1
|
Liu X, Zhang J, Yuan J, Ding R, Liu T, Jia J. LCN2 is a new diagnostic biomarker and potential therapeutic target in idiopathic short stature. J Cell Mol Med 2022; 26:3568-3581. [PMID: 35610759 PMCID: PMC9189333 DOI: 10.1111/jcmm.17408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/05/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
Idiopathic short stature (ISS) is the most common paediatric endocrine disease. However, the underlying pathology of ISS remains unclear. Currently, there are no effective diagnostic markers or therapeutic strategies available for ISS. In this study, we aimed to identify differential plasma protein expression and novel biomarkers in patients with ISS, and elucidate the biological functions of candidate proteins in ISS pathogenesis. Four specimen pairs from four ISS children and age‐/sex‐matched control individuals were subjected to proteomics analysis, and 340 samples of children with a mean age 9.73 ± 0.24 years were utilized to further verify the differentially expressed proteins by enzyme‐linked immunosorbent assay (ELISA). The receiver‐operating characteristic (ROC) curve and the area under the ROC curve (AUC) were plotted. A total of 2040 proteins were identified, of which 84 were differentially expressed. In vitro and in vivo experiments confirmed the biological functions of these candidate proteins. LCN2 overexpression in ISS was verified using ELISA. Meanwhile, LCN2 showed high sensitivity and specificity in discriminating children with ISS from those with growth hormone deficiency, precocious puberty and normal control individuals. The upregulated expression of LCN2 not only suppressed food intake but also impaired chondrocyte proliferation and bone growth in chondrocytes and rats. As a result, the rats presented a short‐stature phenotype. Subsequently, we found that bone growth inhibition recovered after LCN2 overexpression was stopped in immature rats. To our knowledge, this is the first study to report that LCN2 may be a significant target for ISS diagnosis and treatment.
Collapse
Affiliation(s)
- Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Li L, Chen L, Yang Y, Wang J, Guo L, An J, Ma X, Lu W, Xiao Y, Wang X, Dong Z. Characteristics of Gut Microbiome and Its Metabolites, Short-Chain Fatty Acids, in Children With Idiopathic Short Stature. Front Endocrinol (Lausanne) 2022; 13:890200. [PMID: 35757432 PMCID: PMC9226366 DOI: 10.3389/fendo.2022.890200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The gut microbiome is important for host nutrition and metabolism. Whether the gut microbiome under normal diet regulate human height remains to be addressed. Our study explored the possible relationship between gut microbiota, its metabolic products and the pathogenesis of idiopathic short stature disease (ISS) by comparing the gut microbiota between children with ISS and of normal height, and also the short-chain fatty acids (SCFAs) produced by the gut microbiota. METHODS The subjects of this study were 32 prepubescent children aged 4-8 years. The fecal microbial structure of the subjects was analyzed by 16S rRNA high-throughput sequencing technology. The concentrations of SCFAs in feces were determined by gas chromatography-mass spectrometry. RESULTS The richness of gut microbiota in ISS group was decreased, and the composition of gut microbiota was significantly different between ISS group and control group. The relative abundance of nine species including family Ruminococcaceae and genera Faecalibacterium and Eubacterium, in ISS group was significantly lower than that in control group (P<0.05). The relative abundance of 10 species, such as those belonging to genus Parabacteroides and genus Clostridium, in ISS group was significantly higher than that in control group (P<0.05). The concentration of total SCFAs and butyrate in ISS group was significantly lower than that in control group. The correlation analysis among different species, clinical indicators, and SCFAs showed that the relative abundance of family Ruminococcaceae and genera Faecalibacterium and Eubacterium was positively correlated with the standard deviation score of height. Furthermore, the concentrations of total SCFAs and butyrate were positively correlated with serum insulin-like growth factor 1 (IGF-1)-SDS. Disease prediction model constructed based on the bacteria who abundance differed between healthy children and ISS children exhibited high diagnostic value (AUC: 0.88). CONCLUSIONS The composition of gut microbiota and the change in its metabolite levels may be related to ISS pathogenesis. Strains with increased or decreased specificity could be used as biomarkers to diagnose ISS.
Collapse
Affiliation(s)
- Lin Li
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lifen Chen
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyan Yang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Guo
- Department of Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jingjing An
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinqiong Wang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Zhiya Dong, ; Xinqiong Wang,
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Zhiya Dong, ; Xinqiong Wang,
| |
Collapse
|
3
|
Prickett TCR, Espiner EA, Irving M, Bacino C, Phillips JA, Savarirayan R, Day JRS, Fisheleva E, Larimore K, Chan ML, Jeha GS. Evidence of feedback regulation of C-type natriuretic peptide during Vosoritide therapy in Achondroplasia. Sci Rep 2021; 11:24278. [PMID: 34930956 PMCID: PMC8688426 DOI: 10.1038/s41598-021-03593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
Evidence from genetic disorders of CNP signalling suggests that plasma concentrations of CNP are subject to feedback regulation. In subjects with Achondroplasia (Ach), CNP intracellular activity is suppressed and plasma concentrations are raised but the therapeutic impact of exogenous CNP agonists on endogenous CNP is unknown. In this exploratory dose finding and extension study of 28 Ach children receiving Vosoritide over a 5 year period of treatment, endogenous CNP production was assessed using measurements of plasma aminoterminal proCNP (NTproCNP) adjusted for age and sex and normalised as standard deviation score (SDS), and then related to skeletal growth. Before treatment NTproCNP SDS was raised. Within the first 3 months of accelerating growth, levels were significantly reduced. Across the 5 years of sustained growth, levels varied widely and were markedly increased in some subjects during adolescence. Plasma NTproCNP was suppressed at 4 h post-injection in proportion to the prevailing level of hormone resistance as reflected by SDS before injection. We conclude CNP remains subject to regulation during growth promoting doses of Vosoritide. Fall in CNP during accelerating growth is consistent with an indirect feedback whereas the fall at 4 h is likely to be a direct effect from removal of intra cellular CNP resistance.
Collapse
Affiliation(s)
- Timothy C R Prickett
- Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Eric A Espiner
- Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - Melita Irving
- Guy's and St. Thomas' NHS Foundation Trust, Evelina Children's Hospital, London, UK
| | | | | | - Ravi Savarirayan
- Murdoch Children's Research Institute, Royal Children's Hospital Victoria, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | |
Collapse
|
4
|
Graber E, Reiter EO, Rogol AD. Human Growth and Growth Hormone: From Antiquity to the Recominant Age to the Future. Front Endocrinol (Lausanne) 2021; 12:709936. [PMID: 34290673 PMCID: PMC8287422 DOI: 10.3389/fendo.2021.709936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 12/03/2022] Open
Abstract
Since antiquity Man has been fascinated by the variations in human (and animal) growth. Stories and art abound about giants and little people. Modern genetics have solved some of etiologies at both extremes of growth. Serious study began with the pathophysiology of acromegaly followed by early attempts at treatment culminating in modern endoscopic surgery and multiple pharmacologic agents. Virtually at the same time experiments with the removal of the pituitary from laboratory animals noted the slowing or stopping of linear growth and then over a few decades the extraction and purification of a protein within the anterior pituitary that restored, partially or in full, the animal's growth. Human growth hormone was purified decades after those from large animals and it was noted that it was species specific, that is, only primate growth hormone was metabolically active in primates. That was quite unlike the beef and pork insulins which revolutionized the care of children with diabetes mellitus. A number of studies included mild enzymatic digestion of beef growth hormone to determine if those "cores" had biologic activity in primates and man. Tantalizing data showed minimal but variable metabolic efficacy leading to the "active core" hypothesis, for these smaller peptides would be amenable to peptide synthesis in the time before recombinant DNA. Recombinant DNA changed the landscape remarkably promising nearly unlimited quantities of metabolically active hormone. Eight indications for therapeutic use have been approved by the Food and Drug Administration and a large number of clinical trials have been undertaken in multiple other conditions for which short stature in childhood is a sign. The future predicts other clinical indications for growth hormone therapy (and perhaps other components of the GH?IGF-1 axis), longer-acting analogues and perhaps a more physiologic method of administration as virtually all methods at present are far from physiologic.
Collapse
Affiliation(s)
- Evan Graber
- DO Division of Pediatric Endocrinology, Nemours/Alfred I. Dupont Hospital for Children, Wilmington, DE, United States
| | - Edward O. Reiter
- Baystate Children’s Hospital, UMassMedical School-Baystate, Springfield, MA, United States
| | - Alan D. Rogol
- Pediatrics/Endocrinology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Prickett TC, A Espiner E. Circulating products of C-type natriuretic peptide and links with organ function in health and disease. Peptides 2020; 132:170363. [PMID: 32634451 DOI: 10.1016/j.peptides.2020.170363] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Paracrine actions of CNP and rapid degradation at source severely limit study of CNP's many roles in vivo. However provided sensitive and validated assays are used, there is increasing evidence that low concentrations of bioactive CNP in plasma, and the readily detectable concentrations of the bio-inactive processed product of proCNP (aminoterminal proCNP), can be used to advance understanding of the hormone's role in pathophysiology. Provided renal function is normal, concordant changes in both CNP and NTproCNP reflect change in tissue production of proCNP whereas change in CNP alone results from altered rates of bioactive CNP degradation and are reflected in the ratio of NTproCNP to CNP. As already shown in juveniles, where plasma concentration of CNP products are higher and are associated with concurrent endochondral bone growth, measurements of plasma CNP products in mature adults have potential to clarify organ response to stress and injury. Excepting the role of CNP in fetal-maternal welfare, this review examines evidence linking plasma CNP products with function of a wide range of tissues in adults, including the impact of extraneous factors such as nutrients, hormone therapy and exercise.
Collapse
Affiliation(s)
- Timothy Cr Prickett
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand.
| | - Eric A Espiner
- Department of Medicine, University of Otago, PO Box 4345, Christchurch, 8140 New Zealand
| |
Collapse
|
6
|
Espiner E, Prickett T, Olney R. Plasma C-Type Natriuretic Peptide: Emerging Applications in Disorders of Skeletal Growth. Horm Res Paediatr 2019; 90:345-357. [PMID: 30844819 DOI: 10.1159/000496544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/30/2018] [Indexed: 11/19/2022] Open
Abstract
Although studies in experimental animals show that blood levels of C-type natriuretic peptide (CNP) and its bioinactive aminoterminal propeptide (NTproCNP) are potential biomarkers of long bone growth, a lack of suitable assays and appropriate reference ranges has limited the application of CNP measurements in clinical practice. Plasma concentrations of the processed product of proCNP, NTproCNP - and to a lesser extent CNP itself - correlate with concurrent height velocity throughout all phases of normal skeletal growth, as well as during interventions known to affect skeletal growth in children. Since a change in levels precedes a measurable change in height velocity during interventions, measuring NTproCNP may have predictive value in clinical practice. Findings from a variety of genetic disorders affecting CNP signaling suggest that plasma concentrations of both peptides may be helpful in diagnosis, provided factors such as concurrent height velocity, feedback regulation of CNP, and differential changes in peptide clearance are considered when interpreting values. An improved understanding of factors affecting plasma levels, and the availability of commercial kits enabling accurate measurement using small volumes of plasma, can be expected to facilitate potential applications in growth disorders including genetic causes -affecting the CNP signaling pathway.
Collapse
Affiliation(s)
- Eric Espiner
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Tim Prickett
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand,
| | - Robert Olney
- Division of Endocrinology, Nemours Children's Specialty Care, Jacksonville, Florida, USA
| |
Collapse
|