1
|
He X, Hou H, Jiang Y, Huang X. Association Between Indices of Peripheral Blood Inflammation and Cavitary Pulmonary Tuberculosis. Int J Gen Med 2024; 17:5133-5142. [PMID: 39529941 PMCID: PMC11552384 DOI: 10.2147/ijgm.s483185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Objective To explore inflammation markers of C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammatory index (SII), and systemic inflammatory response index (SIRI) in the differential diagnosis of cavitary pulmonary tuberculosis (PTB) from non-cavitary PTB. Methods This retrospective study included 1233 patients with PTB, 518 patients were diagnosed with cavitary PTB as case group, while 715 patients which diagnosed with non-cavitary PTB were selected as control group. The clinical data of patients was collected and the levels of inflammation indices were measured. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnosis and analysis of selected indices. Logistic regression analysis was performed to evaluate the factors associated with cavitary PTB. Results The CRP, NLR, MLR, PLR, SII, and SIRI in the case group were significantly higher than those in the controls (all p<0.001). When cavitary PTB was taken as the endpoint, the optimal diagnostic thresholds of CRP was 35.365 (area under the ROC curve (AUC)=0.601), NLR was 5.740 (AUC=0.595), MLR was 0.525 (AUC=0.577), PLR was 198.255 (AUC=0.602), SII was 1252.045 (AUC=0.628), and SIRI was 2.095 (AUC=0.605), respectively. Logistic regression analysis showed that gender, CRP, PLR, and SIRI were the independent risk factors for cavitary PTB. The sensitivity of the combination of the three indices (CRP+PLR, CRP+SIRI, PLR+SIRI, and CRP+PLR+SIRI) were higher than those of the CRP, PLR, and SIRI. Conclusion CRP, PLR, and SIRI levels were associated with an increased likelihood of cavitary PTB. The combined detection of CRP, PLR, and SIRI is promising as a screening marker and may be useful for ruling out PTB with cavitary.
Collapse
Affiliation(s)
- Xiaoshan He
- Department of Infectious Diseases, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Hongbiao Hou
- Department of Infectious Diseases, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Yuting Jiang
- Department of Infectious Diseases, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Xiaohuan Huang
- Department of Infectious Diseases, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
2
|
Ciszek-Lenda M, Nowak B, Majka G, Suski M, Walczewska M, Fedor A, Golińska E, Górska S, Gamian A, Olszanecki R, Strus M, Marcinkiewicz J. Saccharomyces cerevisiae β-glucan improves the response of trained macrophages to severe P. aeruginosa infections. Inflamm Res 2024; 73:1283-1297. [PMID: 38850343 PMCID: PMC11282130 DOI: 10.1007/s00011-024-01898-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
OBJECTIVE P. AERUGINOSA: (PA), the major pathogen of lung cystic fibrosis (CF), polarizes macrophages into hyperinflammatory tissue damaging phenotype. The main aim of this study was to verify whether training of macrophages with β-glucan might improve their response to P. aeruginosa infections. METHODS To perform this task C57BL/6 mice sensitive to infections with P. aeruginosa were used. Peritoneal macrophages were trained with Saccharomyces cerevisiae β-glucan and exposed to PA57, the strong biofilm-forming bacterial strain isolated from the patient with severe lung CF. The release of cytokines and the expression of macrophage phenotypic markers were measured. A quantitative proteomic approach was used for the characterization of proteome-wide changes in macrophages. The effect of in vivo β-glucan-trained macrophages in the air pouch model of PA57 infection was investigated. In all experiments the effect of trained and naïve macrophages was compared. RESULTS Trained macrophages acquired a specific phenotype with mixed pro-inflammatory and pro-resolution characteristics, however they retained anti-bacterial properties. Most importantly, transfer of trained macrophages into infected air pouches markedly ameliorated the course of infection. PA57 bacterial growth and formation of biofilm were significantly suppressed. The level of serum amyloid A (SAA), a systemic inflammation biomarker, was reduced. CONCLUSIONS Training of murine macrophages with S. cerevisiae β-glucan improved macrophage defense properties along with inhibition of secretion of some detrimental inflammatory agents. We suggest that training of macrophages with such β-glucans might be a new therapeutic strategy in P. aeruginosa biofilm infections, including CF, to promote eradication of pathogens and resolution of inflammation.
Collapse
Affiliation(s)
- Marta Ciszek-Lenda
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Bernadeta Nowak
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Grzegorz Majka
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland.
| | - Maciej Suski
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, Krakow, 31-53, Poland
| | - Maria Walczewska
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Angelika Fedor
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Edyta Golińska
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Sabina Górska
- Hirszfeld Institute of Immunology and Experimental Therapy, Department of Microbiology, Laboratory of Microbiome Immunobiology, Polish Academy of Sciences, Weigla 12, Wroclaw, 53-114, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, Polish Academy of Sciences, Weigla 12, Wroclaw, 53-114, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, Krakow, 31-53, Poland
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Janusz Marcinkiewicz
- University of Agriculture, University Centre of Veterinary Medicine, Mickiewicza 24/28, Krakow, 30- 059, Poland
| |
Collapse
|
3
|
Cheetham CJ, McKelvey MC, McAuley DF, Taggart CC. Neutrophil-Derived Proteases in Lung Inflammation: Old Players and New Prospects. Int J Mol Sci 2024; 25:5492. [PMID: 38791530 PMCID: PMC11122108 DOI: 10.3390/ijms25105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophil-derived proteases are critical to the pathology of many inflammatory lung diseases, both chronic and acute. These abundant enzymes play roles in key neutrophil functions, such as neutrophil extracellular trap formation and reactive oxygen species release. They may also be released, inducing tissue damage and loss of tissue function. Historically, the neutrophil serine proteases (NSPs) have been the main subject of neutrophil protease research. Despite highly promising cell-based and animal model work, clinical trials involving the inhibition of NSPs have shown mixed results in lung disease patients. As such, the cutting edge of neutrophil-derived protease research has shifted to proteases that have had little-to-no research in neutrophils to date. These include the cysteine and serine cathepsins, the metzincins and the calpains, among others. This review aims to outline the previous work carried out on NSPs, including the shortcomings of some of the inhibitor-orientated clinical trials. Our growing understanding of other proteases involved in neutrophil function and neutrophilic lung inflammation will then be discussed. Additionally, the potential of targeting these more obscure neutrophil proteases will be highlighted, as they may represent new targets for inhibitor-based treatments of neutrophil-mediated lung inflammation.
Collapse
Affiliation(s)
- Coby J. Cheetham
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| |
Collapse
|
4
|
Abolhasani FS, Moein M, Rezaie N, Sheikhimehrabadi P, Shafiei M, Afkhami H, Modaresi M. Occurrence of COVID-19 in cystic fibrosis patients: a review. Front Microbiol 2024; 15:1356926. [PMID: 38694803 PMCID: PMC11061495 DOI: 10.3389/fmicb.2024.1356926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/11/2024] [Indexed: 05/04/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic ailment caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. This autosomal recessive disorder is characterized by diverse pathobiological abnormalities, such as the disorder of CFTR channels in mucosal surfaces, caused by inadequate clearance of mucus and sputum, in addition to the malfunctioning of mucous organs. However, the primary motive of mortality in CF patients is pulmonary failure, which is attributed to the colonization of opportunistic microorganisms, formation of resistant biofilms, and a subsequent decline in lung characteristics. In December 2019, the World Health Organization (WHO) declared the outbreak of the radical coronavirus disease 2019 (COVID-19) as a worldwide public health crisis, which unexpectedly spread not only within China but also globally. Given that the respiration system is the primary target of the COVID-19 virus, it is crucial to investigate the impact of COVID-19 on the pathogenesis and mortality of CF patients, mainly in the context of acute respiratory distress syndrome (ARDS). Therefore, the goal of this review is to comprehensively review the present literature on the relationship between cystic fibrosis, COVID-19 contamination, and development of ARDS. Several investigations performed during the early stages of the virus outbreak have discovered unexpected findings regarding the occurrence and effectiveness of COVID-19 in individuals with CF. Contrary to initial expectancies, the rate of infection and the effectiveness of the virus in CF patients are lower than those in the overall population. This finding may be attributed to different factors, including the presence of thick mucus, social avoidance, using remedies that include azithromycin, the fairly younger age of CF patients, decreased presence of ACE-2 receptors, and the effect of CFTR channel disorder on the replication cycle and infectivity of the virus. However, it is important to notice that certain situations, which include undergoing a transplant, can also doubtlessly boost the susceptibility of CF patients to COVID-19. Furthermore, with an increase in age in CF patients, it is vital to take into account the prevalence of the SARS-CoV-2 virus in this population. Therefore, ordinary surveillance of CF patients is vital to evaluate and save the population from the capability of transmission of the virus given the various factors that contribute to the spread of the SARS-CoV-2 outbreak in this precise organization.
Collapse
Affiliation(s)
- Fatemeh Sadat Abolhasani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Moein
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, School of Medicine, Shahed University, Tehran, Iran
| | - Mohammadreza Modaresi
- Pediatric Pulmonary Disease and Sleep Medicine Research Center, Pediatric Center of Excellence, Children's Medical Center, Tehran, Iran
- Cystic Fibrosis Research Center, Iran CF Foundation (ICFF), Tehran, Iran
| |
Collapse
|
5
|
Ciszek-Lenda M, Majka G, Suski M, Walczewska M, Górska S, Golińska E, Fedor A, Gamian A, Olszanecki R, Strus M, Marcinkiewicz J. Biofilm-forming strains of P. aeruginosa and S. aureus isolated from cystic fibrosis patients differently affect inflammatory phenotype of macrophages. Inflamm Res 2023:10.1007/s00011-023-01743-x. [PMID: 37253897 DOI: 10.1007/s00011-023-01743-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVE Lung cystic fibrosis (CF) is characterized by chronic infections and hyperinflammatory response of neutrophils and macrophages. P. aeruginosa (PA) and S. aureus (MSSA, MRSA) are major pathogens of advanced CF. The main goal of this study was to compare the inflammatory phenotype of murine C57BL/6 macrophages exposed to PA57 with that exposed to MSSA60, both strains isolated from the same patient with severe CF. In the present study, we used C57BL/6 mice sensitive to lung infection with P. aeruginosa. METHODS We measured the release of cytokines and the expression of phenotypic markers of murine neutrophils and macrophages exposed to bacterial cells and biofilm components (i.e., EPS) of the selected bacteria. In addition, a quantitative proteomic approach was used for the characterization of proteome-wide changes in macrophages. RESULTS Neutrophils stimulated with PA57 and MSSA60 strains produced hyperinflammatory pattern of cytokines. The pro-inflammatory impact of PA57 was significantly higher than that of MSSA60 (IL-6/IL-10 ratio: PA57 = 9.3 vs. MSSA60 = 1.7). Macrophages produced significantly lower amount of cytokines, but showed classical pattern of M1 markers (iNOS-High; arginase-1 and mannose receptor MRC1-Low). Importantly, as evidenced by proteomic analysis, PA57 and PA57-EPS were stronger inducers of M1 macrophage polarization than the MSSA60 counterparts. CONCLUSIONS Our study demonstrated that strong biofilm P. aeruginosa strains, CF isolates, are dominant inducers of M1 macrophages, termed biofilm-associated macrophages (BAMs). We suggest that repolarization of detrimental BAMs might be a new therapeutic strategy to ameliorate the airway damage in CF.
Collapse
Affiliation(s)
- Marta Ciszek-Lenda
- Department of Immunology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| | - Grzegorz Majka
- Department of Immunology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland.
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Faculty of Medicine, Grzegorzecka 16, 31-53, Krakow, Poland
| | - Maria Walczewska
- Department of Immunology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| | - Sabina Górska
- Department of Microbiology, Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Edyta Golińska
- Department of Microbiology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| | - Angelika Fedor
- Department of Immunology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, Faculty of Medicine, Grzegorzecka 16, 31-53, Krakow, Poland
| | - Magdalena Strus
- Department of Microbiology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical College, Faculty of Medicine, Czysta 18, 31-121, Krakow, Poland
| |
Collapse
|
6
|
Bezzerri V, Gentili V, Api M, Finotti A, Papi C, Tamanini A, Boni C, Baldisseri E, Olioso D, Duca M, Tedesco E, Leo S, Borgatti M, Volpi S, Pinton P, Cabrini G, Gambari R, Blasi F, Lippi G, Rimessi A, Rizzo R, Cipolli M. SARS-CoV-2 viral entry and replication is impaired in Cystic Fibrosis airways due to ACE2 downregulation. Nat Commun 2023; 14:132. [PMID: 36627352 PMCID: PMC9830623 DOI: 10.1038/s41467-023-35862-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
As an inherited disorder characterized by severe pulmonary disease, cystic fibrosis could be considered a comorbidity for coronavirus disease 2019. Instead, current clinical evidence seems to be heading in the opposite direction. To clarify whether host factors expressed by the Cystic Fibrosis epithelia may influence coronavirus disease 2019 progression, here we describe the expression of SARS-CoV-2 receptors in primary airway epithelial cells. We show that angiotensin converting enzyme 2 (ACE2) expression and localization are regulated by Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Consistently, our results indicate that dysfunctional CFTR channels alter susceptibility to SARS-CoV-2 infection, resulting in reduced viral entry and replication in Cystic Fibrosis cells. Depending on the pattern of ACE2 expression, the SARS-CoV-2 spike (S) protein induced high levels of Interleukin 6 in healthy donor-derived primary airway epithelial cells, but a very weak response in primary Cystic Fibrosis cells. Collectively, these data support that Cystic Fibrosis condition may be at least partially protecting from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.,Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Valentina Gentili
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Martina Api
- Cystic Fibrosis Center of Ancona, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Tamanini
- Section of Molecular Pathology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Christian Boni
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Elena Baldisseri
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Debora Olioso
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Martina Duca
- Cystic Fibrosis Center of Ancona, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Erika Tedesco
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Sara Leo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Sonia Volpi
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Paolo Pinton
- Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Francesco Blasi
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy. .,Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
7
|
Majka G, Mazurek H, Strus M, Ciszek-Lenda M, Szatanek R, Pac A, Golińska E, Marcinkiewicz J. Chronic bacterial pulmonary infections in advanced cystic fibrosis differently affect the level of sputum neutrophil elastase, IL-8 and IL-6. Clin Exp Immunol 2021; 205:391-405. [PMID: 34031873 DOI: 10.1111/cei.13624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced cystic fibrosis (CF) lung disease is commonly characterized by a chronic Pseudomonas aeruginosa infection and destructive inflammation caused by neutrophils. However, the lack of convincing evidence from most informative biomarkers of severe lung dysfunction (SLD-CF) has hampered the formulation of a conclusive, targeted diagnosis of CF. The aim of this study was to determine whether SLD-CF is related to the high concentration of sputum inflammatory mediators and the presence of biofilm-forming bacterial strains. Forty-one patients with advanced CF lung disease were studied. The severity of pulmonary dysfunction was defined by forced expiratory volume in 1 second (FEV1) < 40%. C-reactive protein (CRP) and NLR (neutrophil-lymphocyte ratio) were examined as representative blood-based markers of inflammation. Expectorated sputum was collected and analysed for cytokines and neutrophil-derived defence proteins. Isolated sputum bacteria were identified and their biofilm-forming capacity was determined. There was no association between FEV1% and total number of sputum bacteria. However, in the high biofilm-forming group the median FEV1 was < 40%. Importantly, high density of sputum bacteria was associated with increased concentrations of neutrophil elastase and interleukin (IL)-8 and low concentrations of IL-6 and IL-10. The low concentration of sputum IL-6 is unique for CF and distinct from that observed in other chronic pulmonary inflammatory diseases. These findings strongly suggest that expectorated sputum is an informative source of pulmonary biomarkers representative for advanced CF and may replace more invasive bronchoalveolar lavage analysis to monitor the disease. We recommend to use of the following inflammatory biomarkers: blood CRP, NLR and sputum elastase, IL-6, IL-8 and IL-10.
Collapse
Affiliation(s)
- Grzegorz Majka
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, Institute of Tuberculosis and Lung Disorders, Rabka-Zdrój, Poland
| | - Magdalena Strus
- Faculty of Medicine, Department of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Marta Ciszek-Lenda
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Rafał Szatanek
- Faculty of Medicine, Institute of Pediatrics, Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Pac
- Faculty of Medicine, Chair of Epidemiology and Preventive Medicine, Department of Epidemiology, Jagiellonian University Medical College, Kraków, Poland
| | - Edyta Golińska
- Faculty of Medicine, Department of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Janusz Marcinkiewicz
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|