1
|
Zhang QX, Zhang LJ, Zhao N, Yang L. Irisin restrains neuroinflammation in mouse experimental autoimmune encephalomyelitis via regulating microglia activation. Front Pharmacol 2025; 16:1561939. [PMID: 40365310 PMCID: PMC12069398 DOI: 10.3389/fphar.2025.1561939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Multiple sclerosis is a chronic autoimmune demyelinating disorder predominantly affecting the white matter of the central nervous system, with experimental autoimmune encephalomyelitis (EAE) serving as its classical animal model. Irisin, a glycosylated protein derived from the proteolytic cleavage of fibronectin type III domain-containing protein 5, plays a significant role in metabolic regulation and inflammatory modulation within the organism. Methods In this study, we systematically investigated the therapeutic effects and underlying mechanism of Irisin on EAE and BV2 microglial cells through comprehensive methodologies including quantitative real-time polymerase chain reaction, immunofluorescence staining and western blot. Results Irisin exerts neuroprotective effects in EAE mice, significantly ameliorating both clinical and pathological manifestations of the disease. Mechanistically, Irisin attenuated inflammatory response and reduced the number of microglia through NF-κBp65 signaling pathway. Conclusion In conclusion, these results collectively suggest that Irisin alleviates EAE progression by suppressing microglia activation via the NF-κBp65 pathway, highlighting its potential as a promising therapeutic target for multiple sclerosis treatment.
Collapse
Affiliation(s)
| | | | | | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Wang Z, Xu J, Mo L, Zhan R, Zhang J, Liu L, Jiang J, Zhang Y, Bai Y. The Application Potential of the Regulation of Tregs Function by Irisin in the Prevention and Treatment of Immune-Related Diseases. Drug Des Devel Ther 2024; 18:3005-3023. [PMID: 39050796 PMCID: PMC11268596 DOI: 10.2147/dddt.s465713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Irisin is a muscle factor induced by exercise, generated through the proteolytic cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC-5). Numerous studies have shown that irisin plays a significant role in regulating glucose and lipid metabolism, inhibiting oxidative stress, reducing systemic inflammatory responses, and providing neuroprotection. Additionally, irisin can exert immunomodulatory functions by regulating regulatory T cells (Tregs). Tregs are a highly differentiated subset of mature T cells that play a key role in maintaining self-immune homeostasis and are closely related to infections, inflammation, immune-related diseases, and tumors. Irisin exerts persistent positive effects on Treg cell functions through various mechanisms, including regulating Treg cell differentiation and proliferation, improving their function, modulating the balance of immune cells, increasing the production of anti-inflammatory cytokines, and enhancing metabolic functions, thereby helping to maintain immune homeostasis and prevent immune-related diseases. As an important myokine, irisin interacts with receptors on the cell membrane, activating multiple intracellular signaling pathways to regulate cell metabolism, proliferation, and function. Although the specific receptor for irisin has not been fully identified, integrins are considered potential receptors. Irisin activates various signaling pathways, including AMPK, MAPK, and PI3K/Akt, through integrin receptors, thereby exerting multiple biological effects. These research findings provide important clues for understanding the mechanisms of irisin's action and theoretical basis for its potential applications in metabolic diseases and immunomodulation. This article reviews the relationship between irisin and Tregs, as well as the research progress of irisin in immune-related diseases such as multiple sclerosis, myasthenia gravis, acquired immune deficiency syndrome, type 1 diabetes, sepsis, and rheumatoid arthritis. Studies have revealed that irisin plays an important role in immune regulation by improving the function of Tregs, suggesting its potential application value in the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zhengjiang Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jiaqi Xu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Liqun Mo
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Renshu Zhan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Yingying Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| | - Yiping Bai
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
| |
Collapse
|
3
|
Ge Y, Wu X, Cai Y, Hu Q, Wang J, Zhang S, Zhao B, Cui W, Wu Y, Wang Q, Feng T, Liu H, Qu Y, Ge S. FNDC5 prevents oxidative stress and neuronal apoptosis after traumatic brain injury through SIRT3-dependent regulation of mitochondrial quality control. Cell Death Dis 2024; 15:364. [PMID: 38802337 PMCID: PMC11130144 DOI: 10.1038/s41419-024-06748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Mitochondrial dysfunction and oxidative stress are important mechanisms for secondary injury after traumatic brain injury (TBI), which result in progressive pathophysiological exacerbation. Although the Fibronectin type III domain-containing 5 (FNDC5) was reported to repress oxidative stress by retaining mitochondrial biogenesis and dynamics, its possible role in the secondary injury after TBI remain obscure. In present study, we observed that the level of serum irisin (the cleavage product of FNDC5) significantly correlated with the neurological outcomes of TBI patients. Knockout of FNDC5 increased the lesion volume and exacerbated apoptosis and neurological deficits after TBI in mice, while FNDC5 overexpression yielded a neuroprotective effect. Moreover, FNDC5 deficiency disrupted mitochondrial dynamics and function. Activation of Sirtuin 3 (SIRT3) alleviated FNDC5 deficiency-induced disruption of mitochondrial dynamics and bioenergetics. In neuron-specific SIRT3 knockout mice, FNDC5 failed to attenuate TBI-induced mitochondrial damage and brain injuries. Mechanically, FNDC5 deficiency led to reduced SIRT3 expression via enhanced ubiquitin degradation of transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), which contributed to the hyperacetylation and inactivation of key regulatory proteins of mitochondrial dynamics and function, including OPA1 and SOD2. Finally, engineered RVG29-conjugated nanoparticles were generated to selectively and efficiently deliver irisin to the brain of mice, which yielded a satisfactory curative effect against TBI. In conclusion, FNDC5/irisin exerts a protective role against acute brain injury by promoting SIRT3-dependent mitochondrial quality control and thus represents a potential target for neuroprotection after TBI.
Collapse
Affiliation(s)
- Yufeng Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yaning Cai
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qing Hu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Shenghao Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Baocheng Zhao
- Department of Ambulant Clinic, Political Work Department of People's Republic of China Central Military Commission, Beijing, China
| | - Wenxing Cui
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yang Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qiang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Tian Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
4
|
Ali NH, Alhamdan NA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Irisin/PGC-1α/FNDC5 pathway in Parkinson's disease: truth under the throes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1985-1995. [PMID: 37819389 DOI: 10.1007/s00210-023-02726-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Parkinson's disease (PD) is considered one of the most common neurodegenerative brain diseases which involves the deposition of α-synuclein. Irisin hormone, a newly discovered adipokine, has a valuable role in diverse neurodegenerative diseases. Therefore, this review aims to elucidate the possible role of the irisin hormone in PD neuropathology. Irisin hormone has a neuroprotective effect against the development and progression of various neurodegenerative disorders by increasing the expression of brain-derived neurotrophic factor (BDNF). Irisin hormone has anti-inflammatory, anti-apoptotic, and anti-oxidative impacts, thereby reducing the expression of the pro-inflammatory cytokines and the progression of neuroinflammation. Irisin-induced PGC-1α could potentially prevent α-synuclein-induced dopaminergic injury, neuroinflammation, and neurotoxicity in PD. Inhibition of NF-κB by irisin improves PGC-1α and FNDC5 signaling pathway with subsequent attenuation of PD neuropathology. Therefore, the irisin/PGC-1α/FNDC5 pathway could prevent dopaminergic neuronal injury. In conclusion, the irisin hormone has a neuroprotective effect through its anti-inflammatory and antioxidant impacts with the amelioration of brain BDNF levels. Further preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Nourah Ahmad Alhamdan
- Department of Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
5
|
Zhang QX, Zhang LJ, Zhao N, Chang SH, Yang L. FNDC5/Irisin protects neurons through Caspase3 and Bax pathways. Cell Biochem Funct 2024; 42:e3912. [PMID: 38269519 DOI: 10.1002/cbf.3912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
Irisin is a glycosylated protein formed from the hydrolysis of fibronectin type III domain-containing protein 5 (FNDC5). Recent studies have demonstrated that FNDC5/Irisin is involved in the regulation of glucose and lipid metabolism, it can inhibit inflammation and have neuroprotective effects. However, the effect and mechanism of FNDC5/Irisin on motor neuron-like cell lines (NSC-34) have not been reported. In this study, we used lipopolysaccharide to construct cellular oxidative stress injury models and investigated the potential roles of FNDC5/Irisin on neurons by different cellular and molecular pathways. Taken together, our findings showed that FNDC5/Irisin can protect neurons, and this effect might be associated with Caspase3 and Bax pathways. These results laid the foundation for neuronal protection and clinical translation of FNDC5/Irisin therapy.
Collapse
Affiliation(s)
- Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin-Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Sheng-Hui Chang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Schirò G, Iacono S, Ragonese P, Aridon P, Salemi G, Balistreri CR. A Brief Overview on BDNF-Trk Pathway in the Nervous System: A Potential Biomarker or Possible Target in Treatment of Multiple Sclerosis? Front Neurol 2022; 13:917527. [PMID: 35911894 PMCID: PMC9332890 DOI: 10.3389/fneur.2022.917527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 01/09/2023] Open
Abstract
The growing incidence of neurodegenerative disorders in our populations is leading the research to identify potential biomarkers and targets for facilitating their early management and treatments. Biomarkers represent the crucial indicators of both physiological and pathological processes. Specific changes in molecular and cellular mechanisms of physiological processes result in biochemical alterations at systemic level, which can give us comprehensive information regarding the nature of any disease. In addition, any disease biomarker should be specific and reliable, able to consent of distinguishing the physiological condition of a tissue, organ, or system from disease, and be diverse among the various diseases, or subgroups or phenotypes of them. Accordingly, biomarkers can predict chances for diseases, facilitate their early diagnosis, and set guidelines for the development of new therapies for treating diseases and disease-making process. Here, we focus our attention on brain neurotrophic factor (BDNF)–tropomyosin receptor kinase (Trk) pathway, describing its multiple roles in the maintenance of central nervous system (CNS) health, as well as its implication in the pathogenesis of multiple sclerosis (MS). In addition, we also evidence the features of such pathway, which make of it a potential MS biomarker and therapeutic target.
Collapse
Affiliation(s)
- Giuseppe Schirò
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Salvatore Iacono
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Paolo Ragonese
| | - Paolo Aridon
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Giuseppe Salemi
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Carmela Rita Balistreri ; orcid.org/0000-0002-5393-1007
| |
Collapse
|
7
|
Zhang Q, Zhang S, Zhang L, Zhang D, Yang L. Irisin levels in the serum and cerebrospinal fluid of patients with multiple sclerosis and the expression and distribution of irisin in experimental autoimmune encephalomyelitis. Clin Exp Immunol 2021; 206:208-215. [PMID: 34428306 PMCID: PMC8506135 DOI: 10.1111/cei.13656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/30/2023] Open
Abstract
Irisin is a novel hormone-like myokine that plays an important role in central nervous system (CNS) diseases, such as cerebral ischaemia and Alzheimer's disease. However, irisin is rarely investigated in multiple sclerosis (MS), a typical inflammatory demyelinating disease of the CNS, and in experimental autoimmune encephalomyelitis (EAE), a typical model of MS. We determined the levels of irisin in the serum and cerebrospinal fluid in patients with MS. The expression and histological distribution of irisin were determined in EAE. Serum irisin levels in patients with MS and in EAE mice were increased, and the levels of FNDC5/irisin mRNA were decreased in the spinal cord and brain regardless of the onset, peak or chronic phase of EAE. Immunofluorescence staining showed co-localization of irisin and neurones. The levels of irisin fluctuated with disease progression in MS and EAE. Irisin may be involved in the pathological process of MS/EAE.
Collapse
Affiliation(s)
- Qiu‐Xia Zhang
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Sheng‐Nan Zhang
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Lin‐Jie Zhang
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Da‐Qi Zhang
- Department of NeurologyFirst Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Li Yang
- Department of NeurologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| |
Collapse
|