1
|
Welling MS, van Rossum EFC, van den Akker ELT. Antiobesity Pharmacotherapy for Patients With Genetic Obesity Due to Defects in the Leptin-Melanocortin Pathway. Endocr Rev 2025; 46:418-446. [PMID: 39929239 PMCID: PMC12063102 DOI: 10.1210/endrev/bnaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 05/10/2025]
Abstract
Lifestyle interventions are the cornerstone of obesity treatment. However, insufficient long-term effects are observed in patients with genetic obesity disorders, as their hyperphagia remains untreated. Hence, patients with genetic obesity often require additional pharmacotherapy to effectively manage and treat their hyperphagia and obesity. Recent advancements in antiobesity pharmacotherapy have expanded the range of available antiobesity medications (AOM). This includes the targeted AOM setmelanotide, approved for specific genetic obesity disorders, as well as nontargeted AOMs such as naltrexone-bupropion and glucagon-like peptide-1 analogues. Targeted AOMs have demonstrated significant weight loss, reduced obesity-related comorbidities, and improved hyperphagia and quality of life in patients with specific genetic obesity disorders. Small observational studies have shown that similar benefits from nontargeted AOMs or off-label pharmacotherapies can be achieved in patients with specific genetic obesity disorders, compared to common multifactorial obesity. In the future, novel and innovative pharmacotherapeutical options, including combination therapies and possibly gene therapy, will emerge, offering promising effects on body weight, hyperphagia, and, most importantly, quality of life for patients with a variety of genetic obesity disorders.
Collapse
Affiliation(s)
- Mila S Welling
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University of Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Erica L T van den Akker
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University of Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| |
Collapse
|
2
|
Olsen T, Ek J, Bak M, Grønskov K, Bache I, Farholt S, Tümer Z. Concomitant Upd(14)mat and Trisomy 14 Mosaicism in a Newborn Detected by Whole Genome Sequencing. Clin Genet 2025; 107:559-563. [PMID: 39667803 DOI: 10.1111/cge.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Maternal uniparental disomy of chromosome 14, upd(14)mat, leads to Temple syndrome (TS), an imprinting disorder characterized by pre- and postnatal growth retardation, hypotonia, motor delay, joint laxity, and precocious puberty. The occurrence of upd(14)mat is rare, and it may, in even rarer cases, co-occur with trisomy 14 mosaicism. To date, only 11 live-born cases have been reported in the literature. We present a newborn girl with severe hypotonia, global developmental delay, feeding difficulties, dysmorphic features, and cardiac malformations. Using trio whole genome sequencing (WGS) no causative sequence or structural variants were detected. As a chromosomal disorder was suspected the data was further analyzed with a pipeline including analysis of UPD and low-level mosaicism, which revealed upd(14)mat and low level trisomy 14 mosaicism. This study underscores the significance of advanced genetic testing techniques, thorough data interpretation, and expert clinical evaluation in diagnosing rare disorders with complex molecular mechanisms.
Collapse
Affiliation(s)
- Tilde Olsen
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob Ek
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Iben Bache
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Stense Farholt
- Department of Pediatrics and Adolescent Medicine, Center for Rare Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Zeynep Tümer
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Yordanova N, Iotova V, Mackay DJG, Temple IK, Stoyanova S, Hachmeriyan M. Long-term Follow-up of a Late Diagnosed Patient with Temple Syndrome. J Clin Res Pediatr Endocrinol 2024; 16:475-480. [PMID: 36728278 PMCID: PMC11629717 DOI: 10.4274/jcrpe.galenos.2022.2022-9-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 02/03/2023] Open
Abstract
Temple syndrome is a rare imprinting disorder, caused by alterations in the critical imprinted region 14q32 of chromosome 14. It is characterized by pre- and postnatal growth retardation, truncal hypotonia and facial dysmorphism in the neonatal period. We report an 18-year-old girl with a late diagnosis of Temple syndrome presenting with all typical signs and symptoms including small for gestational age at birth, feeding difficulties, muscle hypotonia and delayed developmental milestones, central precocious puberty, truncal obesity and reduced growth. The patient is the second reported in the literature with signs of clinical and biochemical hyperandrogenism and the first treated with Dehydrocortisone®, with a good response. The clinical diagnosis of this patient was made after long-term follow up at a single center for rare endocrine diseases, and a molecular genetics diagnosis of complete hypomethylation of 14q32 chromosome imprinting center (DLK/GTL2) was recently established. Growth hormone treatment was not given and although precocious puberty was treated in line with standard protocols, her final height remained below the target range. Increased awareness of Temple syndrome and timely molecular diagnosis enables improvement of clinical care of these patients as well as prevention of inherent metabolic consequences.
Collapse
Affiliation(s)
| | - Violeta Iotova
- Medical University-Varna, Department of Pediatrics, Varna, Bulgaria
| | - Deborah J. G. Mackay
- Wessex Regional Genetics Laboratory, Salisbury Foundation NHS Trust, Salisbury, United Kingdom
- University of Southampton Faculty of Medicine, Department of Medical Genetics, Southampton, United Kingdom
| | - I. Karen Temple
- University of Southampton Faculty of Medicine, Department of Medical Genetics, Southampton, United Kingdom
| | - Sara Stoyanova
- Medical University-Varna, Department of Pediatrics, Varna, Bulgaria
| | - Mari Hachmeriyan
- Medical University, Department of Medical Genetics, Varna, Bulgaria
| |
Collapse
|
4
|
Kurup U, Lim DBN, Palau H, Maharaj AV, Ishida M, Davies JH, Storr HL. Approach to the Patient With Suspected Silver-Russell Syndrome. J Clin Endocrinol Metab 2024; 109:e1889-e1901. [PMID: 38888172 PMCID: PMC11403326 DOI: 10.1210/clinem/dgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Silver-Russell syndrome (SRS) is a clinical diagnosis requiring the fulfillment of ≥ 4/6 Netchine-Harbison Clinical Scoring System (NH-CSS) criteria. A score of ≥ 4/6 NH-CSS (or ≥ 3/6 with strong clinical suspicion) warrants (epi)genetic confirmation, identifiable in ∼60% patients. The approach to the investigation and diagnosis of SRS is detailed in the only international consensus guidance, published in 2016. In the intervening years, the clinical, biochemical, and (epi)genetic characteristics of SRS have rapidly expanded, largely attributable to advancing molecular genetic techniques and a greater awareness of related disorders. The most common etiologies of SRS remain loss of methylation of chromosome 11p15 (11p15LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). Rarer causes of SRS include monogenic pathogenic variants in imprinted (CDKN1C and IGF2) and non-imprinted (PLAG1 and HMGA2) genes. Although the age-specific NH-CSS can identify more common molecular causes of SRS, its use in identifying monogenic causes is unclear. Preliminary data suggest that NH-CSS is poor at identifying many of these cases. Additionally, there has been increased recognition of conditions with phenotypes overlapping with SRS that may fulfill NH-CSS criteria but have distinct genetic etiologies and disease trajectories. This group of conditions is frequently overlooked and under-investigated, leading to no or delayed diagnosis. Like SRS, these conditions are multisystemic disorders requiring multidisciplinary care and tailored management strategies. Early identification is crucial to improve outcomes and reduce the major burden of the diagnostic odyssey for patients and families. This article aims to enable clinicians to identify key features of rarer causes of SRS and conditions with overlapping phenotypes, show a logical approach to the molecular investigation, and highlight the differences in clinical management strategies.
Collapse
Affiliation(s)
- Uttara Kurup
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - David B N Lim
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Helena Palau
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Avinaash V Maharaj
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Miho Ishida
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| |
Collapse
|
5
|
Juriaans AF, Trueba-Timmermans DJ, Kerkhof GF, Grootjen LN, Walet S, Sas TCJ, Rotteveel J, Zwaveling-Soonawala N, Verrijn Stuart AA, Hokken-Koelega ACS. The Effects of 5 Years of Growth Hormone Treatment on Growth and Body Composition in Patients with Temple Syndrome. Horm Res Paediatr 2023; 96:483-494. [PMID: 36977395 DOI: 10.1159/000530420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
INTRODUCTION Temple syndrome (TS14) is a rare imprinting disorder caused by maternal uniparental disomy of chromosome 14, paternal deletion of 14q32.2, or an isolated methylation defect. Most patients with TS14 develop precocious puberty. Some patients with TS14 are treated with growth hormone (GH). However, evidence for the effectiveness of GH treatment in patients with TS14 is limited. METHODS This study describes the effect of GH treatment in 13 children and provides a subgroup analysis of 5 prepubertal children with TS14. We studied height, weight, body composition by dual-energy X-ray absorptiometry, resting energy expenditure (REE), and laboratory parameters during 5 years of GH treatment. RESULTS In the entire group, mean (95% CI) height SDS increased significantly during 5 years of GH treatment from -1.78 (-2.52; -1.04) to 0.11 (-0.66; 0.87). Fat mass percentage SDS decreased significantly during the first year of GH, and lean body mass (LBM) SDS and LBM index increased significantly during 5 years of treatment. IGF-1 and IGF-BP3 levels rose rapidly during GH treatment, and the IGF-1/IGF-BP3 molar ratio remained relatively low. Thyroid hormone levels, fasting serum glucose, and insulin levels remained normal. In the prepubertal group, median (interquartile range [IQR]) height SDS, LBM SDS, and LBM index also increased. REE was normal at start and did not change during 1 year of treatment. Five patients reached adult height and their median (IQR) height SDS was 0.67 (-1.83; -0.01). CONCLUSION GH treatment in patients with TS14 normalizes height SDS and improves body composition. There were no adverse effects or safety concerns during GH treatment.
Collapse
Affiliation(s)
- Alicia F Juriaans
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| | - Demi J Trueba-Timmermans
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| | - Gerthe F Kerkhof
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Lionne N Grootjen
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| | - Sylvia Walet
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Theo C J Sas
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
- Diabeter, Center for Pediatric and Adult Diabetes Care and Research, Rotterdam, The Netherlands
| | - Joost Rotteveel
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Nitash Zwaveling-Soonawala
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie A Verrijn Stuart
- Department of Pediatrics, Subdivision of Endocrinology, Wilhelmina Children's Hospital, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Anita C S Hokken-Koelega
- Dutch Reference Center for Prader-Willi Syndrome/Prader-Willi-like, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Singh A, Pajni K, Panigrahi I, Dhoat N, Senapati S, Khetarpal P. Components of IGF-axis in growth disorders: a systematic review and patent landscape report. Endocrine 2022; 76:509-525. [PMID: 35523998 DOI: 10.1007/s12020-022-03063-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE In this review, epi/genetic mutations of IGF-axis components associated with growth disorders have been summarized alongwith assessment of relevant diagnostic and therapeutic technology through patent literature. METHODOLOGY PROSPERO protocol registration CRD42021279468. For scientific literature search Literature databases (PubMed, EMBASE, ScienceDirect, and Google Scholar) were queried using the appropriate syntax. Various filters were applied based on inclusion and exclusion criteria. Search results were further refined by two authors for finalizing studies to be included in this synthesis. For patent documents search Patent databases (Patentscope and Espacenet) were queried using keywords: IGF or IGFBP. Filters were applied according to International Patent Classification (IPC) and Cooperative Patent Classification (CPC). Search results were reviewed by two authors for inclusion in the patent landscape report. RESULTS For scientific literature analysis, out of 545 search results, 196 were selected for review based on the inclusion criteria. For Patent literature search, out of 485 results, 37 were selected for this synthesis. CONCLUSION Dysregulation of IGF-axis components leads to various abnormalities and their key role in growth and development suggests epi/mutations or structural defects among IGF-axis genes can be associated with growth disorders and may explain some of the idiopathic short stature cases. Trend of patent filings indicate advent of recombinant technology for therapeutics.
Collapse
Affiliation(s)
- Amit Singh
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Ketan Pajni
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Inusha Panigrahi
- Department of Paediatric Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Navdeep Dhoat
- Department of Paediatric Surgery, All India Institute of Medical Sciences, Bathinda, 151001, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
7
|
Prenatal diagnosis and molecular cytogenetic characterization of a familial small supernumerary marker chromosome derived from the acrocentric chromosome 14/22. Taiwan J Obstet Gynecol 2022; 61:364-367. [DOI: 10.1016/j.tjog.2022.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
|
8
|
Prasasya R, Grotheer KV, Siracusa LD, Bartolomei MS. Temple syndrome and Kagami-Ogata syndrome: clinical presentations, genotypes, models and mechanisms. Hum Mol Genet 2021; 29:R107-R116. [PMID: 32592473 DOI: 10.1093/hmg/ddaa133] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Temple syndrome (TS) and Kagami-Ogata syndrome (KOS) are imprinting disorders caused by absence or overexpression of genes within a single imprinted cluster on human chromosome 14q32. TS most frequently arises from maternal UPD14 or epimutations/deletions on the paternal chromosome, whereas KOS most frequently arises from paternal UPD14 or epimutations/deletions on the maternal chromosome. In this review, we describe the clinical symptoms and genetic/epigenetic features of this imprinted region. The locus encompasses paternally expressed protein-coding genes (DLK1, RTL1 and DIO3) and maternally expressed lncRNAs (MEG3/GTL2, RTL1as and MEG8), as well as numerous miRNAs and snoRNAs. Control of expression is complex, with three differentially methylated regions regulating germline, placental and tissue-specific transcription. The strong conserved synteny between mouse chromosome 12aF1 and human chromosome 14q32 has enabled the use of mouse models to elucidate imprinting mechanisms and decipher the contribution of genes to the symptoms of TS and KOS. In this review, we describe relevant mouse models and highlight their value to better inform treatment options for long-term management of TS and KOS patients.
Collapse
Affiliation(s)
- Rexxi Prasasya
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen V Grotheer
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Building 123, Nutley, NJ 07110, USA
| | - Linda D Siracusa
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, 340 Kingsland Street, Building 123, Nutley, NJ 07110, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Lindgren V, Cobian K, Bhat G. Temple syndrome resulting from uniparental disomy is undiagnosed by a methylation assay due to low-level mosaicism for trisomy 14. Am J Med Genet A 2021; 185:1538-1543. [PMID: 33595182 DOI: 10.1002/ajmg.a.62128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023]
Abstract
We describe a patient with Temple syndrome resulting from maternal uniparental disomy of chromosome 14 who also has low-level mosaicism for trisomy 14. UPD was initially suspected when SNP microarray analysis detected a large region of homozygosity on chromosome 14 and the patient's clinical features were consistent with the phenotype of upd(14)mat. However, SNP arrays cannot prove UPD, as homozygosity may also result from identity by descent. Methylation assays diagnose imprinting disorders such as Prader-Willi, Angelman and Temple syndromes; they detect methylation defects that occur in imprinted loci, which have parent-of-origin-specific expression and have the advantage of making a diagnosis without parental samples. However, in this patient methylation analysis using endpoint PCR detected biparental inheritance. Therefore, sequencing analysis was performed and diagnosed upd(14)mat. Re-examination of the microarray suggested that the explanation for the discrepancy between the array and methylation testing was low-level mosaicism for trisomy 14 and fluorescence in situ hybridization testing detected a trisomic cell line. Thus, this patient's Temple syndrome is a result of a maternal M1 error, which gave a trisomic zygote, followed by loss of the paternal chromosome 14 in an early mitotic division to give maternal UPD with low-level mosaicism for trisomy 14. The methylation assay detected the paternal allele in the trisomic line. The diagnostic failure of the methylation assay in this patient highlights a significant shortcoming of methylation endpoint analysis, especially for Temple syndrome, and underscores the need to use other methods in cases with mosaicism.
Collapse
Affiliation(s)
- Valerie Lindgren
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Katherine Cobian
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gifty Bhat
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Mohamed AM, Eid MM, Eid OM, Hussein SH, Mossaad AM, Abdelfattah U, Sharafuddin MA, El Halafawy YM, Elbanoby TM, Abdel-Salam GMH. Two Abnormal Cell Lines of Trisomy 14 and t(X;14) with Skewed X-Inactivation. Cytogenet Genome Res 2020; 160:124-133. [PMID: 32187602 DOI: 10.1159/000506430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2020] [Indexed: 01/29/2023] Open
Abstract
Trisomy 14 is incompatible with live, but there are several patients reported with mosaic trisomy 14. We aimed to study the pattern of X inactivation and its effect on a translocated autosome and to find out an explanation of the involvement of chromosome 14 in 2 different structural chromosomal abnormalities. We report on a girl with frontal bossing, hypertelorism, low-set ears, micrognathia, cleft palate, congenital heart disease, and abnormal skin pigmentations. The patient displayed iris, choroidal, and retinal coloboma and agenesis of the corpus callosum and cerebellar vermis hypoplasia. Cytogenetic analysis revealed a karyotype 45,X,der(X)t(X;14)(q24;q11)[85]/46,XX,rob(14;14)(q10;q10),+14[35]. Array-CGH for blood and buccal mucosa showed high mosaic trisomy 14 and an Xq deletion. MLPA detected trisomy 14 in blood and buccal mucosa and also showed normal methylation of the imprinting center. FISH analysis confirmed the cell line with trisomy 14 (30%) and demonstrated the mosaic deletion of the Xq subtelomere in both tissues. There was 100% skewed X inactivation for the t(X;14). SNP analysis of the patient showed no region of loss of heterozygosity on chromosome 14. Also, genotype call analysis of the patient and her parents showed heterozygous alleles of chromosome 14 with no evidence of uniparental disomy. Our patient had a severe form of mosaic trisomy 14. We suggest that this cytogenetic unique finding that involved 2 cell lines with structural abnormalities of chromosome 14 occurred in an early postzygotic division. These 2 events may have happened separately or maybe there is a kind of trisomy or monosomy rescue due to dynamic cytogenetic interaction between different cell lines to compensate for gene dosage.
Collapse
|
11
|
Brightman DS, Lokulo-Sodipe O, Searle BA, Mackay DJG, Davies JH, Temple IK, Dauber A. Growth Hormone Improves Short-Term Growth in Patients with Temple Syndrome. Horm Res Paediatr 2019; 90:407-413. [PMID: 30836360 DOI: 10.1159/000496700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/07/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Temple syndrome is an imprinting disorder caused by maternal uniparental disomy of chromosome 14 (mat UPD14), paternal deletion of 14q32 or paternal hypomethylation of the intergenic differentially methylated region (MEG3/DLK1 IG-DMR). Patients with Temple syndrome have pre- and postnatal growth restriction, short stature, hypotonia, small hands and feet and precocious puberty. We sought to determine whether treatment with growth hormone improves growth outcomes in patients with Temple syndrome. METHODS This was a retrospective observational study reviewing the medical records of 14 patients with Temple syndrome, 7 of whom were treated with growth hormone. RESULTS After 1 year of growth hormone treatment, the height standard deviation score (SDS) increased a median of 1.31 SDS with a median increased height velocity of 5.30 cm/year. CONCLUSIONS These results suggest short-term improvement in height SDS with growth hormone treatment similar to the response in patients treated under the small for gestational age indication. We recommend considering growth hormone therapy in all patients with Temple syndrome who have short stature.
Collapse
Affiliation(s)
- Diana S Brightman
- Genetic Counseling Program, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA,
| | - Oluwakemi Lokulo-Sodipe
- Human Development and Health, Faculty of Medicine, University of Southampton and, Southampton, United Kingdom.,Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Beverly A Searle
- Unique - The Rare Chromosome Disorder Support Group, Oxted, United Kingdom
| | - Deborah J G Mackay
- Human Development and Health, Faculty of Medicine, University of Southampton and, Southampton, United Kingdom.,Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Justin H Davies
- Human Development and Health, Faculty of Medicine, University of Southampton and, Southampton, United Kingdom.,Department of Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - I Karen Temple
- Human Development and Health, Faculty of Medicine, University of Southampton and, Southampton, United Kingdom.,Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Andrew Dauber
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Endocrinology, Children's National Health System, Washington, District of Columbia, USA
| |
Collapse
|
12
|
Tortora A, La Sala D, Lonardo F, Vitale M. Maternal uniparental disomy of the chromosome 14: need for growth hormone provocative tests also when a deficiency is not suspected. BMJ Case Rep 2019; 12:e228662. [PMID: 31079043 PMCID: PMC6536159 DOI: 10.1136/bcr-2018-228662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2019] [Indexed: 11/04/2022] Open
Abstract
Uniparental disomy (UPD) is a congenital disease characterised by the presence of two homologous chromosomes inherited from one parent in a diploid offspring. Maternal UPD of the chromosome 14 (UPD(14)mat, Temple syndrome) is a rare disorder with heterogeneous clinical presentation. Here, we report a case of UPD(14)mat with a small supernumerary marker chromosome in a 6-year-old baby girl, presenting endocrinological disorders and incomplete clinical presentation. She came to our attention because of precocious beginning of pubarche and normal stature. Most of Temple syndrome signs were lacking. Provocative tests diagnosed incomplete growth hormone (GH) response and confirmed precocious puberty. One year treatment with recombinant human GH and gonadotropin-releasing hormone (GnRH) agonists proved successful, increasing height and arresting puberty. We recommend provocative tests for GH in UPD(14)mat as a GH deficiency can be hidden by a concurrent precocious puberty. Concomitant human GH and GnRH analogue treatment can be pursued.
Collapse
Affiliation(s)
- Anna Tortora
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| | - Domenico La Sala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| | | | - Mario Vitale
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| |
Collapse
|
13
|
Yakoreva M, Kahre T, Pajusalu S, Ilisson P, Žilina O, Tillmann V, Reimand T, Õunap K. A New Case of a Rare Combination of Temple Syndrome and Mosaic Trisomy 14 and a Literature Review. Mol Syndromol 2018; 9:182-189. [PMID: 30181735 DOI: 10.1159/000489446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
Temple syndrome (TS14) is a relatively recently discovered imprinting disorder caused by abnormal expression of genes at the locus 14q32. The underlying cause of this syndrome is maternal uniparental disomy of chromosome 14 (UPD(14)mat). Trisomy of chromosome 14 is one of the autosomal trisomies; in humans, it is only compatible with live birth in mosaic form. Although UPD(14)mat and mosaic trisomy 14 can arise from the same cellular mechanism, a combination of both has been currently reported only in 8 live-born cases. Hereby, we describe a patient in whom only UPD(14)mat-associated TS14 was primarily diagnosed. Due to the patient's atypical features (for TS14), additional analyses were performed and low-percent mosaic trisomy 14 was detected. It can be expected that the described combination of 2 etiologically related conditions is actually more prevalent. Additional chromosomal and molecular investigations are indicated for every patient with UPD(14)mat-associated TS14 with atypical clinical presentation.
Collapse
Affiliation(s)
- Maria Yakoreva
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Tiina Kahre
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Piret Ilisson
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia
| | - Olga Žilina
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vallo Tillmann
- Children's Clinic, Tartu University Hospital, University of Tartu, Tartu, Estonia.,Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Tiia Reimand
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
Lande A, Kroken M, Rabben K, Retterstøl L. Temple syndrome as a differential diagnosis to Prader-Willi syndrome: Identifying three new patients. Am J Med Genet A 2017; 176:175-180. [DOI: 10.1002/ajmg.a.38533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/29/2017] [Accepted: 10/15/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Asgeir Lande
- Department of Medical Genetics; Oslo University Hospital; Oslo Norway
- Faculty of Medicine; University of Oslo; Oslo Norway
| | - Mette Kroken
- Department of Medical Genetics; Oslo University Hospital; Oslo Norway
| | - Kai Rabben
- Frambu Resource Center for Rare Disorders; Norway
| | - Lars Retterstøl
- Department of Medical Genetics; Oslo University Hospital; Oslo Norway
| |
Collapse
|
15
|
Zhang S, Qin H, Wang J, OuYang L, Luo S, Fu C, Fan X, Su J, Chen R, Xie B, Hu X, Chen S, Shen Y. Maternal uniparental disomy 14 and mosaic trisomy 14 in a Chinese boy with moderate to severe intellectual disability. Mol Cytogenet 2016; 9:66. [PMID: 27559361 PMCID: PMC4995659 DOI: 10.1186/s13039-016-0274-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Both maternal uniparental disomy 14 (UPD(14)mat) and mosaic trisomy 14 are rare events in live individuals. A combination of the two events in one individual is rarely encountered. Only six live-born cases have so far been reported. Case presentation Here we reported a case of concomitant UPD(14)mat and mosaic trisomy 14 in a 10-year-old Chinese patient. Most clinical features of our patient were consistent with those previous reported for UPD(14)mat cases, which include prenatal and postnatal growth retardation, neonatal hypotonia, feeding difficulty, intellectual disability, truncal obesity, small hands and feet, short stature, and mild facial dysmorphism, but our patient showed more severe intellectual disability and no sign of precocious puberty. SNP array analysis revealed a mixture of chromosome 14 maternal isodisomy with heterodisomy and a low level trisomy mosaicism of whole chromsome 14 in blood and hyperpigmented skin samples, whereas only UPD(14)mat was detected in normal skin sample. Cytogenetic analysis identified one trisomy 14 cell in 100 metaphase of peripheral blood lymphocytes (47,XX, +14[1]/46,XX[99]). Conclusions To our knowledge, this is the first case of a patient with UPD(14)mat and mosaic trisomy 14 reported in a Chinese patient. The definitive genetic diagnosis is beneficial for genetic counseling and clinical management of our patient, and for improving our understanding of the genotype-phenotype correlations of concomitant UPD(14)mat and mosaic trisomy 14. Electronic supplementary material The online version of this article (doi:10.1186/s13039-016-0274-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shujie Zhang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Haisong Qin
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Jin Wang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Luping OuYang
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Shiyu Luo
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Chunyun Fu
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Xin Fan
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Jiasun Su
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Rongyu Chen
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Bobo Xie
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Xuyun Hu
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Shaoke Chen
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China
| | - Yiping Shen
- Department of Genetic and Metabolic Central Laboratory, Guangxi Maternal and Child Health Hospital, No.59, Xiangzhu Road, Nanning, China.,Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|