer), Zafirlukast (antiasthmatic), Fenretide (anticancer), and Montelukast (antiasthmatic) against planktonic S. aureus cells; Hemin against biofilm formation; and Heparin, Clemastine (antihistaminic), and Bromfenac (nonsteroidal anti-inflammatory) against established biofilms. Conclusions: These findings warrant further in vitro and in vivo studies to confirm the potential of repurposing these compounds for managing lung infections caused by S. aureus in CF patients.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Veronica Lupetti
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
| | - Valentina Puca
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Cordova RA, Sommers NR, Law AS, Klunk AJ, Brady KE, Goodrich DW, Anthony TG, Brault JJ, Pili R, Wek RC, Staschke KA. Coordination between the eIF2 kinase GCN2 and p53 signaling supports purine metabolism and the progression of prostate cancer. Sci Signal 2024; 17:eadp1375. [PMID: 39591412 PMCID: PMC11826925 DOI: 10.1126/scisignal.adp1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Cancers invoke various pathways to mitigate external and internal stresses to continue their growth and progression. We previously reported that the eIF2 kinase GCN2 and the integrated stress response are constitutively active in prostate cancer (PCa) and are required to maintain amino acid homeostasis needed to fuel tumor growth. However, although loss of GCN2 function reduces intracellular amino acid availability and PCa growth, there is no appreciable cell death. Here, we discovered that the loss of GCN2 in PCa induces prosenescent p53 signaling. This p53 activation occurred through GCN2 inhibition-dependent reductions in purine nucleotides that impaired ribosome biogenesis and, consequently, induced the impaired ribosome biogenesis checkpoint. p53 signaling induced cell cycle arrest and senescence that promoted the survival of GCN2-deficient PCa cells. Depletion of GCN2 combined with loss of p53 or pharmacological inhibition of de novo purine biosynthesis reduced proliferation and enhanced cell death in PCa cell lines, organoids, and xenograft models. Our findings highlight the coordinated interplay between GCN2 and p53 regulation during nutrient stress and provide insight into how they could be targeted in developing new therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Ricardo A. Cordova
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| | - Noah R. Sommers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| | - Andrew S. Law
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health; Indianapolis, IN 46202, USA
| | - Angela J. Klunk
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
| | - Katherine, E. Brady
- Department of Biology, Indiana University School of Science; Indianapolis, IN 46202, USA
| | - David W. Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center; Buffalo, NY, 14203, USA
| | - Tracy G. Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jeffrey J. Brault
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health; Indianapolis, IN 46202, USA
| | - Roberto Pili
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo; Buffalo, NY 14203, USA
| | - Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine; Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center; Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Pennanen P, Kallionpää RA, Peltonen S, Nissinen L, Kähäri VM, Heervä E, Peltonen J. Signaling pathways in human osteoclasts differentiation: ERK1/2 as a key player. Mol Biol Rep 2021; 48:1243-1254. [PMID: 33486672 PMCID: PMC7925492 DOI: 10.1007/s11033-020-06128-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Little is known about the signaling pathways involved in the differentiation of human osteoclasts. The present study evaluated the roles of the Ras/PI3K/Akt/mTOR, Ras/Raf/MEK1/2/ERK1/2, calcium-PKC, and p38 signaling pathways in human osteoclast differentiation. Mononuclear cells were isolated from the peripheral blood of control persons and patients with neurofibromatosis 1 (NF1), and the cells were differentiated into osteoclasts in the presence of signaling pathway inhibitors. Osteoclast differentiation was assessed using tartrate-resistant acid phosphatase 5B. Inhibition of most signaling pathways with chemical inhibitors decreased the number of human osteoclasts and disrupted F-actin ring formation, while the inhibition of p38 resulted in an increased number of osteoclasts, which is a finding contradictory to previous murine studies. However, the p38 inhibition did not increase the bone resorption capacity of the cells. Ras-inhibitor FTS increased osteoclastogenesis in samples from control persons, but an inhibitory effect was observed in NF1 samples. Inhibition of MEK, PI3K, and mTOR reduced markedly the number of NF1-deficient osteoclasts, but no effect was observed in control samples. Western blot analyses showed that the changes in the phosphorylation of ERK1/2 correlated with the number of osteoclasts. Our results highlight the fact that osteoclastogenesis is regulated by multiple interacting signaling pathways and emphasize that murine and human findings related to osteoclastogenesis are not necessarily equivalent.
Collapse
Affiliation(s)
- Paula Pennanen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Roope A Kallionpää
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku and Cancer Research Laboratory FICAN West, University of Turku and Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku and Cancer Research Laboratory FICAN West, University of Turku and Turku University Hospital, Turku, Finland
| | - Eetu Heervä
- Department of Oncology, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| |
Collapse
|
4
|
Zayoud M, Vax E, Elad-Sfadia G, Barshack I, Pinkas-Kramarski R, Goldstein I. Inhibition of Ras GTPases prevents Collagen-Induced Arthritis by Reducing the Generation of Pathogenic CD4 + T Cells and the Hyposialylation of Autoantibodies. ACR Open Rheumatol 2020; 2:512-524. [PMID: 32869536 PMCID: PMC7504479 DOI: 10.1002/acr2.11169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE RasGTPases are master regulators of multiple intracellular signaling cascades. Perturbation of this pathway has been implicated in the pathogenesis of rheumatoid arthritis (RA). In this study we aimed to define the therapeutic potential of a novel RasGTPases inhibitor, farnesylthiosalicylate (FTS), in the preclinical mouse model of collagen-induced arthritis (CIA) and better delineate its immunomodulatory effects both ex vivo and in the mouse. METHODS We analyzed in vitro the immunomodulatory effects of FTS on various CD4+ T-cell functions such as activation, proliferation, T-helper polarization, and production of proinflammatory cytokines. Using the CIA model, we further determined the efficacy of FTS to inhibit clinical, histopathologic, and diverse immunological outcomes of arthritis. RESULTS FTS treatment of CD4+ T cells in vitro effectively targeted distinct kinases (extracellular signal-regulated kinase 1/2, p38, protein kinase B/AKT, and mammalian target of rapamycin), the production of interleukin (IL)-17A, IL-22, and granulocyte-macrophage colony-stimulating factor, and Th17 polarization. FTS therapy in the mouse CIA model significantly reduced clinical disease severity and joint inflammation/damage by histology. Importantly, FTS suppressed the in vivo induction of splenic IL-17+ IL-22+ Th17 cells and the secretion of proinflammatory cytokines. The production of pathogenic autoantibodies and their abnormal hyposialylation was significantly attenuated by FTS therapy. Importantly, in vivo generation of collagen type-II specific effector CD4+ T cells was likewise repressed by FTS therapy. CONCLUSION The RasGTPases inhibitor FTS attenuates the production of proinflammatory cytokines by in vitro-activated T cells and is a potent immunomodulatory compound in the CIA model, primarily targeting the generation of autoreactive Th17 cells and the production of autoantibodies and their subsequent pathogenic hyposialylation.
Collapse
Affiliation(s)
- Morad Zayoud
- Tel-Aviv University, Tel-Aviv, Israel.,Rambam Health Care Campus, Haifa, Israel
| | - Einav Vax
- Tel-Aviv University, Tel-Aviv, Israel.,Chaim Sheba Academic Medical Center, Ramat Gan, Israel
| | | | - Iris Barshack
- Tel-Aviv University, Tel-Aviv, Israel.,Chaim Sheba Academic Medical Center, Ramat Gan, Israel
| | | | - Itamar Goldstein
- Tel-Aviv University, Tel-Aviv, Israel.,Chaim Sheba Academic Medical Center, Ramat Gan, Israel
| |
Collapse
|
5
|
Wu JJ, Yuan XM, Huang C, An GY, Liao ZL, Liu GA, Chen RX. Farnesyl thiosalicylic acid prevents iNOS induction triggered by lipopolysaccharide via suppression of iNOS mRNA transcription in murine macrophages. Int Immunopharmacol 2019; 68:218-225. [PMID: 30658315 DOI: 10.1016/j.intimp.2018.12.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/12/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
Inducible nitric oxide synthase (iNOS) is a molecule critical for the development of inflammation-associated disorders. Its induction should be tightly controlled in order to maintain cellular homeostasis. Upon lipopolysaccharide (LPS) stimulation, iNOS, in most settings, is induced by the activation of inhibitor of κB-α (IκB-α)-nuclear factor κB (NF-κB) signaling. Farnesyl thiosalicylic acid (FTS), a synthetic small molecule that is considered to detach Ras from the inner cell membrane, has been shown to exhibit numerous anti-inflammatory functions. However, it remains unclear whether and how it affects iNOS induction in macrophages. The present study addressed this issue in cultured macrophages and endotoxemic mice. Results showed that FTS pretreatment significantly prevented LPS-induced increases in iNOS protein and mRNA expression levels in murine cultured macrophages, which were confirmed in organs in vivo from endotoxemic mice, such as the liver and lung. Mechanistic studies revealed that FTS pretreatment did not affect IκB-α degradation and NF-κB activation in LPS-treated macrophages. The nuclear transport of the active NF-κB was also not affected by FTS. But FTS pretreatment reduced the binding of NF-κB to its DNA elements, and reduced NF-κB bindings to iNOS promoter inside LPS-treated macrophages. Finally, our results showed that FST pretreatment increased mouse survival rate compared to LPS alone treatment. Taken together, these results indicate that FTS attenuates iNOS induction in macrophages likely through inhibition of iNOS mRNA transcription, providing further insight into the molecular mechanism of action of FTS in inflammatory disorder therapy.
Collapse
Affiliation(s)
- Jing-Jing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Xiao-Mei Yuan
- Heart Failure Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| | - Chao Huang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Guo-Yin An
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Zhan-Ling Liao
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Guang-An Liu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Run-Xiang Chen
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China.
| |
Collapse
|
6
|
van Tok MN, Satumtira N, Dorris M, Pots D, Slobodin G, van de Sande MG, Taurog JD, Baeten DL, van Duivenvoorde LM. Innate Immune Activation Can Trigger Experimental Spondyloarthritis in HLA-B27/Huβ2m Transgenic Rats. Front Immunol 2017; 8:920. [PMID: 28824645 PMCID: PMC5545590 DOI: 10.3389/fimmu.2017.00920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/20/2017] [Indexed: 01/06/2023] Open
Abstract
Spondyloarthritis (SpA) does not display the typical features of auto-immune disease. Despite the strong association with MHC class I, CD8+ T cells are not required for disease induction in the HLA-B27/Huβ2m transgenic rats. We used Lewis HLA-B27/Huβ2m transgenic rats [21-3 × 283-2]F1, HLA-B7/Huβ2m transgenic rats [120-4 × 283-2]F1, and wild-type rats to test our hypothesis that SpA may be primarily driven by the innate immune response. In vitro, splenocytes were stimulated with heat-inactivated Mycobacterium tuberculosis and cytokine expression and production was measured. In vivo, male and female rats were immunized with 30, 60, or 90 µg of heat-inactivated M. tuberculosis and clinically monitored for spondylitis and arthritis development. After validation of the model, we tested whether prophylactic and therapeutic TNF targeting affected spondylitis and arthritis. In vitro stimulation with heat-inactivated M. tuberculosis strongly induced gene expression of pro-inflammatory cytokines such as TNF, IL-6, IL-1α, and IL-1β, in the HLA-B27 transgenic rats compared with controls. In vivo immunization induced an increased spondylitis and arthritis incidence and an accelerated and synchronized onset of spondylitis and arthritis in HLA-B27 transgenic males and females. Moreover, immunization overcame the protective effect of orchiectomy. Prophylactic TNF targeting resulted in delayed spondylitis and arthritis development and reduced arthritis severity, whereas therapeutic TNF blockade did not affect spondylitis and arthritis severity. Collectively, these data indicate that innate immune activation plays a role in the initiation of HLA-B27-associated disease and allowed to establish a useful in vivo model to study the cellular and molecular mechanisms of disease initiation and progression.
Collapse
Affiliation(s)
- Melissa N van Tok
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Nimman Satumtira
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Martha Dorris
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Desirée Pots
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gleb Slobodin
- Internal Medicine, Bnai Zion Medical Center, Haifa, Israel
| | - Marleen G van de Sande
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joel D Taurog
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dominique L Baeten
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Leonie M van Duivenvoorde
- Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Zayoud M, Marcu-Malina V, Vax E, Jacob-Hirsch J, Elad-Sfadia G, Barshack I, Kloog Y, Goldstein I. Ras Signaling Inhibitors Attenuate Disease in Adjuvant-Induced Arthritis via Targeting Pathogenic Antigen-Specific Th17-Type Cells. Front Immunol 2017; 8:799. [PMID: 28736556 PMCID: PMC5500629 DOI: 10.3389/fimmu.2017.00799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022] Open
Abstract
The Ras family of GTPases plays an important role in signaling nodes downstream to T cell receptor and CD28 activation, potentially lowering the threshold for T-cell receptor activation by autoantigens. Somatic mutation in NRAS or KRAS may cause a rare autoimmune disorder coupled with abnormal expansion of lymphocytes. T cells from rheumatoid arthritis (RA) patients show excessive activation of Ras/MEK/ERK pathway. The small molecule farnesylthiosalicylic acid (FTS) interferes with the interaction between Ras GTPases and their prenyl-binding chaperones to inhibit proper plasma membrane localization. In the present study, we tested the therapeutic and immunomodulatory effects of FTS and its derivative 5-fluoro-FTS (F-FTS) in the rat adjuvant-induced arthritis model (AIA). We show that AIA severity was significantly reduced by oral FTS and F-FTS treatment compared to vehicle control treatment. FTS was as effective as the mainstay anti-rheumatic drug methotrexate, and combining the two drugs significantly increased efficacy compared to each drug alone. We also discovered that FTS therapy inhibited both the CFA-driven in vivo induction of Th17 and IL-17/IFN-γ producing “double positive” as well as the upregulation of serum levels of the Th17-associated cytokines IL-17A and IL-22. By gene microarray analysis of effector CD4+ T cells from CFA-immunized rats, re-stimulated in vitro with the mycobacterium tuberculosis heat-shock protein 65 (Bhsp65), we determined that FTS abrogated the Bhsp65-induced transcription of a large list of genes (e.g., Il17a/f, Il22, Ifng, Csf2, Lta, and Il1a). The functional enrichment bioinformatics analysis showed significant overlap with predefined gene sets related to inflammation, immune system processes and autoimmunity. In conclusion, FTS and F-FTS display broad immunomodulatory effects in AIA with inhibition of the Th17-type response to a dominant arthritogenic antigen. Hence, targeting Ras signal-transduction cascade is a potential novel therapeutic approach for RA.
Collapse
Affiliation(s)
- Morad Zayoud
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Rheumatology Unit, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Victoria Marcu-Malina
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Einav Vax
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jasmine Jacob-Hirsch
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel
| | - Galit Elad-Sfadia
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Iris Barshack
- Institute of Pathology, Chaim Sheba Academic Medical Center, Ramat Gan, Israel
| | - Yoel Kloog
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Itamar Goldstein
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Rheumatology Unit, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
8
|
Nakagawa R, Muroyama R, Saeki C, Goto K, Kaise Y, Koike K, Nakano M, Matsubara Y, Takano K, Ito S, Saruta M, Kato N, Zeniya M. miR-425 regulates inflammatory cytokine production in CD4 + T cells via N-Ras upregulation in primary biliary cholangitis. J Hepatol 2017; 66:1223-1230. [PMID: 28192189 DOI: 10.1016/j.jhep.2017.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/06/2017] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Primary biliary cholangitis (PBC) is an autoimmune liver disease of unknown pathogenesis. Consequently, therapeutic targets for PBC have yet to be identified. CD4+ T cells play a pivotal role in immunological dysfunction observed in PBC, and therefore, microRNA (miRNA) and mRNA expression were analysed in CD4+ T cells, to investigate PBC pathogenesis and identify novel therapeutic targets. METHODS Integral miRNA and mRNA analysis of 14 PBC patients and ten healthy controls was carried out using microarray and quantitative real-time polymerase chain reaction (qRT-PCR), with gene set enrichment analysis. The functional analyses of miRNA were then assessed using reporter and miRNA-overexpression assays. RESULTS The integral analysis of miRNA and mRNA identified four significantly downregulated miRNAs (miR-181a, -181b, -374b, and -425) related to the T cell receptor (TCR) signalling pathway in CD4+ T cells of PBC. N-Ras, a regulator of the TCR signalling pathway, was found to be targeted by all four identified miRNAs. In addition, in vitro assays confirmed that decreased miR-425 strongly induced inflammatory cytokines (interleukin [IL]-2 and interferon [IFN]-γ) via N-Ras upregulation in the TCR signalling pathway. CONCLUSION The decreased expression of four miRNAs that dysregulate TCR signalling in PBC CD4+ T cells was identified. miR-425 was demonstrated as an inflammatory regulator of PBC via N-Ras upregulation. Therefore, the restoration of decreased miR-425 or the suppression of N-Ras may be a promising immunotherapeutic strategy against PBC. LAY SUMMARY Primary biliary cholangitis (PBC) is an autoimmune liver disease, but the causes are unknown. MicroRNAs are molecules known to regulate biological signals. In this study, four microRNAs were identified as being decreased in PBC patients, leading to activation of T cell receptor signalling pathways, involved in inflammation. One particular target, N-Ras, could be an attractive and novel immunotherapeutic option for PBC. TRANSCRIPT PROFILING Microarray data are deposited in GEO (GEO accession: GSE93172).
Collapse
Affiliation(s)
- Ryo Nakagawa
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryosuke Muroyama
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chisato Saeki
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kaku Goto
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Kaise
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masanori Nakano
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuo Matsubara
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keiko Takano
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sayaka Ito
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Saruta
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoya Kato
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan; Sanno Medical Center, Sanno Hospital, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
9
|
HIV-1 Transactivator Protein Induces ZO-1 and Neprilysin Dysfunction in Brain Endothelial Cells via the Ras Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3160360. [PMID: 28553432 PMCID: PMC5434241 DOI: 10.1155/2017/3160360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Abstract
Amyloid beta (Aβ) deposition is increased in human immunodeficiency virus-1- (HIV-1-) infected brain, but the mechanisms are not fully understood. The aim of the present study was to evaluate the role of Ras signaling in HIV-1 transactivator protein- (Tat-) induced Aβ accumulation in human cerebral microvascular endothelial cells (HBEC-5i). Cell viability assay showed that 1 μg/mL Tat and 20 μmol/L of the Ras inhibitor farnesylthiosalicylic acid (FTS) had no significant effect on HBEC-5i cell viability after 24 h exposure. Exposure to Tat decreased protein and mRNA levels of zonula occludens- (ZO-) 1 and Aβ-degrading enzyme neprilysin (NEP) in HBEC-5i cells as determined by western blotting and quantitative real-time polymerase chain reaction. Exposure to Tat also increased transendothelial transfer of Aβ and intracellular reactive oxygen species (ROS) levels; however, these effects were attenuated by FTS. Collectively, these results suggest that the Ras signaling pathway is involved in HIV-1 Tat-induced changes in ZO-1 and NEP, as well as Aβ deposition in HBEC-5i cells. FTS partially protects blood-brain barrier (BBB) integrity and inhibits Aβ accumulation.
Collapse
|
10
|
Mahon RN, Hafner R. Immune Cell Regulatory Pathways Unexplored as Host-Directed Therapeutic Targets for Mycobacterium tuberculosis: An Opportunity to Apply Precision Medicine Innovations to Infectious Diseases. Clin Infect Dis 2016; 61Suppl 3:S200-16. [PMID: 26409283 DOI: 10.1093/cid/civ621] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lack of novel antimicrobial drugs in development for tuberculosis treatment has provided an impetus for the discovery of adjunctive host-directed therapies (HDTs). Several promising HDT candidates are being evaluated, but major advancement of tuberculosis HDTs will require understanding of the master or "core" cell signaling pathways that control intersecting immunologic and metabolic regulatory mechanisms, collectively described as "immunometabolism." Core regulatory pathways conserved in all eukaryotic cells include poly (ADP-ribose) polymerases (PARPs), sirtuins, AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR) signaling. Critical interactions of these signaling pathways with each other and their roles as master regulators of immunometabolic functions will be addressed, as well as how Mycobacterium tuberculosis is already known to influence various other cell signaling pathways interacting with them. Knowledge of these essential mechanisms of cell function regulation has led to breakthrough targeted treatment advances for many diseases, most prominently in oncology. Leveraging these exciting advances in precision medicine for the development of innovative next-generation HDTs may lead to entirely new paradigms for treatment and prevention of tuberculosis and other infectious diseases.
Collapse
Affiliation(s)
- Robert N Mahon
- Division of AIDS-Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Contractor to the National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Chen X, Lu J, An M, Ma Z, Zong H, Yang J. Anti-inflammatory effect of resveratrol on adjuvant arthritis rats with abnormal immunological function via the reduction of cyclooxygenase-2 and prostaglandin E2. Mol Med Rep 2014; 9:2592-8. [PMID: 24676467 DOI: 10.3892/mmr.2014.2070] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/07/2014] [Indexed: 11/05/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease with unknown etiology. The present study investigated the anti-inflammatory effect of resveratrol on rats with adjuvant arthritis (AA) with abnormal immunological function via the reduction of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). AA model rats were established by injection of complete Freund's adjuvant and alterations in the rats secondary paw swelling and the polyarthritic scores were observed. Pathological examination of joint tissues was observed by hematoxylin and eosin staining. The proliferation of spleen cells was examined using a 3-(4,5-dimethylthiazol-2‑yl)-2,5-diphenyltetrazolium bromide assay in vitro. The protein expression of COX-2 in the synovial tissues was detected by western blotting. The level of PGE2 in the serum was assayed using an ELISA kit. The results demonstrated that resveratrol (10 or 50 mg/kg) was able to significantly reduce paw swelling and decrease the arthritis scores. Compared with the AA model rats, a significant reduction in the proliferation of concanavalin A-stimulated spleen cells was observed, articular cartilage degeneration with synovial hyperplasia and inflammatory cell infiltration was suppressed and the production of COX-2 and PGE2 in AA rats was reduced by treatment with resveratrol. These results suggest that resveratrol has significant anti-inflammatory effects on AA rats, which may be associated with the reduction of COX-2 and PGE2 inflammatory mediators.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jinseng Lu
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Mei An
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhongfei Ma
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hexiang Zong
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jun Yang
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|