1
|
Sprenger-Svačina A, Svačina MKR, Gao T, Ritzel RM, McCullough LD, Sheikh KA, Zhang G. Differential regulation of tissue-resident and blood-derived macrophages in models of autoimmune and traumatic peripheral nerve injury. Front Immunol 2024; 15:1487788. [PMID: 39628475 PMCID: PMC11611839 DOI: 10.3389/fimmu.2024.1487788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction The current study focuses on understanding the functional role of different subsets of endoneurial macrophages in autoimmune polyneuropathies (AP) and traumatic peripheral nerve injury (TPNI), which holds potential for clinical application. Recent studies have advanced our understanding of the diverse origins of macrophages within peripheral nerves. However, there remains a gap in our knowledge regarding how endoneurial macrophages from different origins affect disease progression in AP versus TPNI. Methods Flow cytometry was utilized to analyze macrophage phenotypes, including polarization states, cytokine production, and myelin phagocytosis in animal models of AP and TPNI. This study focuses on two distinct origins of macrophages, namely CD11b+F4/80hi tissue-resident (TRM) and CD11b+F4/80int blood-derived macrophages (BDM). The study utilized two animal models: the first was the spontaneous autoimmune peripheral polyneuropathy (SAPP) model in B7.2-null non-obese diabetic (NOD-B7.2-/-) mice, which serves as a model for inflammatory demyelinating polyneuropathy; the second model involved wild type C57BL/6 mice subjected to sciatic nerve crush injury, modeling TPNI. Behavioral, electrophysiological, and histological analyses were performed to assess peripheral nerve injury. Results The study found that pro-inflammatory M1 macrophage polarization and tumor necrosis factor-alpha production by macrophages were more pronounced in the peripheral nerves of SAPP mice compared to those with TPNI, with the majority of these macrophages being TRM. In contrast, endoneurial macrophages in mice with TPNI were mainly BDM, exhibiting a less defined macrophage polarization and cytokine profile than TRM in AP mice. Interestingly, myelin phagocytosis was primarily driven by BDM in both SAPP and TPNI mice. Discussion This study offers novel insights into origin-dependent macrophage functions in AP and TPNI. Furthermore, these findings may help the future development of novel therapies targeting macrophage subsets of specific origin in AP and TPNI.
Collapse
Affiliation(s)
- Alina Sprenger-Svačina
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Martin K. R. Svačina
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Tong Gao
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rodney M. Ritzel
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kazim A. Sheikh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gang Zhang
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
2
|
Zhen Z, Wei S, Yunfei W, Jie X, Jienan X, Yiting S, Wen X, Shuyu G, Yue L, Xuanyu W, Yumei Z, Huafa Q. Astragalus polysaccharide improves diabetic ulcers by promoting M2-polarization of macrophages to reduce excessive inflammation via the β-catenin/ NF-κB axis at the late phase of wound-healing. Heliyon 2024; 10:e24644. [PMID: 38390059 PMCID: PMC10881534 DOI: 10.1016/j.heliyon.2024.e24644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Ethnopharmacological relevance Astragalus polysaccharide (APS), the most biologically active ingredient of Astragali Radix, is used to treat diabetes mellitus (DM)-related chronic wounds in traditional Chinese medicine for several decades. This herb possesses an anti-inflammatory effect. Our study proved that APS can reduce excessive inflammation at the late phase of wound-healing in diabetic ulcers. Aim of the study To clarify the molecular mechanism of APS in promoting wound-healing via reducing excessive inflammation in diabetic ulcers during the late stages of wound-healing. Methods and materials The rat model of the diabetic ulcers was established via intraperitoneal injection of streptozocin (60 mg/kg). We detected the regulation of APS on diabetic ulcers by measuring wound-healing rates. Bioinformatics was used to predict the target genes of APS, and autodocking was used to predict the combination of APS and target genes. Immunohistochemistry, Enzyme-linked immunosorbent assay, Western blot, immunofluorescence staining, flow cytometry, and flow cytometric sorting were investigated. Results The results demonstrated that APS promoted wound-healing and inhibited excessive inflammation at the late phase of wound-healing in diabetic rats. Mechanistic findings showed that APS promoted the expression of β-catenin and Rspo3 while inhibiting the expression of NF-KB and GSK-3β, which leads to the transformation of M1-type macrophages into M2-type macrophages and thus reducing excessive inflammation at the late phase of wound-healing in diabetic ulcers. Conclusion We found an interesting finding that APS promoted the polarization of macrophages towards M2-type through the β-catenin/NF-κB axis to reduce excessive inflammation at the late phase of wound-healing. Therefore, APS may be a promising drug for treating diabetic ulcers in clinic.
Collapse
Affiliation(s)
- Zhang Zhen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shan Wei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wang Yunfei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xing Jie
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xu Jienan
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shen Yiting
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiao Wen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guo Shuyu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Liang Yue
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wang Xuanyu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhong Yumei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Que Huafa
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
3
|
Li C, Cao F, Zhang H, Fan W, Cheng Y, Lou Y, Wang Y. Macrophage accumulation in dorsal root ganglion is associated with neuropathic pain in experimental autoimmune neuritis. Transl Neurosci 2024; 15:20220355. [PMID: 39449726 PMCID: PMC11500528 DOI: 10.1515/tnsci-2022-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024] Open
Abstract
Background Neuropathic pain is a common symptom of Guillain-Barré syndrome (GBS). The infiltration of macrophages in the dorsal root ganglion (DRG) contributed to neuropathic pain in nerve injury. The underlying mechanisms of neuropathic pain in patients with GBS remain unknown. Experimental autoimmune neuritis (EAN) is a useful mice model of GBS. Our study aimed to explore whether the infiltration of macrophages in DRG is associated with neuropathic pain of EAN. Methods Male C57BL/6 mice were randomly divided into two groups, the EAN group (n = 12) and the control group (n = 12). Six mice in each group were sacrificed after anesthetization in the attack and remission phase, respectively. The 50% paw withdrawal threshold and clinical score were measured, and macrophages with its subtypes were detected in the spleen and DRG tissue. Results More macrophages infiltrated the DRG of the EAN group in the attack phase and mostly surrounded neurons in the DRG. The proportion of macrophages and pro-inflammatory macrophages in the spleen of mice with EAN was significantly higher than the control group in the attack phase. Conclusion The infiltration of macrophages in DRG might be associated with neuropathic pain of EAN and pro-inflammatory macrophages may involve in neuropathic pain of EAN.
Collapse
Affiliation(s)
- Chunrong Li
- Center for rehabilitation Medicine (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Fangzheng Cao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Houwen Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijiao Fan
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Hangzhou Medical College, Hangzhou, China
| | - Yifan Cheng
- Center for rehabilitation Medicine (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yao Lou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiqi Wang
- Center for rehabilitation Medicine (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
4
|
Peng Y, Zhou M, Yang H, Qu R, Qiu Y, Hao J, Bi H, Guo D. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases. Mediators Inflamm 2023; 2023:8821610. [PMID: 37332618 PMCID: PMC10270764 DOI: 10.1155/2023/8821610] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Macrophages are innate immune cells in the organism and can be found in almost tissues and organs. They are highly plastic and heterogeneous cells and can participate in the immune response, thereby playing a crucial role in maintaining the immune homeostasis of the body. It is well known that undifferentiated macrophages can polarize into classically activated macrophages (M1 macrophages) and alternatively activated macrophages (M2 macrophages) under different microenvironmental conditions. The directions of macrophage polarization can be regulated by a series of factors, including interferon, lipopolysaccharide, interleukin, and noncoding RNAs. To elucidate the role of macrophages in various autoimmune diseases, we searched the literature on macrophages with the PubMed database. Search terms are as follows: macrophages, polarization, signaling pathways, noncoding RNA, inflammation, autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, lupus nephritis, Sjogren's syndrome, Guillain-Barré syndrome, and multiple sclerosis. In the present study, we summarize the role of macrophage polarization in common autoimmune diseases. In addition, we also summarize the features and recent advances with a particular focus on the immunotherapeutic potential of macrophage polarization in autoimmune diseases and the potentially effective therapeutic targets.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hong Yang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yan Qiu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| |
Collapse
|
5
|
Wang N, Zhao Q, Gong Z, Fu L, Li J, Hu L. CD301b+ Macrophages as Potential Target to Improve Orthodontic Treatment under Mild Inflammation. Cells 2022; 12:135. [PMID: 36611929 PMCID: PMC9818444 DOI: 10.3390/cells12010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Due to improvements of quality of life and the demand for aesthetics, more and more people are choosing orthodontic treatments, resulting in a surge in adult orthodontic patients in recent years. However, a large amount of clinical evidence shows that many orthodontic patients have mild periodontitis in the periodontal tissues, which affects the efficacy of the orthodontic treatment or aggravates the periodontal condition. Therefore, it is important to identify the key factors that affect orthodontic treatments in this inflammatory environment. The aim of this study was to investigate the role of macrophages in orthodontic treatments under inflammatory environments. By analyzing the functional groups of macrophages in the orthodontic rat model of periodontitis, we found that macrophages with high expression levels of CD301b could improve the periodontal microenvironment and improve the efficiency of the orthodontic tooth movement. CD301b+ macrophages transplanted into the model can promote osteogenesis around orthodontic moving teeth, improve bone remodeling during orthodontic treatment, and accelerate orthodontic tooth movement. Considered together, these results suggest that CD301b+ macrophages may play an active role in orthodontic treatments in inflammatory environments and may serve as potential regulatory targets.
Collapse
Affiliation(s)
- Nan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zijian Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liangliang Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jiaojiao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Li Hu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
McCombe PA, Hardy TA, Nona RJ, Greer JM. Sex differences in Guillain Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy and experimental autoimmune neuritis. Front Immunol 2022; 13:1038411. [PMID: 36569912 PMCID: PMC9780466 DOI: 10.3389/fimmu.2022.1038411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Guillain Barré syndrome (GBS) and its variants, and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP and its variants, are regarded as immune mediated neuropathies. Unlike in many autoimmune disorders, GBS and CIDP are more common in males than females. Sex is not a clear predictor of outcome. Experimental autoimmune neuritis (EAN) is an animal model of these diseases, but there are no studies of the effects of sex in EAN. The pathogenesis of GBS and CIDP involves immune response to non-protein antigens, antigen presentation through non-conventional T cells and, in CIDP with nodopathy, IgG4 antibody responses to antigens. There are some reported sex differences in some of these elements of the immune system and we speculate that these sex differences could contribute to the male predominance of these diseases, and suggest that sex differences in peripheral nerves is a topic worthy of further study.
Collapse
Affiliation(s)
- Pamela A. McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Todd A. Hardy
- Department of Neurology, Concord Hospital, University of Sydney, Sydney, NSW, Australia
- Brain & Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Robert J. Nona
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Judith M. Greer
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Ding Y, Wang L, Sun J, Shi Y, Li G, Luan X, Zheng G, Zhang G. Remnant Cholesterol and Dyslipidemia Are Risk Factors for Guillain–Barré Syndrome and Severe Guillain–Barré Syndrome by Promoting Monocyte Activation. Front Immunol 2022; 13:946825. [PMID: 35911688 PMCID: PMC9326451 DOI: 10.3389/fimmu.2022.946825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGuillain–Barré syndrome (GBS) is the most common severe acute paralytic neuropathy, with a mortality rate of 5% and permanent sequelae rate of 10%. Currently, the cause of GBS remains unclear. Therefore, we sought to determine potential predictors for GBS and its severity.MethodsA case–control study was performed at Tiantan Hospital in Beijing from January 2017 to December 2021. Laboratory and clinical characteristics were assessed in recruited GBS patients and healthy control individuals (matched by sex and age). The potential risk factors for GBS and severe GBS were assessed using a logistic regression analysis. The mRNA levels of toll-like receptor 4 (TLR4), toll-like receptor 2 (TLR2) and nuclear factor κB (NF-κB) in GBS patients and control PBMCs were detected by fluorescence quantitative PCR. THP-1 cells were costimulated with LPS and free cholesterol to demonstrate the effect of free cholesterol on monocyte activation.ResultsA total of 147 GBS patients and 153 healthy individuals were included in the study. Logistic regression analyses showed that preceding infection, alcohol consumption, remnant cholesterol, homocysteine and the dyslipidemia index were correlated with a higher risk of GBS. In contrast, increased HDL cholesterol was correlated with a lower risk of GBS. Moreover, remnant cholesterol and the dyslipidemia index were significantly correlated with severe GBS. The mRNA levels of TLR4, TLR2 and NF-κB in the PBMCs of GBS patients were significantly higher than those of healthy individuals. LPS activated THP-1 cells, and free cholesterol treatment increased the expression of TLR4, TLR2, NF-κB and IL-1β mRNA in LPS-activated THP-1 cells.ConclusionDyslipidemia was correlated with the risk of GBS and severe GBS. Remnant cholesterol may promote the activation of monocytes in GBS patients. It may be valuable to control lipid levels in the prevention of GBS and severe GBS.
Collapse
Affiliation(s)
- Yaowei Ding
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lijuan Wang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jialu Sun
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yijun Shi
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guoge Li
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Luan
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanghui Zheng
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guojun Zhang,
| |
Collapse
|