1
|
Abernathy-Close L, Mears J, Billi AC, Sirobhushanam S, Berthier C, Lu A, Zhang Z, Hurst A, Gudjonsson JE, Kahlenberg JM. Topical Mupirocin Treatment Reduces Interferon and Myeloid Signatures in Cutaneous Lupus Erythematous Lesions Through Targeting of Staphyloccal Species. Arthritis Rheumatol 2024. [PMID: 39648343 DOI: 10.1002/art.43079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE Cutaneous lupus erythematosus (CLE) is an inflammatory skin manifestation of systemic lupus erythematosus. Type I interferons (IFNs) promote inflammatory responses and are elevated in CLE lesions. We recently reported that CLE lesions are frequently colonized with Staphylococcus aureus. Here, we follow up via a proof-of-concept study to investigate whether type I IFN and inflammatory gene signatures in CLE lesions can be modulated with mupirocin, a topical antibiotic treatment against S aureus-mediated skin infections. METHODS Participants with active CLE lesions (n = 12) were recruited and randomized into a week of topical treatment with either 2% mupirocin or petroleum jelly vehicle. Paired samples were collected before and after seven days of treatment to assess microbial lesional skin responses. Microbial samples from nares and lesional skin were used to determine baseline and posttreatment Staphylococcus abundance and microbial community profiles by 16S ribosomal RNA gene sequencing. Inflammatory responses were evaluated by bulk RNA sequencing of lesional skin biopsies. RESULTS We identified 173 differentially expressed genes in CLE lesions after topical mupirocin treatment. Decreased lesional Staphylococcus burden correlated with decreased IFN pathway signaling and inflammatory gene expression and barrier dysfunction. Interestingly, mupirocin treatment lowered skin monocyte levels, and this mupirocin-associated depletion of monocytes correlated with decreased inflammatory gene expression. CONCLUSION Mupirocin treatment decreased lesional Staphylococcus, and this correlated with decreased IFN signaling and inflammatory gene expression. This study suggests a topical antibiotic could be employed to decrease lupus skin inflammation and type I IFN responses by reducing Staphylococcus colonization.
Collapse
Affiliation(s)
| | | | | | | | | | - Annie Lu
- University of Michigan, Ann Arbor
| | | | | | | | | |
Collapse
|
2
|
Cepica TB, Gupta R, Werth VP, Chong BF. Severity Scores for Cutaneous Lupus Erythematosus. J Invest Dermatol 2024; 144:2354-2363. [PMID: 39283285 DOI: 10.1016/j.jid.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 10/25/2024]
Abstract
Despite the significant disease burden of cutaneous lupus erythematosus (CLE), there have been no United States Food and Drug Administration-approved therapies for 65 years. To facilitate advancement of therapies, severity scores are needed to evaluate QOL, how patients feel, activity of disease, and organ-specific damage to assess response to therapies and disease progression. In this paper, we delineate the development process of provider- and patient-reported severity scores for CLE. Cutaneous Lupus Disease Area and Severity Index (CLASI), a provider-reported measure that distinguishes between activity and damage, has undergone rigorous validation and reliability testing for over 20 years. Its performance has been tested in clinical trials as a primary or secondary endpoint and tool to stratify patients. As an objective disease measure that captures a provider's perspective of disease activity and damage, the CLASI inherently does not assess disease impact on patients' QOL. Cutaneous Lupus Erythematosus Quality of Life (CLEQoL), a patient-reported measure, captures features elucidated through focus groups, including symptoms, emotions, functioning, body image, and photosensitivity. It has undergone psychometric property testing to ensure reliability and validity. Together, CLASI and CLEQoL are simple and reliable CLE-specific severity scores capturing disease activity, damage, and QOL from provider and patient perspectives.
Collapse
Affiliation(s)
- Tyler B Cepica
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Radhika Gupta
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria P Werth
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin F Chong
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
3
|
Furze RC, Molnar J, Parr NJ, Ahmad F, Henry Y, Howe D, Singh R, Toal M, Bassil AK, Bernard SG, Davis RP, Gibson A, Maller NC, Sharp C, Tough DF, Prinjha RK, Lewis HD. Phase 1 and preclinical profiling of ESM-HDAC391, a myeloid-targeted histone deacetylase inhibitor, shows enhanced pharmacology and monocytopaenia. Br J Clin Pharmacol 2022; 88:5238-5256. [PMID: 35655123 PMCID: PMC9796293 DOI: 10.1111/bcp.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 01/01/2023] Open
Abstract
AIMS To improve the tolerability and therapeutic application of histone deacetylase inhibitors (HDACi), by application of an esterase-sensitive motif (ESM), to target pharmacological activity directly to mononuclear myeloid cells expressing the processing enzyme carboxylesterase-1 (CES1). METHODS This first-in-human study comprised single and multiple ascending dose cohorts to determine safety and tolerability. Pharmacodynamic parameters included acetylation, cytokine inhibition and intracellular concentrations of processed acid metabolite in isolated monocytes. Mechanistic work was conducted in vitro and in a CES1/Es1elo mouse strain. RESULTS ESM-HDAC391 showed transient systemic exposure (plasma half-life of 21-30 min) but selective retention of processed acid for at least 12 hours, resulting in robust targeted mechanistic engagement (increased acetylation in monocytes plus inhibition of ex vivo stimulated cytokine production). ESM-HDAC391 was well tolerated and clinical toxicities common to non-targeted HDACi were not observed. ESM-HDAC391 treatment was accompanied by the novel finding of a dose-dependent monocyte depletion that was transient and reversible and which plateaued at 0.06 × 109 monocytes/L after repeat dosing with 20 or 40 mg. Characterisation of monocyte depletion in transgenic mice (CES1/Es1elo ) suggested that colony stimulating factor 1 receptor loss on circulating cells contributed to ESM-HDAC-mediated depletion. Further mechanistic investigations using human monocytes in vitro demonstrated HDACi-mediated change in myeloid fate through modulation of colony stimulating factor 1 receptor and downstream effects on cell differentiation. CONCLUSION These findings demonstrate selective targeting of monocytes in humans using the ESM approach and identify monocytopaenia as a novel outcome of ESM-HDACi treatment, with implications for potential benefit of these molecules in myeloid-driven diseases.
Collapse
Affiliation(s)
| | - Judit Molnar
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,GalapagosCambridgeUK
| | - Nigel J. Parr
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,MoonFire Consultancy LtdHertfordshireUK
| | - Faiz Ahmad
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,Galderma R&DFort WorthTXUSA
| | - Yvette Henry
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,YMH‐Management LtdLancashireUK
| | - David Howe
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,SoseiHeptaresCambridgeUK
| | - Rajendra Singh
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,GlaxoSmithKlineCollegevillePAUSA
| | - Martin Toal
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK,Conan Biopharma ConsultingWokinghamUK
| | - Anna K. Bassil
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | | | - Robert P. Davis
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | - Adele Gibson
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | | | - Catriona Sharp
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | - David F. Tough
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | - Rab K. Prinjha
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| | - Huw D. Lewis
- Research & DevelopmentGlaxoSmithKlineStevenageHertfordshireUK
| |
Collapse
|
4
|
Maz MP, Martens JWS, Hannoudi A, Reddy AL, Hile GA, Kahlenberg JM. Recent advances in cutaneous lupus. J Autoimmun 2022; 132:102865. [PMID: 35858957 PMCID: PMC10082587 DOI: 10.1016/j.jaut.2022.102865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an inflammatory and autoimmune skin condition that affects patients with systemic lupus erythematosus (SLE) and exists as an isolated entity without associated SLE. Flares of CLE, often triggered by exposure to ultraviolet (UV) light result in lost productivity and poor quality of life for patients and can be associated with trigger of systemic inflammation. In the past 10 years, the knowledge of CLE etiopathogenesis has grown, leading to promising targets for better therapies. Development of lesions likely begins in a pro-inflammatory epidermis, conditioned by excess type I interferon (IFN) production to undergo increased cell death and inflammatory cytokine production after UV light exposure. The reasons for this inflammatory predisposition are not well-understood, but may be an early event, as ANA + patients without criteria for autoimmune disease exhibit similar (although less robust) findings. Non-lesional skin of SLE patients also exhibits increased innate immune cell infiltration, conditioned by excess IFNs to release pro-inflammatory cytokines, and potentially increase activation of the adaptive immune system. Plasmacytoid dendritic cells are also found in non-lesional skin and may contribute to type I IFN production, although this finding is now being questioned by new data. Once the inflammatory cycle begins, lesional infiltration by numerous other cell populations ensues, including IFN-educated T cells. The heterogeneity amongst lesional CLE subtypes isn't fully understood, but B cells appear to discriminate discoid lupus erythematosus from other subtypes. Continued discovery will provide novel targets for additional therapeutic pursuits. This review will comprehensively discuss the contributions of tissue-specific and immune cell populations to the initiation and propagation of disease.
Collapse
Affiliation(s)
- Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alayka L Reddy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Werth VP, Furie RA, Romero-Diaz J, Navarra S, Kalunian K, van Vollenhoven RF, Nyberg F, Kaffenberger BH, Sheikh SZ, Radunovic G, Huang X, Clark G, Carroll H, Naik H, Gaudreault F, Meyers A, Barbey C, Musselli C, Franchimont N. Trial of Anti-BDCA2 Antibody Litifilimab for Cutaneous Lupus Erythematosus. N Engl J Med 2022; 387:321-331. [PMID: 35939578 DOI: 10.1056/nejmoa2118024] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Blood dendritic cell antigen 2 (BDCA2) is a receptor that is exclusively expressed on plasmacytoid dendritic cells, which are implicated in the pathogenesis of lupus erythematosus. Whether treatment with litifilimab, a humanized monoclonal antibody against BDCA2, would be efficacious in reducing disease activity in patients with cutaneous lupus erythematosus has not been extensively studied. METHODS In this phase 2 trial, we randomly assigned adults with histologically confirmed cutaneous lupus erythematosus with or without systemic manifestations in a 1:1:1:1 ratio to receive subcutaneous litifilimab (at a dose of 50, 150, or 450 mg) or placebo at weeks 0, 2, 4, 8, and 12. We used a dose-response model to assess whether there was a response across the four groups on the basis of the primary end point, which was the percent change from baseline to 16 weeks in the Cutaneous Lupus Erythematosus Disease Area and Severity Index-Activity score (CLASI-A; scores range from 0 to 70, with higher scores indicating more widespread or severe skin involvement). Safety was also assessed. RESULTS A total of 132 participants were enrolled; 26 were assigned to the 50-mg litifilimab group, 25 to the 150-mg litifilimab group, 48 to the 450-mg litifilimab group, and 33 to the placebo group. Mean CLASI-A scores for the groups at baseline were 15.2, 18.4, 16.5, and 16.5, respectively. The difference from placebo in the change from baseline in CLASI-A score at week 16 was -24.3 percentage points (95% confidence interval [CI] -43.7 to -4.9) in the 50-mg litifilimab group, -33.4 percentage points (95% CI, -52.7 to -14.1) in the 150-mg group, and -28.0 percentage points (95% CI, -44.6 to -11.4) in the 450-mg group. The least squares mean changes were used in the primary analysis of a best-fitting dose-response model across the three drug-dose levels and placebo, which showed a significant effect. Most of the secondary end points did not support the results of the primary analysis. Litifilimab was associated with three cases each of hypersensitivity and oral herpes infection and one case of herpes zoster infection. One case of herpes zoster meningitis occurred 4 months after the participant received the last dose of litifilimab. CONCLUSIONS In a phase 2 trial involving participants with cutaneous lupus erythematosus, treatment with litifilimab was superior to placebo with regard to a measure of skin disease activity over a period of 16 weeks. Larger and longer trials are needed to determine the effect and safety of litifilimab for the treatment of cutaneous lupus erythematosus. (Funded by Biogen; LILAC ClinicalTrials.gov number, NCT02847598.).
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dose-Response Relationship, Drug
- Double-Blind Method
- Herpes Zoster/etiology
- Humans
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/immunology
- Lupus Erythematosus, Cutaneous/drug therapy
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/immunology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Severity of Illness Index
- Treatment Outcome
Collapse
Affiliation(s)
- Victoria P Werth
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Richard A Furie
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Juanita Romero-Diaz
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Sandra Navarra
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Kenneth Kalunian
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Ronald F van Vollenhoven
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Filippa Nyberg
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Benjamin H Kaffenberger
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Saira Z Sheikh
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Goran Radunovic
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Xiaobi Huang
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - George Clark
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Hua Carroll
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Himanshu Naik
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Francois Gaudreault
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Adam Meyers
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Catherine Barbey
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Cristina Musselli
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Nathalie Franchimont
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| |
Collapse
|
6
|
Skudalski L, Shahriari N, Torre K, Santiago S, Bibb L, Kodomudi V, Grant-Kels JM, Lu J. Emerging Therapeutics in the Management of Connective Tissue Disease. Part I. Lupus Erythematosus and Sjögren's Syndrome. J Am Acad Dermatol 2022; 87:1-18. [PMID: 35202775 DOI: 10.1016/j.jaad.2021.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022]
Abstract
The management of connective tissue diseases is dramatically evolving with the advent of biologics and novel oral systemic therapeutics. Despite involvement in the care of these complex patients, there is a knowledge gap in the field of dermatology regarding these emerging agents. The first article in this continuing medical education series discusses new and emerging therapeutics for lupus erythematosus and Sjögren's syndrome that target cells, intracellular signaling pathways, and cytokines.
Collapse
Affiliation(s)
| | - Neda Shahriari
- Department of Dermatology, Brigham and Women's Hospital; Harvard Medical School, Boston, MA
| | - Kristin Torre
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Sueheidi Santiago
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Lorin Bibb
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Vijay Kodomudi
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Jun Lu
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT.
| |
Collapse
|
7
|
Hojman L, Karsulovic C. Cardiovascular Disease-Associated Skin Conditions. Vasc Health Risk Manag 2022; 18:43-53. [PMID: 35210782 PMCID: PMC8859268 DOI: 10.2147/vhrm.s343319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
According to data from the American Heart Association and the World Health Organization, cardiovascular disease (CVD) is the most frequent cause of premature death. Several inflammatory and non-inflammatory skin diseases have been associated with metabolic syndrome and cardiovascular risk (CVR). Here, we classified these conditions into traditionally CVR-associated and those that have been linked to a lesser degree. Psoriasis and hidradenitis suppurativa are commonly associated with CVD, sharing common inflammatory pathways and a higher prevalence of traditional cardiovascular risk factors. Many other diseases could be associated indirectly – with no common pathogenic features with the atheromatous disease – but share a higher prevalence of standard cardiovascular risk and chronic inflammatory state. This review aims to highlight the associated cardiovascular risk that exists for some dermatologic diseases and sensitize cardiologists, dermatologists, and first care providers to implement risk factor control promptly.
Collapse
Affiliation(s)
- Lia Hojman
- Dermatology Department, Universidad del Desarrollo, Facultad de Medicina Clínica Alemana, Santiago, Region Metropolitana, Chile
| | - Claudio Karsulovic
- Internal Medicine Department, Universidad del Desarrollo, Facultad de Medicina Clínica Alemana, Santiago, Region Metropolitana, Chile
- Correspondence: Claudio Karsulovic, Internal Medicine Department, Universidad del Desarrollo, Facultad de Medicina Clinica Alemana, Avenida Vitacura 5951, Vitacura, Santiago, Region Metropolitana, Chile, Email
| |
Collapse
|
8
|
Ordentlich P. Clinical evaluation of colony-stimulating factor 1 receptor inhibitors. Semin Immunol 2021; 54:101514. [PMID: 34776301 DOI: 10.1016/j.smim.2021.101514] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023]
Abstract
Signaling through colony-stimulating factor 1 receptor (CSF1R) regulates the development, differentiation, and activation of mononuclear phagocytic cells. Inhibition of this pathway provides an opportunity for therapeutic intervention in diseases in which these cells play a pathogenic role, including cancers, inflammation, fibrosis, and others. Multiple monoclonal antibodies and small molecule inhibitors targeting CSF1R or its known ligands CSF1 and IL-34 have been clinically tested and are generally well tolerated with side effects associated with on-target macrophage inhibition or depletion. To date, clinical activity of CSF1R inhibitors has been primarily observed in diffuse-type tenosynovial giant cell tumors, a disease characterized by genetic alterations in CSF1 leading to dysregulated CSF1R signaling. Expanded development into novel indications such as chronic graft vs host disease may provide new opportunities to further explore areas where a role for CSF1R dependent monocytes and macrophages has been established. This review presents key findings from the clinical development of 12 CSF1/CSF1R targeted therapies as monotherapy or in combination with immune checkpoint inhibitors and chemotherapy.
Collapse
|
9
|
Mack E, Exton LS, Mohd Mustapa MF, McCourt C, O'Kane D. Use of the Cutaneous Lupus Disease Area and Severity Index as an outcome measure in clinical trials: a descriptive study. Clin Exp Dermatol 2020; 46:147-152. [PMID: 32790078 DOI: 10.1111/ced.14420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2020] [Indexed: 11/29/2022]
Abstract
This study summarizes the use, since its inception, of the Cutaneous Lupus Disease Area and Severity Index (CLASI) as an outcome measure in clinical studies. We systematically searched the MEDLINE, PubMed, EMBASE and Cochrane databases for papers including the term 'cutaneous lupus disease area and severity index' and its abbreviations up to August 2017, identifying 205 abstracts. Following shortlisting, two independent physicians critically reviewed 71 papers for data extraction. We found that a limited number of high-quality studies used the CLASI scoring as an outcome measure. We concluded that further validation is necessary to identify the effectiveness of the CLASI in the assessment of cutaneous lupus erythematosus subtypes. The use of standardized core patient- and physician-reported outcome measures may reduce heterogeneity and allow comparisons between patients enrolled in clinical trials. This would improve the relevance within clinical practice, where the use of CLASI is currently limited.
Collapse
Affiliation(s)
- E Mack
- Deparment of Dermatology, Belfast Health and Social Care Trust, Belfast, UK
| | - L S Exton
- Willan House, British Association of Dermatologists, London, UK
| | | | - C McCourt
- Deparment of Dermatology, Belfast Health and Social Care Trust, Belfast, UK
| | - D O'Kane
- Deparment of Dermatology, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
10
|
Jang KJ, Otieno MA, Ronxhi J, Lim HK, Ewart L, Kodella KR, Petropolis DB, Kulkarni G, Rubins JE, Conegliano D, Nawroth J, Simic D, Lam W, Singer M, Barale E, Singh B, Sonee M, Streeter AJ, Manthey C, Jones B, Srivastava A, Andersson LC, Williams D, Park H, Barrile R, Sliz J, Herland A, Haney S, Karalis K, Ingber DE, Hamilton GA. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci Transl Med 2020; 11:11/517/eaax5516. [PMID: 31694927 DOI: 10.1126/scitranslmed.aax5516] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Nonclinical rodent and nonrodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans, contributing to drug failures in the clinic. Here, we applied microengineered Organs-on-Chips technology to design a rat, dog, and human Liver-Chip containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chip detected diverse phenotypes of liver toxicity, including hepatocellular injury, steatosis, cholestasis, and fibrosis, and species-specific toxicities when treated with tool compounds. A multispecies Liver-Chip may provide a useful platform for prediction of liver toxicity and inform human relevance of liver toxicities detected in animal studies to better determine safety and human risk.
Collapse
Affiliation(s)
| | - Monicah A Otieno
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA.
| | - Janey Ronxhi
- Emulate Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Heng-Keang Lim
- Janssen Pharmaceutical Research and Development, Drug Metabolism and Pharmacokinetics, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Lorna Ewart
- Clinical Pharmacology and Safety Sciences Department, Biopharmaceuticals Science Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | | | | | | | | | | | - Janna Nawroth
- Emulate Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Damir Simic
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Wing Lam
- Janssen Pharmaceutical Research and Development, Drug Metabolism and Pharmacokinetics, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Monica Singer
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Erio Barale
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Bhanu Singh
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Manisha Sonee
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Anthony J Streeter
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Carl Manthey
- Janssen Pharmaceutical Research and Development, IPD Biology, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Barry Jones
- Clinical Pharmacology and Safety Sciences Department, Biopharmaceuticals Science Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Abhishek Srivastava
- Clinical Pharmacology and Safety Sciences Department, Biopharmaceuticals Science Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Linda C Andersson
- Clinical Pharmacology and Safety Sciences Department, Biopharmaceuticals Science Unit, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Dominic Williams
- Clinical Pharmacology and Safety Sciences Department, Biopharmaceuticals Science Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | | | | | - Josiah Sliz
- Emulate Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Anna Herland
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | | | - Katia Karalis
- Emulate Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA
| | | |
Collapse
|
11
|
Garelli CJ, Refat MA, Nanaware PP, Ramirez-Ortiz ZG, Rashighi M, Richmond JM. Current Insights in Cutaneous Lupus Erythematosus Immunopathogenesis. Front Immunol 2020; 11:1353. [PMID: 32714331 PMCID: PMC7343764 DOI: 10.3389/fimmu.2020.01353] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/27/2020] [Indexed: 12/25/2022] Open
Abstract
Cutaneous Lupus Erythematosus (CLE) is a clinically diverse group of autoimmune skin diseases with shared histological features of interface dermatitis and autoantibodies deposited at the dermal-epidermal junction. Various genetic and environmental triggers of CLE promote infiltration of T cells, B cells, neutrophils, antigen presenting cells, and NK cells into lesional skin. In this mini-review, we will discuss the clinical features of CLE, insights into CLE immunopathogenesis, and novel treatment approaches.
Collapse
Affiliation(s)
- Colton J. Garelli
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Maggi Ahmed Refat
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Padma P. Nanaware
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Zaida G. Ramirez-Ortiz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jillian M. Richmond
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
12
|
Little AJ, Vesely MD. Cutaneous Lupus Erythematosus: Current and Future Pathogenesis-Directed Therapies. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:81-95. [PMID: 32226339 PMCID: PMC7087060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune disease of the skin with significant morbidity. Current treatments are often inadequate to control disease and there are no Food and Drug Administration (FDA)-approved therapies for this potentially debilitating disease, underscoring an unmet medical need. Recent insights into disease pathogenesis have implicated innate and adaptive immune components, including type I and type III interferons in the development of CLE. Promising clinical trials based on these insights are now underway. However, the full spectrum of immune cells, cytokines, and environmental triggers contributing to disease remain to be elucidated. In this review, we will highlight the current understanding of CLE immunopathogenesis, the ongoing clinical trial landscape, and provide a framework for designing future therapeutic strategies for CLE based on new insights into disease pathogenesis.
Collapse
Affiliation(s)
- Alicia J. Little
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | | |
Collapse
|
13
|
Company-Quiroga J, Alique-García S, Romero-Maté A. Current Insights Into The Management Of Discoid Lupus Erythematosus. Clin Cosmet Investig Dermatol 2019; 12:721-732. [PMID: 31632120 PMCID: PMC6781736 DOI: 10.2147/ccid.s184824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022]
Abstract
Discoid lupus erythematosus is the most disfiguring and common presentation of chronic cutaneous lupus erythematosus. Although most patients will respond to lifestyle measures and topical treatment, a non-negligible number of patients will require systemic and physical therapy, either alone or in combination. We performed a review of the available evidence on the discoid lupus erythematosus treatment. Lifestyle measures and topical treatment (corticosteroids and topical calcineurin inhibitors) remain the therapeutic strategies with the highest evidence level. Within systemic treatment approaches, antimalarial drugs are still the first-line therapy, while other systemic and physical therapies have highly variable evidence. Hence, we propose a therapeutic algorithm based on the strength of recommendations of the different treatment modalities, focusing on the refractory disease.
Collapse
|
14
|
Fairley JL, Oon S, Saracino AM, Nikpour M. Management of cutaneous manifestations of lupus erythematosus: A systematic review. Semin Arthritis Rheum 2019; 50:95-127. [PMID: 31526594 DOI: 10.1016/j.semarthrit.2019.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cutaneous lupus erythematosus (CLE), occurring with or without systemic lupus erythematosus (SLE), is a group of inflammatory skin diseases that can be very debilitating, causing significant psychological distress, and sometimes scarring. OBJECTIVES We sought to comprehensively present the evidence for different treatment modalities in patients with cutaneous manifestations of lupus erythematosus (LE). METHODS Medline, Embase, Scopus and Cochrane CENTRAL were searched electronically from 1990 to March 2019, using keywords related to cutaneous lupus and synonyms and treatment. Articles retrieved were screened for relevance, including reference lists of retrieved reviews. We included clinical trials, observational studies or case series with ≥5 patients focussing on treatment of CLE, with or without SLE. RESULTS The search identified 6637 studies, of which 107 were included. Each study commonly included a heterogeneous mixture of CLE subtypes, with or without SLE. The 107 included studies investigated 11 different categories of treatment in 7343 patients. Treatments included topical calcineurin inhibitors (13 studies), sun protection (5 studies), R-salbutamol cream (2 studies), antimalarials (22 studies), synthetic DMARDs (10 studies), retinoids (2 studies), thalidomide/lenalidomide (22 studies), biologic therapies (15 studies), intravenous immune globulin (3 studies), laser (6 studies) and other therapies (7 studies). General measures to be considered include smoking cessation, sun protection measures and optimisation of vitamin D levels. Moderate evidence exists for benefit with topical CNIs, particularly as a steroid sparing agent in areas at high risk of steroid complications (e.g. facial skin). There is moderate evidence for hydroxychloroquine, which is first-line in SLE patients, limited evidence to support other synthetic DMARDs, and moderate evidence supporting thalidomide but with significant risk of toxicity. Of biologic therapies, there are moderate data to support belimumab. Limited evidence exists for other therapies. CONCLUSION Many management options are available for CLE, including topical, systemic and biologic therapies, with a variable balance of efficacy and toxicity. There is a paucity of high-quality clinical trial data. Further trials are required to better understand optimal management of CLE, particularly in specific subgroups.
Collapse
Affiliation(s)
- J L Fairley
- School of Public Health and Population Medicine, Monash University, Melbourne, Australia; The Alfred Hospital, Melbourne, Australia
| | - S Oon
- Department of Rheumatology, St Vincent's Hospital, Melbourne, Australia; The University of Melbourne, Australia
| | - A M Saracino
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, United Kingdom
| | - M Nikpour
- Department of Rheumatology, St Vincent's Hospital, Melbourne, Australia; The University of Melbourne, Australia.
| |
Collapse
|
15
|
Pognan F, Couttet P, Demin I, Jaitner B, Pang Y, Roubenoff R, Sutter E, Timsit Y, Valentin MA, Vogel B, Woerly G, Wolf A, Schramm U. Colony-Stimulating Factor-1 Antibody Lacnotuzumab in a Phase 1 Healthy Volunteer Study and Mechanistic Investigation of Safety Outcomes. J Pharmacol Exp Ther 2019; 369:428-442. [PMID: 30894455 DOI: 10.1124/jpet.118.254128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/18/2019] [Indexed: 03/08/2025] Open
Abstract
The colony-stimulating factor-1 (CSF-1) receptor pathway has been implicated in a variety of diseases, and CSF-1-dependent mechanisms are also involved in bloodborne protein clearance. Lacnotuzumab is a novel, high-affinity, humanized, anti-CSF-1 monoclonal antibody that prevents CSF-1-mediated receptor activation. This phase 1, two-part, double-blind study in healthy volunteers assessed the safety and tolerability of lacnotuzumab and its pharmacokinetics (PK) and pharmacodynamic properties. Part A (n = 36) was a single, ascending-dose assessment of eight lacnotuzumab doses (0.01-20 mg/kg); in part B (n = 16), lacnotuzumab was administered at either 5 or 10 mg/kg. In each study cohort, individuals were randomized 3:1 to lacnotuzumab or placebo. Lacnotuzumab was generally well tolerated. At higher doses (10 and 20 mg/kg), creatine kinase (CK) elevations (>5× the upper limit of normal, but asymptomatic and reversible) and mild transient periorbital swelling were reported. Most adverse events (AEs) were low-grade, no unexpected or novel AEs were observed, and there were no discontinuations for AEs. Free, unbound lacnotuzumab serum concentration-time profiles showed nonlinear PK across doses from 0.01 to 20 mg/kg, with faster apparent elimination at lower doses or concentrations; this finding was consistent with apparent target-mediated drug disposition. Lacnotuzumab also showed dose-dependent, on-target effects on multiple downstream biomarkers. Preclinical investigations of the CK elevation and periorbital swelling observed after lacnotuzumab administration suggest that these are reversible, nonpathological events linked to inhibition of the CSF-1 pathway. These data support further evaluation of lacnotuzumab in clinical studies.
Collapse
Affiliation(s)
- Francois Pognan
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Philippe Couttet
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Ivan Demin
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Birgit Jaitner
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Yinuo Pang
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Ronenn Roubenoff
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Esther Sutter
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Yoav Timsit
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Marie Anne Valentin
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Beate Vogel
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Gaetane Woerly
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Armin Wolf
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| | - Ursula Schramm
- Novartis Pharma AG, Basel, Switzerland (F.P., P.C., I.D., B.J., R.R., E.S., M.A.V., B.V., G.W., A.W., U.S.) and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts (Y.P., Y.T.)
| |
Collapse
|
16
|
Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S, Garcia-Sanz JA, Kremer L. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness. Front Immunol 2017; 8:1804. [PMID: 29312320 PMCID: PMC5742572 DOI: 10.3389/fimmu.2017.01804] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin) and bevacizumab (Avastin), respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system.
Collapse
Affiliation(s)
- Isabel Corraliza-Gorjón
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Silvia Santamaria
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Jose A Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| |
Collapse
|
17
|
Aris M, Mordoh J, Barrio MM. Immunomodulatory Monoclonal Antibodies in Combined Immunotherapy Trials for Cutaneous Melanoma. Front Immunol 2017; 8:1024. [PMID: 28970830 PMCID: PMC5609554 DOI: 10.3389/fimmu.2017.01024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
In the last few years, there has been a twist in cancer treatment toward immunotherapy thanks to the impressive results seen in advanced patients from several tumor pathologies. Cutaneous melanoma is a highly mutated and immunogenic tumor that has been a test field for the development of immunotherapy. However, there is still a way on the road to achieving complete and long-lasting responses in most patients. It is desirable that immunotherapeutic strategies induce diverse immune reactivity specific to tumor antigens, including the so-called neoantigens, as well as the blockade of immunosuppressive mechanisms. In this review, we will go through the role of promising monoclonal antibodies in cancer immunotherapy with immunomodulatory function, especially blocking of the inhibitory immune checkpoints CTLA-4 and PD-1, in combination with different immunotherapeutic strategies such as vaccines. We will discuss the rational basis for these combinatorial approaches as well as different schemes currently under study for cutaneous melanoma in the clinical trials arena. In this way, the combination of "push and release" immunomodulatory therapies can contribute to achieving a more robust and durable antitumor immune response in patients.
Collapse
Affiliation(s)
- Mariana Aris
- Centro de Investigaciones Oncológicas - Fundación Cáncer, Buenos Aires, Argentina
| | - José Mordoh
- Centro de Investigaciones Oncológicas - Fundación Cáncer, Buenos Aires, Argentina.,Instituto Médico Especializado Alexander Fleming, Buenos Aires, Argentina.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - María Marcela Barrio
- Centro de Investigaciones Oncológicas - Fundación Cáncer, Buenos Aires, Argentina
| |
Collapse
|
18
|
Abstract
Immunotherapies are changing the landscape of advanced solid tumor treatment. These therapies have different mechanisms of action and include oncolytic viruses, checkpoint inhibitors, such as CTLA-4 or PD1/PD-L1 monoclonal antibodies, and CSF-1R antibodies. Given the growing therapeutic impact of these agents in oncology, it is important to better understand their properties. Immunotherapies generate new toxicity profiles that are called immune-related adverse events and require specific management. This review focuses on the mechanisms of action of such side effects, as well as their description and their general management.
Collapse
|
19
|
Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 2017; 12:716-730. [PMID: 27872476 DOI: 10.1038/nrrheum.2016.186] [Citation(s) in RCA: 834] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aetiology of systemic lupus erythematosus (SLE) is multifactorial, and includes contributions from the environment, stochastic factors, and genetic susceptibility. Great gains have been made in understanding SLE through the use of genetic variant identification, mouse models, gene expression studies, and epigenetic analyses. Collectively, these studies support the concept that defective clearance of immune complexes and biological waste (such as apoptotic cells), neutrophil extracellular traps, nucleic acid sensing, lymphocyte signalling, and interferon production pathways are all central to loss of tolerance and tissue damage. Increased understanding of the pathogenesis of SLE is driving a renewed interest in targeted therapy, and researchers are now on the verge of developing targeted immunotherapy directed at treating either specific organ system involvement or specific subsets of patients with SLE. Accordingly, this Review places these insights within the context of our current understanding of the pathogenesis of SLE and highlights pathways that are ripe for therapeutic targeting.
Collapse
Affiliation(s)
- George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, Massachusetts 02215, USA
| | - Mindy S Lo
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Patricia Costa Reis
- Department of Pediatrics, Lisbon Medical School, Lisbon University, Santa Maria Hospital, Avenida Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
20
|
Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 2016; 16:53-70. [PMID: 28031576 DOI: 10.1038/nrd.2016.231] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Kuhn A, Aberer E, Bata-Csörgő Z, Caproni M, Dreher A, Frances C, Gläser R, Klötgen HW, Landmann A, Marinovic B, Nyberg F, Olteanu R, Ranki A, Szepietowski JC, Volc-Platzer B. S2k guideline for treatment of cutaneous lupus erythematosus - guided by the European Dermatology Forum (EDF) in cooperation with the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol 2016; 31:389-404. [PMID: 27859683 DOI: 10.1111/jdv.14053] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a rare inflammatory autoimmune disease with heterogeneous clinical manifestations. To date, no therapeutic agents have been licensed specifically for patients with this disease entity, and topical and systemic drugs are mostly used 'off-label'. The aim of the present guideline was to achieve a broad consensus on treatment strategies for patients with CLE by a European subcommittee, guided by the European Dermatology Forum (EDF) and supported by the European Academy of Dermatology and Venereology (EADV). In total, 16 European participants were included in this project and agreed on all recommendations. Topical corticosteroids remain the mainstay of treatment for localized CLE, and further topical agents, such as calcineurin inhibitors, are listed as alternative first-line or second-line topical therapeutic option. Antimalarials are recommended as first-line and long-term systemic treatment in all CLE patients with severe and/or widespread skin lesions, particularly in patients with a high risk of scarring and/or the development of systemic disease. In addition to antimalarials, systemic corticosteroids are recommended as first-line treatment in highly active and/or severe CLE. Second- and third-line systemic treatments include methotrexate, retinoids, dapsone and mycophenolate mofetil or mycophenolate acid, respectively. Thalidomide should only be used in selected therapy-refractory CLE patients, preferably in addition to antimalarials. Several new therapeutic options, such as B-cell- or interferon α-targeted agents, need to be further evaluated in clinical trials to assess their efficacy and safety in the treatment of patients with CLE.
Collapse
Affiliation(s)
- A Kuhn
- Interdisciplinary Center for Clinical Trials (IZKS), University Medical Center Mainz, Mainz, Germany.,Division of Immunogenetics, Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | - E Aberer
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Z Bata-Csörgő
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - M Caproni
- Department of Medical and Surgical Critical Care Section of Dermatology, University of Florence, Florence, Italy
| | - A Dreher
- Evidence-Based Medicine Frankfurt, Institute for General Practice, Goethe-University Frankfurt, Frankfurt, Germany
| | - C Frances
- Department of Dermatology and Allergology, Hôpital Tenon, Paris, France
| | - R Gläser
- Department of Dermatology, Venerology and Allergology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - H-W Klötgen
- Department of Dermatology, Inselspital Bern - University Hospital, Bern, Switzerland
| | - A Landmann
- Division of Immunogenetics, Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | - B Marinovic
- Department of Dermatology and Venereology, University Hospital Center Zagreb and School of Medicine University of Zagreb, Zagreb, Croatia
| | - F Nyberg
- Institution for Clinical Sciences, Unit for Dermatology, Karolinska Institutet at Danderyd Hospital (KIDS), Stockholm, Sweden
| | - R Olteanu
- Department of Dermatology, Colentina Clinical Hospital, Bucharest, Romania
| | - A Ranki
- Department of Skin and allergic diseases, Inflammation Center, Helsinki University Central Hospital, Helsinki, Finland
| | - J C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - B Volc-Platzer
- Department of Dermatology, Donauspital, University affiliated Hospital, Vienna, Austria
| |
Collapse
|
22
|
Yang J, Finke JC, Yang J, Percy AJ, von Fritschen U, Borchers CH, Glocker MO. Early risk prognosis of free-flap transplant failure by quantitation of the macrophage colony-stimulating factor in patient plasma using 2-dimensional liquid-chromatography multiple reaction monitoring-mass spectrometry. Medicine (Baltimore) 2016; 95:e4808. [PMID: 27684807 PMCID: PMC5265900 DOI: 10.1097/md.0000000000004808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although great success of microvascular free-flap transplantation surgery has been achieved in recent years, between 1.5% and 15% of flaps are still lost due to vascular occlusion. The clinical challenge remains to salvage a transplant in the case of vascular complications. Since flap loss is devastating for the patient, it is of utmost importance to detect signs of complications or of conspicuities as soon as possible. Rescue success rates highly depend on early revision. In this study, we collected blood samples during transplantation surgery from either the contributory artery or the effluent vein of the flap and applied a targeted mass spectrometry-based approach to quantify 24 acute phase proteins, cytokines, and growth factors in 63 plasma samples from 21 hospitalized patients, generating a dataset with 9450 protein concentration values. Biostatistical analyses of the targeted plasma protein concentrations in all 63 plasma samples showed that venous concentrations of macrophage colony-stimulating factor (M-CSF) provided the highest accuracy for discriminating patients with either clinical conspicuities or complications from control individuals. Using 21.33 ng/mL of M-CSF as the diagnostic threshold when analyzing venous blood plasma samples, the assay obtained a sensitivity of 0.93 and a specificity of 0.85 with an area under the curve value of 0.902 in the receiver operating characteristic analysis. Overall, our results indicate that M-CSF is a potential molecular marker for early risk prognosis of free-flap transplant failure.
Collapse
Affiliation(s)
- Jingzhi Yang
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock
| | - Juliane C. Finke
- Division of Plastic Surgery and Hand Surgery, HELIOS Clinic Emil von Behring, Berlin, Germany
| | - Juncong Yang
- University of Victoria – Genome British Columbia Proteomics Center, Vancouver Island Technology Park
| | - Andrew J. Percy
- University of Victoria – Genome British Columbia Proteomics Center, Vancouver Island Technology Park
| | - Uwe von Fritschen
- Division of Plastic Surgery and Hand Surgery, HELIOS Clinic Emil von Behring, Berlin, Germany
| | - Christoph H. Borchers
- University of Victoria – Genome British Columbia Proteomics Center, Vancouver Island Technology Park
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Michael O. Glocker
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock
- Correspondence: Michael O. Glocker, Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Schillingallee 69, 18059 Rostock, Germany (e-mail: )
| |
Collapse
|