1
|
Wang D, Li Q, Diao X, Wang Q. Mitochondrial Oxidative Stress Related Diagnostic Model Accurately Assesses Rheumatoid Arthritis Risk Stratification and Immune Infiltration Characterization. Biotechnol J 2025; 20:e202400615. [PMID: 39924845 DOI: 10.1002/biot.202400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects synovial joints, leading to joint destruction, impaired physical function, and reduced quality of life. However, no accurate method for assessing RA risk currently exists. Given the critical role of early detection and intervention in RA management, further comprehensive risk assessments are essential. Mitochondrial oxidative stress (MOS) is a key factor in the initiation and progression of RA. The bidirectional interaction between RA and MOS supports the feasibility of MOS-based risk stratification for RA. Using public databases, we first applied the weighted gene co-expression network analysis (WGCNA) model to identify key genes involved in RA among MOS-related genes. Differential expression patterns of MOS-related genes were then analyzed using various machine learning algorithms to identify potential biomarkers. A nomogram model was established using CDKN1A, GADD45B, and MAFF genes to predict RA risk, followed by an evaluation of its reliability and stability. Additionally, we analyzed MOS-associated molecular subtypes and immune infiltration characteristics. Our findings highlight the significant role of MOS in RA development and underscore the clinical value of personalized treatment strategies.
Collapse
Affiliation(s)
- Dexun Wang
- Department of Orthopedics, The People's Hospital of Qingdao West Coast New Area, Qingdao, China
| | - Qianqian Li
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaopeng Diao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qizun Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Liu H, Ji M, Yang T, Zou S, Qiu X, Zhan F, Chen J, Yan F, Ding F, Li P. Regulation of fibroblast phenotype in osteoarthritis using CDKN1A-loaded copper sulfide nanoparticles delivered by mesenchymal stem cells. Am J Physiol Cell Physiol 2025; 328:C679-C698. [PMID: 39819042 DOI: 10.1152/ajpcell.00573.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
This study aimed to investigate the regulation of fibroblast phenotypes by mesenchymal stem cells (MSCs) delivering copper sulfide (CuS) nanoparticles (NPs) loaded with CDKN1A plasmids and their role in cartilage repair during osteoarthritis (OA). Single-cell RNA sequencing data from the GEO database were analyzed to identify subpopulations within the OA immune microenvironment. Quality control, filtering, principal component analysis (PCA) dimensionality reduction, and tSNE clustering were performed to obtain detailed cell subtypes. Pseudotime analysis was used to understand the developmental trajectory of fibroblasts, and GO/KEGG enrichment analyses highlighted biological processes related to fibroblast function. Transcriptomic data and WGCNA identified CDKN1A as a key regulatory gene. A biomimetic CuS@CDKN1A nanosystem was constructed and loaded into MSCs to create MSCs@CuS@CDKN1A. The characterization of this system confirmed its efficient cellular uptake by fibroblasts. In vitro experiments demonstrated that MSCs@CuS@CDKN1A significantly modulated fibroblast phenotypes and improved the structure, proliferation, reduced apoptosis, and enhanced migration of IL-1β-stimulated chondrocytes. In vivo, an OA mouse model was treated with intra-articular injections of MSCs@CuS@CDKN1A. Micro-CT scans revealed a significant reduction in osteophyte formation and improved joint space compared with control groups. Histological analysis, including H&E, Safranin O-Fast Green, and toluidine blue staining, confirmed improved cartilage integrity, whereas the International Osteoarthritis Research Society (OARSI) scoring indicated reduced disease severity. Immunofluorescence showed upregulated CDKN1A expression, decreased MMP13, and reduced α-SMA expression in fibroblast subtypes. Major organs exhibited no signs of toxicity, confirming the biocompatibility and safety of the treatment. These findings suggest that MSCs@CuS@CDKN1A can effectively regulate fibroblast activity and promote cartilage repair, providing a promising therapeutic strategy for OA treatment.NEW & NOTEWORTHY This study introduces MSCs@CuS@CDKN1A, a nanoengineered MSC platform that targets fibroblast phenotypes in osteoarthritis (OA). By modulating CDKN1A expression, this innovative approach not only enhances cartilage repair but also effectively mitigates fibroblast-driven inflammation, marking a significant advancement in OA therapeutics with demonstrated efficacy and biocompatibility.
Collapse
Affiliation(s)
- Hong Liu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Ming Ji
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Tao Yang
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Shihua Zou
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Xingan Qiu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
- School of Medicine, Chongqing University, Chongqing, People's Republic of China
| | - Jian Chen
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
- School of Medicine, Chongqing University, Chongqing, People's Republic of China
| | - Fei Yan
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, People's Republic of China
- School of Medicine, Chongqing University, Chongqing, People's Republic of China
| | - Fan Ding
- Department of Orthopedics, General Hospital of Central Theater Command, Wuhan, People's Republic of China
| | - Ping Li
- Division of Orthopedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
3
|
Guo J, Lei T, Yu X, Wang P, Xie H, Jian G, Zhang Q, Qing Y. Analysis of the Potential Link Between Dermatomyositis and Cancer. J Inflamm Res 2024; 17:10163-10182. [PMID: 39649426 PMCID: PMC11624688 DOI: 10.2147/jir.s480744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024] Open
Abstract
Background Dermatomyositis (DM) is an inflammatory muscle disease that increases the risk of cancer, although the precise connection is not fully understood. The aim of this study was to investigate the mechanisms linking DM to cancer and identify potential therapeutic targets. Methods We conducted differential gene expression analysis on the GSE128470 dataset and employed WGCNA to pinpoint key genes related to DM. Central genes were identified with the LASSO and SVM-RFE methods. The expression levels and diagnostic relevance of these genes were confirmed via the GSE1551 dataset. Immune cell infiltration was analyzed in relation to central genes, and RT‒qPCR was utilized to evaluate the expression of key genes across various cancers. Results In total, differentially expressed genes (DEGs), involved mainly in innate immunity, cytokine responses, and autoimmune diseases, were identified. In the WGCNA, 399 significant genes related to DM were identified, with central genes including MIF, C1QA, and CDKN1A. Immune infiltration analysis revealed diverse immune cell populations in DM patients, with significant correlations between central genes and these immune cells. MIF levels were notably elevated in various tumors and correlated with the prognosis of specific cancers. Furthermore, MIF was negatively associated with most immune cells but positively correlated with CD4+ Th1 cells, NKT cells, and MDSCs. Factors such as immune regulatory elements, TMB, and MSI indicated that MIF may affect immunotherapy outcomes. The increased expression of MIF mRNA was confirmed via RT‒qPCR. Conclusion The findings demonstrate that MIF, C1QA, and CDKN1A are differentially expressed in DM patients, with MIF showing significant alterations in DM patients with cancer. MIF may serve as a crucial prognostic biomarker and therapeutic target for various cancers, playing a pivotal role in linking DM to cancer through the modulation of CD4+ Th1 cells, NKT cells, and MDSCs.
Collapse
Affiliation(s)
- Jianwei Guo
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Tianyi Lei
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xiang Yu
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Peng Wang
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Hongyuan Xie
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Guilin Jian
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Emergency Department,Suining Third People, S Hospital, Suining, Sichuan, 629000, People’s Republic of China
| | - Quanbo Zhang
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Yufeng Qing
- Research Center of Hyperuricemia and Gout, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| |
Collapse
|
4
|
Comertpay B, Gov E. Immune cell-specific and common molecular signatures in rheumatoid arthritis through molecular network approaches. Biosystems 2023; 234:105063. [PMID: 37852410 DOI: 10.1016/j.biosystems.2023.105063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder and common symptom of RA is chronic synovial inflammation. The pathogenesis of RA is not fully understood. Therefore, we aimed to identify underlying common and distinct molecular signatures and pathways among ten types of tissue and cells obtained from patients with RA. In this study, transcriptomic data including synovial tissues, macrophages, blood, T cells, CD4+T cells, CD8+T cells, natural killer T (NKT), cells natural killer (NK) cells, neutrophils, and monocyte cells were analyzed with an integrative and comparative network biology perspective. Each dataset yielded a list of differentially expressed genes as well as a reconstruction of the tissue-specific protein-protein interaction (PPI) network. Molecular signatures were identified by a statistical test using the hypergeometric probability density function by employing the interactions of transcriptional regulators and PPI. Reporter metabolites of each dataset were determined by using genome-scale metabolic networks. It was defined as the common hub proteins, novel molecular signatures, and metabolites in two or more tissue types while immune cell-specific molecular signatures were identified, too. Importantly, miR-155-5p is found as a common miRNA in all tissues. Moreover, NCOA3, PRKDC and miR-3160 might be novel molecular signatures for RA. Our results establish a novel approach for identifying immune cell-specific molecular signatures of RA and provide insights into the role of common tissue-specific genes, miRNAs, TFs, receptors, and reporter metabolites. Experimental research should be used to validate the corresponding genes, miRNAs, and metabolites.
Collapse
Affiliation(s)
- Betul Comertpay
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| | - Esra Gov
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
| |
Collapse
|
5
|
Qin J, Zhang J, Wu JJ, Ru X, Zhong QL, Zhao JM, Lan NH. Identification of autophagy-related genes in osteoarthritis articular cartilage and their roles in immune infiltration. Front Immunol 2023; 14:1263988. [PMID: 38090564 PMCID: PMC10711085 DOI: 10.3389/fimmu.2023.1263988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Background Autophagy plays a critical role in the progression of osteoarthritis (OA), mainly by regulating inflammatory and immune responses. However, the underlying mechanisms remain unclear. This study aimed to investigate the potential relevance of autophagy-related genes (ARGs) associated with infiltrating immune cells in OA. Methods GSE114007, GSE169077, and ARGs were obtained from the Gene Expression Omnibus (GEO) database and the Human Autophagy database. R software was used to identify the differentially expressed autophagy-related genes (DEARGs) in OA. Functional enrichment and protein-protein interaction (PPI) analyses were performed to explore the role of DEARGs in OA cartilage, and then Cytoscape was utilized to screen hub ARGs. Single-sample gene set enrichment analysis (ssGSEA) was used to conduct immune infiltration analysis and evaluate the potential correlation of key ARGs and immune cell infiltration. Then, the expression levels of hub ARGs in OA were further verified by the GSE169077 and qRT-PCR. Finally, Western blotting and immunohistochemistry were used to validate the final hub ARGs. Results A total of 24 downregulated genes and five upregulated genes were identified, and these genes were enriched in autophagy, mitophagy, and inflammation-related pathways. The intersection results identified nine hub genes, namely, CDKN1A, DDIT3, FOS, VEGFA, RELA, MAP1LC3B, MYC, HSPA5, and HSPA8. GSE169077 and qRT-PCR validation results showed that only four genes, CDKN1A, DDT3, MAP1LC3B, and MYC, were consistent with the bioinformatics analysis results. Western blotting and immunohistochemical (IHC) showed that the expression of these four genes was significantly downregulated in the OA group, which is consistent with the qPCR results. Immune infiltration correlation analysis indicated that DDIT3 was negatively correlated with immature dendritic cells in OA, and FOS was positively correlated with eosinophils. Conclusion CDKN1A, DDIT3, MAP1LC3B, and MYC were identified as ARGs that were closely associated with immune infiltration in OA cartilage. Among them, DDIT3 showed a strong negative correlation with immature dendritic cells. This study found that the interaction between ARGs and immune cell infiltration may play a crucial role in the pathogenesis of OA; however, the specific interaction mechanism needs further research to be clarified. This study provides new insights to further understand the molecular mechanisms of immunity involved in the process of OA by autophagy.
Collapse
Affiliation(s)
- Jun Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Medical Research Center for Orthopedic Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Medical Cosmetology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Zhang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian-Jun Wu
- Department of Orthopedics, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiao Ru
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Medical Research Center for Orthopedic Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiu-Ling Zhong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Medical Research Center for Orthopedic Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin-Min Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Medical Research Center for Orthopedic Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Research Centre for Regenerative Medicine, Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ni-Han Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Clinical Medical Research Center for Orthopedic Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Yang J, Jiang T, Xu G, Wang S, Liu W. Exploring molecular mechanisms underlying the pathophysiological association between knee osteoarthritis and sarcopenia. Osteoporos Sarcopenia 2023; 9:99-111. [PMID: 37941536 PMCID: PMC10627980 DOI: 10.1016/j.afos.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Objectives Accumulating evidence indicates a strong link between knee osteoarthritis (KOA) and sarcopenia. However, the mechanisms involved have not yet been elucidated. This study primarily aims to explore the molecular mechanisms that explain the connection between these 2 disorders. Methods The gene expression profiles for KOA and sarcopenia were obtained from the Gene Expression Omnibus database, specifically from GSE55235, GSE169077, and GSE1408. Various bioinformatics techniques were employed to identify and analyze common differentially expressed genes (DEGs) across the 3 datasets. The techniques involved the analysis of Gene Ontology and pathways to enhance understanding, examining protein-protein interaction (PPI) networks, and identifying hub genes. In addition, we constructed the network of interactions between transcription factors (TFs) and genes, the co-regulatory network of TFs and miRNAs for hub genes, and predicted potential drugs. Results In total, 14 common DEGs were found between KOA and sarcopenia. Detailed information on biological processes and signaling pathways of common DEGs was obtained through enrichment analysis. After performing PPI network analysis, we discovered 4 hub genes (FOXO3, BCL6, CDKN1A, and CEBPB). Subsequently, we developed coregulatory networks for these hub genes involving TF-gene and TF-miRNA interactions. Finally, we identified 10 potential chemical compounds. Conclusions By conducting bioinformatics analysis, our study has successfully identified common gene interaction networks between KOA and sarcopenia. The potential of these findings to offer revolutionary understanding into the common development of these 2 conditions could lead to the identification of valuable targets for therapy.
Collapse
Affiliation(s)
- Jiyong Yang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Jiang
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Guangming Xu
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Shuai Wang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wengang Liu
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| |
Collapse
|
7
|
Staniszewska M, Kiełbowski K, Rusińska K, Bakinowska E, Gromowska E, Pawlik A. Targeting cyclin-dependent kinases in rheumatoid arthritis and psoriasis - a review of current evidence. Expert Opin Ther Targets 2023; 27:1097-1113. [PMID: 37982244 DOI: 10.1080/14728222.2023.2285784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with synovial proliferation and bone erosion, which leads to the structural and functional impairment of the joints. Immune cells, together with synoviocytes, induce a pro-inflammatory environment and novel treatment agents target inflammatory cytokines. Psoriasis is a chronic immune-mediated skin disease, and several cytokines are considered as typical mediators in the progression of the disease, including IL-23, IL-22, and IL-17, among others. AREA COVERED In this review, we try to evaluate whether cyclin-dependent kinases (CDK), enzymes that regulate cell cycle and transcription of various genes, could become novel therapeutic targets in RA and psoriasis. We present the main results of in vitro and in vivo studies, as well as scarce clinical reports. EXPERT OPINION CDK inhibitors seem promising for treating RA and psoriasis because of their multidirectional effects. CDK inhibitors may affect not only the process of osteoclastogenesis, thereby reducing joint destruction in RA, but also the process of apoptosis of neutrophils and macrophages responsible for the development of inflammation in both RA and psoriasis. However, assessing the efficacy of these drugs in clinical practice requires multi-center, long-term clinical trials evaluating the effectiveness and safety of CDK-blocking therapy in RA and psoriasis.
Collapse
Affiliation(s)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Klaudia Rusińska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Gromowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
8
|
Ma J, Zhao W, Pei X, Li X, Zhao W. MicroRNA-345-3p is a potential biomarker and ameliorates rheumatoid arthritis by reducing the release of proinflammatory cytokines. J Orthop Surg Res 2023; 18:399. [PMID: 37264454 DOI: 10.1186/s13018-023-03797-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/13/2023] [Indexed: 06/03/2023] Open
Abstract
OBJECTIVES The study was to explore the influence of microRNA (miR)-345-3p on proinflammatory cytokines in patients with rheumatoid arthritis (RA). METHODS A total of 32 RA patients and 32 healthy patients were enrolled. Proinflammatory factors in patients' serum were detected by ELISA, and miR-345-3p was detected by RT-qPCR. The correlation between miR-345-3p expression and proinflammatory factors in RA patients was analyzed. The diagnostic value of miR-345-3p and proinflammatory factors in RA patients was analyzed by receiver operating curve diagnosis. The predictive value of miR-345-3p levels and proinflammatory factors in RA patients was analyzed by multivariate Cox regression. HFLS-RA and HFLS cells were cultured, in which miR-345-3p and proinflammatory cytokines were detected by RT-qPCR. Cell proliferation and apoptosis were determined by CCK-8 and flow cytometry, respectively. RESULTS MiR-345-3p was lowly expressed in the serum of RA patients. MiR-345-3p and proinflammatory factors were of diagnostic and predictive values in RA. Elevated miR-345-3p restrained the production of proinflammatory factors of HFLS-RA cells, improved cell proliferation, and reduced apoptosis. CONCLUSION MiR-345-3p is a potential biomarker and ameliorates RA by reducing the release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Jun Ma
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China
| | - Wei Zhao
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China
| | - Xue Pei
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China
| | - XinZhi Li
- Department of Orthopaedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang City, 443001, Hubei Province, China
| | - Wei Zhao
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China.
| |
Collapse
|
9
|
Cabello P, Torres-Ruiz S, Adam-Artigues A, Forés-Martos J, Martínez MT, Hernando C, Zazo S, Madoz-Gúrpide J, Rovira A, Burgués O, Rojo F, Albanell J, Lluch A, Bermejo B, Cejalvo JM, Eroles P. miR-146a-5p Promotes Angiogenesis and Confers Trastuzumab Resistance in HER2+ Breast Cancer. Cancers (Basel) 2023; 15:cancers15072138. [PMID: 37046799 PMCID: PMC10093389 DOI: 10.3390/cancers15072138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Trastuzumab treatment has significantly improved the prognosis of HER2-positive breast cancer patients. Despite this, resistance to therapy still remains the main clinical challenge. In order to evaluate the implication of microRNAs in the trastuzumab response, we performed a microRNA array in parental and acquired trastuzumab-resistant HER2-positive breast cancer cell lines. Our results identified miR-146a-5p as the main dysregulated microRNA. Interestingly, high miR-146a-5p expression in primary tumor tissue significantly correlated with shorter disease-free survival in HER2-positive breast cancer patients. The gain- and loss-of-function of miR-146a-5p modulated the response to trastuzumab. Furthermore, the overexpression of miR-146a-5p increased migration and angiogenesis, and promoted cell cycle progression by reducing CDKN1A expression. Exosomes from trastuzumab-resistant cells showed a high level of miR-146a-5p expression compared with the parental cells. In addition, the co-culture with resistant cells’ exosomes was able to decrease in sensitivity and increase the migration capacities in trastuzumab-sensitive cells, as well as angiogenesis in HUVEC-2 cells. Collectively, these data support the role of miR-146a-5p in resistance to trastuzumab, and demonstrate that it can be transferred by exosomes conferring resistance properties to other cells.
Collapse
Affiliation(s)
- Paula Cabello
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- International University of Valencia—VIU, 46002 Valencia, Spain
| | | | | | | | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Sandra Zazo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | | | - Ana Rovira
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Octavio Burgués
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Pathology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Federico Rojo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Joan Albanell
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Ana Lluch
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Department of Biotechnology, Polytechnic University of Valencia, 46022 Valencia, Spain
| |
Collapse
|
10
|
Fan DD, Tan PY, Jin L, Qu Y, Yu QH. Bioinformatic identification and validation of autophagy-related genes in rheumatoid arthritis. Clin Rheumatol 2023; 42:741-750. [PMID: 36220923 DOI: 10.1007/s10067-022-06399-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder characterized by progressive synovial inflammation and joint destruction, with a largely unknown etiology. Studies have suggested that autophagy and its expression may be involved in the pathogenesis of RA; however, autophagy-related genes in RA are still largely unidentified. Therefore, in this study, we aimed to identify and validate autophagy-related genes in RA. METHODS We identified differentially expressed autophagy-related genes between patients with RA and healthy individuals using gene expression profiles in the GSE55235 dataset and R software. Subsequently, correlation analysis, protein-protein interaction, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out using these differentially expressed autophagy-related genes. Finally, our results were validated by examining the expression of differentially expressed autophagy-related hub genes in clinical samples using qRT-PCR. RESULTS We identified 52 potential autophagy-related genes in RA based on bioinformatic analyses. Ten hub genes, CASP8, CTSB, TNFSF10, FADD, BAX, MYC, FOS, CDKN1A, GABARAPL1, and BNIP3, were validated to be differentially expressed and may serve as valuable prognostic markers and new potential therapeutic targets for RA via the regulation of autophagy. CONCLUSIONS Our results may help improve the understanding of RA pathogenesis. Autophagy-related genes in RA could be valuable biomarkers for diagnosis and prognosis and they might be exploited clinically as therapeutic targets in the future.
Collapse
Affiliation(s)
- Dan-Dan Fan
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Peng-Yu Tan
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Li Jin
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Yuan Qu
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China
| | - Qing-Hong Yu
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510285, People's Republic of China.
| |
Collapse
|
11
|
Pentosan polysulfate sodium prevents functional decline in chikungunya infected mice by modulating growth factor signalling and lymphocyte activation. PLoS One 2021; 16:e0255125. [PMID: 34492036 PMCID: PMC8423248 DOI: 10.1371/journal.pone.0255125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus that causes large outbreaks world-wide leaving millions of people with severe and debilitating arthritis. Interestingly, clinical presentation of CHIKV arthritides have many overlapping features with rheumatoid arthritis including cellular and cytokine pathways that lead to disease development and progression. Currently, there are no specific treatments or vaccines available to treat CHIKV infections therefore advocating the need for the development of novel therapeutic strategies to treat CHIKV rheumatic disease. Herein, we provide an in-depth analysis of an efficacious new treatment for CHIKV arthritis with a semi-synthetic sulphated polysaccharide, Pentosan Polysulfate Sodium (PPS). Mice treated with PPS showed significant functional improvement as measured by grip strength and a reduction in hind limb foot swelling. Histological analysis of the affected joint showed local inflammation was reduced as seen by a decreased number of infiltrating immune cells. Additionally, joint cartilage was protected as demonstrated by increased proteoglycan staining. Using a multiplex-immunoassay system, we also showed that at peak disease, PPS treatment led to a systemic reduction of the chemokines CXCL1, CCL2 (MCP-1), CCL7 (MCP-3) and CCL12 (MCP-5) which may be associated with the reduction in cellular infiltrates. Further characterisation of the local effect of PPS in its action to reduce joint and muscle inflammation was performed using NanoString™ technology. Results showed that PPS altered the local expression of key functional genes characterised for their involvement in growth factor signalling and lymphocyte activation. Overall, this study shows that PPS is a promising treatment for alphaviral arthritis by reducing inflammation and protecting joint integrity.
Collapse
|
12
|
Myocardial Infarction-Associated Extracellular Vesicle-Delivered miR-208b Affects the Growth of Human Umbilical Vein Endothelial Cells via Regulating CDKN1A. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9965639. [PMID: 34195287 PMCID: PMC8203352 DOI: 10.1155/2021/9965639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023]
Abstract
This study was aimed at investigating the effects of myocardial infarction- (MI-) associated extracellular vesicle- (EV-) delivered miR-208b on human umbilical vein endothelial cells (HUVECs). EVs were isolated and subsequently stained with PHK67. A dual-luciferase reporter gene assay was used to determine the target of miR-208b. Afterwards, HUVECs were transfected with either MI-associated EVs or miR-208b mimics, and cell viability, migration, and apoptosis were subsequently measured. Real-time quantitative polymerase chain reaction (RT-qPCR) was applied to determine the expressions of the tested genes. NanoSight, transmission electron microscopy, and western blotting showed that EVs were successfully isolated. Among the potential microRNA biomarkers for MI, miR-208b was chosen for subsequent experiments. We found that MI-associated EVs could be taken up by HUVECs and confirmed that CDKN1A was a direct target of miR-208b. Additionally, miR-208b mimics and MI-associated EVs significantly inhibited the viability and migration of HUVECs (P < 0.05) and promoted cell apoptosis, as well as reduced S phase and increased G2/M phase cell distribution. RT-qPCR revealed that both miR-208b mimics and MI-associated EVs upregulated the expressions of CDKN1A, FAK, Raf-1, MAPK1, and Bax but downregulated the expression of Bcl2 and reduced the Bcl2/Bax ratio. Our study concludes that MI-associated EVs delivered miR-208b to HUVECs, and EV-delivered miR-208b could affect the growth of HUVECs by regulating the miR-208b/CDKN1A pathway; thus, miR-208b can be therefore served as important therapeutic targets for MI treatment.
Collapse
|
13
|
Xie J, Deng Z, Alahdal M, Liu J, Zhao Z, Chen X, Wang G, Hu X, Duan L, Wang D, Li W. Screening and verification of hub genes involved in osteoarthritis using bioinformatics. Exp Ther Med 2021; 21:330. [PMID: 33732303 PMCID: PMC7903481 DOI: 10.3892/etm.2021.9761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common causes of disability and its development is associated with numerous factors. A major challenge in the treatment of OA is the lack of early diagnosis. In the present study, a bioinformatics method was employed to filter key genes that may be responsible for the pathogenesis of OA. From the Gene Expression Omnibus database, the datasets GSE55457, GSE12021 and GSE55325 were downloaded, which comprised 59 samples. Of these, 30 samples were from patients diagnosed with osteoarthritis and 29 were normal. Differentially expressed genes (DEGs) were obtained by downloading and analyzing the original data using bioinformatics. The Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathways were analyzed using the Database for Annotation, Visualization and Integrated Discovery online database. Protein-protein interaction network analysis was performed using the Search Tool for the Retrieval of Interacting Genes/proteins online database. BSCL2 lipid droplet biogenesis associated, seipin, FOS-like 2, activator protein-1 transcription factor subunit (FOSL2), cyclin-dependent kinase inhibitor 1A (CDKN1A) and kinectin 1 (KTN1) genes were identified as key genes by using Cytoscape software. Functional enrichment revealed that the DEGs were mainly accumulated in the ErbB, MAPK and PI3K-Akt pathways. Reverse transcription-quantitative PCR analysis confirmed a significant reduction in the expression levels of FOSL2, CDKN1A and KTN1 in OA samples. These genes have the potential to become novel diagnostic and therapeutic targets for OA.
Collapse
Affiliation(s)
- Junxiong Xie
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China.,University of South China, School of Clinical Medicine, Hengyang, Hunan 421001, P.R. China
| | - Zhiqin Deng
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Murad Alahdal
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Jianquan Liu
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zhe Zhao
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Xiaoqiang Chen
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Guanghui Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Xiaotian Hu
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China.,University of South China, School of Clinical Medicine, Hengyang, Hunan 421001, P.R. China
| | - Wencui Li
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
14
|
Tseng CC, Wu LY, Tsai WC, Ou TT, Wu CC, Sung WY, Kuo PL, Yen JH. Differential Expression Profiles of the Transcriptome and miRNA Interactome in Synovial Fibroblasts of Rheumatoid Arthritis Revealed by Next Generation Sequencing. Diagnostics (Basel) 2019; 9:diagnostics9030098. [PMID: 31426562 PMCID: PMC6787660 DOI: 10.3390/diagnostics9030098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Using next-generation sequencing to decipher the molecular mechanisms underlying aberrant rheumatoid arthritis synovial fibroblasts (RASF) activation, we performed transcriptome-wide RNA-seq and small RNA-seq on synovial fibroblasts from rheumatoid arthritis (RA) subject and normal donor. Differential expression of mRNA and miRNA was integrated with interaction analysis, functional annotation, regulatory network mapping and experimentally verified miRNA–target interaction data, further validated with microarray expression profiles. In this study, 3049 upregulated mRNA and 3552 downregulated mRNA, together with 50 upregulated miRNA and 35 downregulated miRNA in RASF were identified. Interaction analysis highlighted contribution of miRNA to altered transcriptome. Functional annotation revealed metabolic deregulation and oncogenic signatures of RASF. Regulatory network mapping identified downregulated FOXO1 as master transcription factor resulting in altered transcriptome of RASF. Differential expression in three miRNA and corresponding targets (hsa-miR-31-5p:WASF3, hsa-miR-132-3p:RB1, hsa-miR-29c-3p:COL1A1) were also validated. The interactions of these three miRNA–target genes were experimentally validated with past literature. Our transcriptomic and miRNA interactomic investigation identified gene signatures associated with RASF and revealed the involvement of transcription factors and miRNA in an altered transcriptome. These findings help facilitate our understanding of RA with the hope of serving as a springboard for further discoveries relating to the disease.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
15
|
Kaneshiro K, Sakai Y, Suzuki K, Uchida K, Tateishi K, Terashima Y, Kawasaki Y, Shibanuma N, Yoshida K, Hashiramoto A. Interleukin-6 and tumour necrosis factor-α cooperatively promote cell cycle regulators and proliferate rheumatoid arthritis fibroblast-like synovial cells. Scand J Rheumatol 2019; 48:353-361. [DOI: 10.1080/03009742.2019.1602164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- K Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Y Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - K Suzuki
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Uchida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Tateishi
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Terashima
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Kawasaki
- Department of Rheumatology, Kobe Kaisei Hospital, Kobe, Japan
| | - N Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, Japan
| | - K Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - A Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|