1
|
Feng W, Zhang Y, Sun P, Xiao M. Acquired immunity and Alzheimer's disease. J Biomed Res 2023; 37:15-29. [PMID: 36165328 PMCID: PMC9898041 DOI: 10.7555/jbr.36.20220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune system dominated by microglia in the progression of AD has been extensively investigated. However, little is known about the peripheral immune system in AD pathogenesis. Recently, with the discovery of the meningeal lymphatic vessels and glymphatic system, the roles of the acquired immunity in the maintenance of central homeostasis and neurodegenerative diseases have attracted an increasing attention. The T cells not only regulate the function of neurons, astrocytes, microglia, oligodendrocytes and brain microvascular endothelial cells, but also participate in the clearance of β-amyloid (Aβ) plaques. Apart from producing antibodies to bind Aβ peptides, the B cells affect Aβ-related cascades via a variety of antibody-independent mechanisms. This review systemically summarizes the recent progress in understanding pathophysiological roles of the T cells and B cells in AD.
Collapse
Affiliation(s)
- Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China,Weixi Feng, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869338; E-mail:
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Peng Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
2
|
Gozlan EC, Chobrutskiy BI, Zaman S, Yeagley M, Blanck G. Systemic Adaptive Immune Parameters Associated with Neuroblastoma Outcomes: the Significance of Gamma-Delta T Cells. J Mol Neurosci 2021; 71:2393-2404. [DOI: 10.1007/s12031-021-01813-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
|
3
|
Lanz TV, Pröbstel AK, Mildenberger I, Platten M, Schirmer L. Single-Cell High-Throughput Technologies in Cerebrospinal Fluid Research and Diagnostics. Front Immunol 2019; 10:1302. [PMID: 31244848 PMCID: PMC6579921 DOI: 10.3389/fimmu.2019.01302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
High-throughput single-cell technologies have recently emerged as essential tools in biomedical research with great potential for clinical pathology when studying liquid and solid biopsies. We provide an update on current single-cell methods in cerebrospinal fluid research and diagnostics, focusing on high-throughput cell-type specific proteomic and genomic technologies. Proteomic methods comprising flow cytometry and mass cytometry as well as genomic approaches including immune cell repertoire and single-cell transcriptomic studies are critically reviewed and future directions discussed.
Collapse
Affiliation(s)
- Tobias V. Lanz
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Anne-Katrin Pröbstel
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Departments of Medicine and Biomedicine, Neurologic Clinic and Policlinic, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Iris Mildenberger
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
4
|
Chen Z, Chen S, Liu J. The role of T cells in the pathogenesis of Parkinson's disease. Prog Neurobiol 2018; 169:1-23. [PMID: 30114440 DOI: 10.1016/j.pneurobio.2018.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/24/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Recent evidence has shown that neuroinflammation plays a key role in the pathogenesis of Parkinson's disease (PD). However, different components of the brain's immune system may exert diverse effects on neuroinflammatory events in PD. The adaptive immune response, especially the T cell response, can trigger type 1 pro-inflammatory activities and suppress type 2 anti-inflammatory activities, eventually resulting in deregulated neuroinflammation and subsequent dopaminergic neurodegeneration. Additionally, studies have increasingly shown that therapies targeting T cells can alleviate neurodegeneration and motor behavior impairment in animal models of PD. Therefore, we conclude that abnormal T cell-mediated immunity is a fundamental pathological process that may be a promising translational therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|