1
|
Taylor GT, McQueen A, Eastwood JR, Dupoué A, Wong BBM, Verhulst S, Peters A. No effect of testosterone or sexual ornamentation on telomere dynamics: A case study and meta-analyses. Ecol Evol 2024; 14:e11088. [PMID: 38435019 PMCID: PMC10905238 DOI: 10.1002/ece3.11088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Life-history theory predicts that reproductive investments are traded-off against self-maintenance. Telomeres, the protective caps on the ends of chromosomes, offer a promising avenue for assessing life-history trade-offs, as they shorten in response to stressors and are predictive of the remaining lifespan. In males, testosterone frequently mediates life-history trade-offs, in part, through its effects on sexual ornamentation, which is an important aspect of reproductive investment. However, studies of within-individual associations between telomere dynamics and sexual ornamentation are limited in number and have produced mixed results. Furthermore, most such studies have been observational, making it difficult to discern the nature of any causal relationship. To address this, we used short-acting testosterone implants in free-living male superb fairy-wrens (Malurus cyaneus) to stimulate the production of a sexual ornament: early moult into a costly blue breeding plumage. We found no evidence that elevated testosterone, and the consequent earlier moult into breeding plumage, accelerated telomere shortening. We therefore followed up with a systematic review and two meta-analyses (28 studies, 54 effect sizes) exploring the associations between telomeres and (1) testosterone and (2) sexual ornamentation. In line with our experimental findings, neither meta-analysis showed an overall correlation of testosterone or sexual ornamentation with telomere length or telomere dynamics. However, meta-regression showed that experimental, compared to observational, studies reported greater evidence of trade-offs. Our meta-analyses highlight the need for further experimental studies to better understand potential responses of telomere length or telomere dynamics to testosterone or sexual ornamentation.
Collapse
Affiliation(s)
- Gregory T. Taylor
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Alexandra McQueen
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
- Present address:
Centre for Integrative EcologyDeakin UniversityBurwoodVictoriaAustralia
| | | | - Andréaz Dupoué
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
- Present address:
CNRS Sorbonne Université, UMR 7618, iEES ParisUniversité Pierre et Marie CurieParisFrance
| | - Bob B. M. Wong
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Anne Peters
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
2
|
Sun K, Li M, Wu Y, Wu Y, Zeng Y, Zhou S, Peng L, Shen B. Exploring Causal Relationships between Leukocyte Telomere Length, Sex Hormone-Binding Globulin Levels, and Osteoporosis Using Univariable and Multivariable Mendelian Randomization. Orthop Surg 2024; 16:320-328. [PMID: 38084376 PMCID: PMC10834216 DOI: 10.1111/os.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE Recent evidence supports that leukocyte telomere length (LTL) may be positively associated with healthy living and inversely correlated with the risk of age-related diseases, including osteoporosis. Furthermore, it is important to note that sex hormone-binding globulin (SHBG) levels play a crucial role in the regulation of osteoporosis by influencing the availability of sex hormones. Hence, this study holds significant importance as it aims to unravel the roles of LTL and SHBG levels and determine which one acts as a predominant intermediary factor in influencing osteoporosis. Using Mendelian randomization (MR), we can gain valuable insights into the intricate relationships between aging, sex hormones, and bone health. METHODS Univariable and multivariable and MR analyses were employed in this study. First, we used genetic variants associated with both LTL, as determined from a study involving 472,174 European participants by Codd et al., and SHBG levels, as identified in a study conducted by Ruth et al. with 370,125 participants, as instrumental variables (IVs). Then we aimed to establish a causal relationship between LTL and SHBG levels and their potential impact on osteoporosis using univariable MR. Finally, we conducted multivariable MR to provide insights into the independent and combined effects of LTL, SHBG levels on osteoporosis risk. We used various MR methods, with the primary analysis employing the inverse-variance weighted (IVW) model. RESULTS Univariable MR analysis reveals a potential causal effect of longer LTL on reduced risk of osteoporosis [odds ratio (OR): 0.85; 95% confidence interval (CI): 0.73-0.99; p = 0.03]. Conversely, higher genetically determined SHBG levels affect the risk of osteoporosis positively. (OR: 1.38; 95% CI: 1.09-1.75; p < 0.01). We observed a negative causal effect for LTL on the occurrence of SHBG (OR: 0.96; 95% CI 0.94-0.98, p < 0.01). After adjustment of using multivariable MR, the causal effect of LTL on osteoporosis (OR: 0.92; 95% CI: 0.84-1.03; p = 0.14), and the effect of SHBG on osteoporosis (OR: 1.43; 95% CI: 1.16-1.75; p < 0.01) were observed. CONCLUSION Longer LTL may confer a protective effect against osteoporosis. Additionally, the levels of SHBG appear to play a crucial role in mediating the relationship between LTL and osteoporosis. By understanding the interplay between these factors, we can gain valuable insights into the mechanisms underlying bone health and aging and potentially identify new avenues for prevention and intervention strategies.
Collapse
Affiliation(s)
- Kaibo Sun
- Department of Orthopedics Surgery, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Mengying Li
- Center of Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yongtao Wu
- West China School of MedicineSichuan UniversityChengduChina
| | - Yuangang Wu
- Department of Orthopedics Surgery, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Yi Zeng
- Department of Orthopedics Surgery, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Shengliang Zhou
- Department of Orthopedics Surgery, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Linbo Peng
- Department of Orthopedics Surgery, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Bin Shen
- Department of Orthopedics Surgery, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Marriott RJ, Murray K, Budgeon CA, Codd V, Hui J, Arscott GM, Beilby JP, Hankey GJ, Wittert GA, Wu FCW, Yeap BB. Serum testosterone and sex hormone-binding globulin are inversely associated with leucocyte telomere length in men: a cross-sectional analysis of the UK Biobank study. Eur J Endocrinol 2023; 188:7031076. [PMID: 36751991 DOI: 10.1093/ejendo/lvad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/15/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Older men on an average have lower testosterone concentrations, compared with younger men, and more age-related comorbidities. Whether lower testosterone concentrations contribute to biological ageing remains unclear. Shorter telomeres are a marker for biological age. We tested the hypothesis that testosterone concentrations are associated with leucocyte telomere length (LTL), in middle- to older-aged men. DESIGN Cross-sectional analysis of the UK Biobank study, involving community-dwelling men aged 40-69 years. METHODS Serum testosterone and sex hormone-binding globulin (SHBG) were assayed. Free testosterone was calculated (cFT). Leucocyte telomere length was measured using polymerase chain reaction. Multivariable models were used to assess associations of hormones with standardised LTL. RESULTS In 167 706 men, median age 58 years, adjusting for sociodemographic, lifestyle, and medical factors, total testosterone was inversely associated with standardised LTL, which was 0.09 longer (95% confidence interval [CI], 0.08-0.10, P < .001) in men with total testosterone at median of lowest quintile [Q1] vs highest [Q5]. This relationship was attenuated after additional adjustment for SHBG (0.03 longer, CI = 0.02-0.05, P = .003). The association between cFT and LTL was similar in direction but lower in magnitude. In multivariable analysis, SHBG was inversely associated with standardised LTL, which was 0.12 longer (CI = 0.10-0.13, P < .001) for SHBG at median Q1 vs Q5. Results were similar with testosterone included in the model (0.10 longer, CI = 0.08-0.12, P < .001). CONCLUSIONS Total testosterone and SHBG were independently and inversely associated with LTL. Men with higher testosterone or SHBG had shorter telomeres, arguing against a role for testosterone to slow biological ageing in men.
Collapse
Affiliation(s)
- Ross J Marriott
- School of Population and Global Health, University of Western Australia, Perth 6009, Australia
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Perth 6009, Australia
| | - Charley A Budgeon
- School of Population and Global Health, University of Western Australia, Perth 6009, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, United Kingdom
- National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Jennie Hui
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth 6009, Australia
| | - Gillian M Arscott
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth 6009, Australia
| | - John P Beilby
- School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth 6009, Australia
| | - Gary A Wittert
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide 5005, Australia
| | - Frederick C W Wu
- Division of Endocrinology, Diabetes and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Bu B Yeap
- Medical School, University of Western Australia, Perth 6009, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth 6150, Australia
| |
Collapse
|
4
|
Yeap BB, Hui J, Knuiman MW, Flicker L, Divitini ML, Arscott GM, Twigg SM, Almeida OP, Hankey GJ, Golledge J, Norman PE, Beilby JP. U-Shaped Relationship of Leukocyte Telomere Length With All-Cause and Cancer-Related Mortality in Older Men. J Gerontol A Biol Sci Med Sci 2021; 76:164-171. [PMID: 32761187 DOI: 10.1093/gerona/glaa190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Telomeres are essential DNA-protein complexes whose attrition results in cellular dysfunction and senescence. Leukocyte telomere length (LTL) correlates with tissue telomere length, representing a biomarker for biological age. However, its predictive value for mortality risk, and for cardiovascular versus cancer deaths, in older adults remains uncertain. METHOD We studied 3608 community-dwelling men aged 77.0 ± 3.6 years. Leukocyte telomere length was measured using multiplex quantitative PCR, expressed as amount of telomeric DNA relative to single-copy control gene (T/S ratio). Deaths from any cause, cardiovascular disease (CVD), and cancer were ascertained using data linkage. Curve fitting used restricted cubic splines and Cox regression analyses adjusted for age, cardiometabolic risk factors, and prevalent disease. RESULTS There was a U-shaped association of LTL with all-cause mortality. Men with T/S ratio in the middle quartiles had lower mortality (quartiles, Q2 vs Q1, hazard ratio [HR] = 0.86, 95% confidence interval [CI] 0.77-0.97, p = .012; Q3 vs Q1 HR = 0.88, CI 0.79-0.99, p = .032). There was no association of LTL with CVD mortality. There was a U-shaped association of LTL with cancer mortality. Men with LTL in the middle quartiles had lower risk of cancer death (Q2 vs Q1, HR = 0.73, CI 0.59-0.90, p = .004; Q3 vs Q1, HR = 0.75, CI 0.61-0.92, p = .007). CONCLUSIONS In older men, both shorter and longer LTL are associated with all-cause mortality. A similar U-shaped association was seen with cancer deaths, with no association found for cardiovascular deaths. Further research is warranted to explore the prognostic utility of LTL in ageing.
Collapse
Affiliation(s)
- Bu B Yeap
- Medical School, University of Western Australia, Perth, Australia.,Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Matthew W Knuiman
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia.,Department of Endocrinology, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Mark L Divitini
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Gillian M Arscott
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Stephen M Twigg
- Department of Endocrinology, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Australia.,WA Centre for Health & Ageing, University of Western Australia, Perth, Australia
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia
| | - Paul E Norman
- Medical School, University of Western Australia, Perth, Australia
| | - John P Beilby
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Fañanas-Baquero S, Orman I, Becerra Aparicio F, Bermudez de Miguel S, Garcia Merino J, Yañez R, Fernandez Sainz Y, Sánchez R, Dessy-Rodríguez M, Alberquilla O, Alfaro D, Zapata A, Bueren JA, Segovia JC, Quintana-Bustamante O. Natural estrogens enhance the engraftment of human hematopoietic stem and progenitor cells in immunodeficient mice. Haematologica 2021; 106:1659-1670. [PMID: 32354868 PMCID: PMC8168497 DOI: 10.3324/haematol.2019.233924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic Stem and Progenitor Cells are crucial in the maintenance of lifelong production of all blood cells. These Stem Cells are highly regulated to maintain homeostasis through a delicate balance between quiescence, self-renewal and differentiation. However, this balance is altered during the hematopoietic recovery after Hematopoietic Stem and Progenitor Cell Transplantation. Transplantation efficacy can be limited by inadequate Hematopoietic Stem Cells number, poor homing, low level of engraftment, or limited self-renewal. As recent evidences indicate that estrogens are involved in regulating the hematopoiesis, we sought to examine whether natural estrogens (estrone or E1, estradiol or E2, estriol or E3 and estetrol or E4) modulate human Hematopoietic Stem and Progenitor Cells. Our results show that human Hematopoietic Stem and Progenitor Cell subsets express estrogen receptors, and whose signaling is activated by E2 and E4 on these cells. Additionally, these natural estrogens cause different effects on human Progenitors in vitro. We found that both E2 and E4 expand human Hematopoietic Stem and Progenitor Cells. However, E4 was the best tolerated estrogen and promoted cell cycle of human Hematopoietic Progenitors. Furthermore, we identified that E2 and, more significantly, E4 doubled human hematopoietic engraftment in immunodeficient mice without altering other Hematopoietic Stem and Progenitor Cells properties. Finally, the impact of E4 on promoting human hematopoietic engraftment in immunodeficient mice might be mediated through the regulation of mesenchymal stromal cells in the bone marrow niche. Together, our data demonstrate that E4 is well tolerated and enhances human reconstitution in immunodeficient mice, directly by modulating human Hematopoietic Progenitor properties and indirectly by interacting with the bone marrow niche. This application might have particular relevance to ameliorate the hematopoietic recovery after myeloablative conditioning, especially when limiting numbers of Hematopoietic Stem and Progenitor Cells are available.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David Alfaro
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Agustin Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Legoff L, D'Cruz SC, Bouchekhchoukha K, Monfort C, Jaulin C, Multigner L, Smagulova F. In utero exposure to chlordecone affects histone modifications and activates LINE-1 in cord blood. Life Sci Alliance 2021; 4:4/6/e202000944. [PMID: 33837044 PMCID: PMC8091598 DOI: 10.26508/lsa.202000944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
In utero exposure to chlordecone affects chromatin and leads to activation of retroelements. This study shows the changes induced by chlordecone in human umbilical cord blood and blood-derived cell line. Environmental factors can induce detrimental consequences into adulthood life. In this study, we examined the epigenetic effects induced by in utero chlordecone (CD) exposure on human male cord blood as well as in blood-derived Ke-37 cell line. Genome-wide analysis of histone H3K4me3 distribution revealed that genes related to chromosome segregation, chromatin organization, and cell cycle have altered occupancy in their promoters. The affected regions were enriched in ESR1, SP family, and IKZF1 binding motifs. We also observed a global reduction in H3K9me3, markedly in repeated sequences of the genome. Decrease in H3K9me3 after CD exposure correlates with decreased methylation in LINE-1 promoters and telomere length extension. These observations on human cord blood were assessed in the Ke-37 human cell line. H3K4me3 and the expression of genes related to immune response, DNA repair, and chromatin organization, which were affected in human cord blood were also altered in CD-exposed Ke-37 cells. Our data suggest that developmental exposure to CD leads to profound changes in histone modification patterns and affects the processes controlled by them in human cord blood.
Collapse
Affiliation(s)
- Louis Legoff
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Shereen Cynthia D'Cruz
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Katia Bouchekhchoukha
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Christine Monfort
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Christian Jaulin
- Institut de Génétique et Développement de Rennes, Epigenetics and Cancer Group, UMR 6290 CNRS, Université Rennes 1, Rennes Cedex, France
| | - Luc Multigner
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| | - Fatima Smagulova
- University of Rennes, EHESP, Inserm, Institut de Recherche en Santé, Environnement et Travail (Irset)-UMR_S 1085, Rennes, France
| |
Collapse
|
7
|
Thomas N, Hudaib AR, Romano-Silva M, Bozaoglu K, H X Thomas E, Rossell S, Kulkarni J, Gurvich C. Influence of cortisol awakening response on telomere length: Trends for males and females. Eur J Neurosci 2020; 55:2794-2803. [PMID: 33012014 DOI: 10.1111/ejn.14996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 12/29/2022]
Abstract
Although telomere attrition is associated with the process of normal ageing, shorter telomere length (TL) has been associated with acute and chronic stressors. A neurobiological factor hypothesised to be responsible for this accelerated attrition is the dysregulation of the cortisol stress response, which can induce DNA damage affecting DNA telomeric caps. Marked sex differences are reported in both the cortisol stress response and telomere dynamics, yet no explicit investigation of sex specificity on the relationship between cortisol and TL exists. This study used mathematical equation modelling to describe the relationship between diurnal cortisol levels and telomere length within the context of sex, in a healthy population. Cortisol awakening responses (CAR) were measured via ELISA methodology in fifty-one healthy participants (28 males, 23 females). qPCRs determined TL from genomic DNA extracted from saliva. To assess the effect of free cortisol on relative TL ratio, a semi-log regression plot of the two variables trended for sex were fitted using spline curves. Results demonstrated significant differences between males and females in the relationship defining CAR and TL association (p = 0.03). These results suggest the relationship is not linear and can be represented as a complex arcsin function, and that the patterns are opposite in males and females. Males demonstrate a positive correlation, with higher levels of CAR being associated with longer telomere sequences. Females demonstrated a negative correlation. Future studies must carefully take into consideration moderating factors such as sex, and sex hormones across the lifespan when investigating telomere length.
Collapse
Affiliation(s)
- Natalie Thomas
- Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Melbourne, Vic, Australia
| | - Abdul-Rahman Hudaib
- Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Melbourne, Vic, Australia
| | - Marco Romano-Silva
- Department of Saude Mental, Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Kiymet Bozaoglu
- Neurogenetic Research, Murdoch Children's Research Institute, The Department of Paediatrics University of Melbourne, Melbourne, Vic, Australia
| | - Elizabeth H X Thomas
- Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Melbourne, Vic, Australia
| | - Susan Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Vic, Australia
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Melbourne, Vic, Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Melbourne, Vic, Australia
| |
Collapse
|