1
|
Bhat G, Chanthar VKMM, Rahalkar A, Sooraj R, Philip RC, Mayilvaganan S, Singh KR, Chand G, Ramakant P, Mishra A, Agarwal G, Paul JM, Mishra AK. Efficacy and Safety of Tyrosine Kinase Inhibitors in Downstaging and Palliation in Patients with Advanced Differentiated Thyroid Cancer - A Multicentre study. Indian J Surg Oncol 2025; 16:165-171. [PMID: 40114887 PMCID: PMC11920544 DOI: 10.1007/s13193-024-02053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/21/2024] [Indexed: 03/22/2025] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy worldwide, with differentiated thyroid cancer (DTC) comprising the majority of cases. Surgical treatment of locally advanced DTC can be challenging, prompting the exploration of tyrosine kinase inhibitors (TKIs) to downstage the disease burden before surgery. Sorafenib and Lenvatinib have shown promising response rates in managing refractory DTC. This study aimed to assess the efficacy and safety profile of Sorafenib and Lenvatinib in the Indian population for locally advanced DTCs. A retrospective multicentric study across three Indian Endocrine surgery centres evaluated the efficacy and safety of Sorafenib and Lenvatinib in locally advanced DTC. Data from 45 patients with DTC, including demographics, treatment details, adverse effects, and outcomes, were analysed. Sorafenib and Lenvatinib demonstrated substantial efficacy, with 70.8% and 42.9% of patients achieving a partial response, respectively (p = 0.226). Median progression-free survival (PFS) was 30.15 months for Sorafenib and 35.54 months for Lenvatinib (p = 0.868). Overall survival (OS) was 28.23 months for Sorafenib and 34 months for Lenvatinib (p < 0.722). Adverse events (AEs) were common, with Sorafenib associated with higher AE rates (72% vs. 35.7% for Lenvatinib) and hand-foot syndrome being the most prevalent (p = 0.027). However, AEs did not significantly differ in causing drug discontinuation or dose reduction between the two TKIs. Sorafenib and Lenvatinib show promising results in managing advanced DTCs, with substantial efficacy and manageable AEs. Further research, including prospective studies with larger cohorts, is needed to validate these findings and optimize treatment strategies for advanced DTCs.
Collapse
Affiliation(s)
- Ganesh Bhat
- Department of Endocrine Surgery, King George's Medical University, Uttar Pradesh, Lucknow, India
| | - Vishvak K M M Chanthar
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute, Uttar Pradesh, Lucknow, India
| | - Ashwinee Rahalkar
- Department of Endocrine Surgery, King George's Medical University, Uttar Pradesh, Lucknow, India
| | - Rizhin Sooraj
- Department of Endocrine Surgery, King George's Medical University, Uttar Pradesh, Lucknow, India
| | | | - Sabaretnam Mayilvaganan
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute, Uttar Pradesh, Lucknow, India
| | - Kul Ranjan Singh
- Department of Endocrine Surgery, King George's Medical University, Uttar Pradesh, Lucknow, India
| | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute, Uttar Pradesh, Lucknow, India
| | - Pooja Ramakant
- Department of Endocrine Surgery, King George's Medical University, Uttar Pradesh, Lucknow, India
| | - Anjali Mishra
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute, Uttar Pradesh, Lucknow, India
| | - Gaurav Agarwal
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute, Uttar Pradesh, Lucknow, India
| | | | - Anand Kumar Mishra
- Department of Endocrine Surgery, King George's Medical University, Uttar Pradesh, Lucknow, India
| |
Collapse
|
2
|
Wang S, Zhang F, Wang J, Ao Y. A study on the safety and efficacy of endoscopic thyroidectomy via axillary approach for the treatment of thyroid cancer. Medicine (Baltimore) 2024; 103:e38507. [PMID: 38905368 PMCID: PMC11191952 DOI: 10.1097/md.0000000000038507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 06/23/2024] Open
Abstract
This study aims to evaluate the safety and efficacy of endoscopic thyroid cancer treatment using an axillary approach. Participants were allocated into 2 groups: one undergoing transaxillary endoscopic surgery and the other, traditional open surgery. We compared intraoperative and postoperative conditions, focusing on parameters such as intraoperative blood loss, duration of surgery, length of postoperative hospitalization, volume of postoperative drainage, number of lymph nodes cleared in the central region, neck pain scores, neck injury indices, cosmetic satisfaction, postoperative complications, and total hospitalization duration. Patients in the endoscopic treatment (ET) group experienced longer surgical times, less intraoperative bleeding, and increased postoperative drainage. These indicators showed significant differences between the groups (P < .05). For the group undergoing endoscopic surgery via the axillary approach, there was a lower neck pain score on the third postoperative day and higher cosmetic satisfaction at 3 months. However, there were no significant differences between the groups in terms of the number of lymph nodes cleared in the central area, and the incidence of complications such as difficulty breathing, difficulty swallowing, hoarseness, and subcutaneous hematoma (P > .05). The axillary approach endoscopic surgery group also showed significantly prolonged surgery times and postoperative hospital stays, with a significant increase in postoperative drainage fluid (P < .05). Concurrently, this technique involved smaller surgical incisions and effectively concealed scars in the armpit, leading to better outcomes in terms of intraoperative bleeding, neck pain scores, and postoperative cosmetic satisfaction. Non-inflatable ET via the axillary approach for treating thyroid cancer demonstrates promising efficacy and safety. It offers additional benefits of minimal pain and enhanced cosmetic outcomes, making it a viable option for clinical adoption and application.
Collapse
Affiliation(s)
- Song Wang
- Department of Thyroid Surgery, Affiliated Hospital of Chengde Medical College Chengde, Hebei, China
| | - Fangjie Zhang
- Department of Infection, Affiliated Hospital of Chengde Medical College Chengde, Hebei, China
| | - Jingjing Wang
- Department of Thyroid Surgery, Affiliated Hospital of Chengde Medical College Chengde, Hebei, China
| | - Yazhou Ao
- Department of Thyroid Surgery, Affiliated Hospital of Chengde Medical College Chengde, Hebei, China
| |
Collapse
|
3
|
Sogo Y, Toyoda E, Nagai T, Takahashi T, Takizawa D, Watanabe M, Sato M. Disease-Modifying Effects of Lenvatinib, a Multiple Receptor Tyrosine Kinase Inhibitor, on Posttraumatic Osteoarthritis of the Knee. Int J Mol Sci 2024; 25:6514. [PMID: 38928219 PMCID: PMC11203559 DOI: 10.3390/ijms25126514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Angiogenesis and vascular endothelial growth factor (VEGF) are involved in osteoarthritis (OA). We previously reported the inhibitory effect of bevacizumab in a rabbit model of OA. In the current study, we investigated the effects of lenvatinib, an angiogenesis inhibitor targeting the VEGF and fibroblast growth factor receptors, on synovitis, osteophyte formation, and cartilage degeneration in a rabbit OA model. Posttraumatic OA was induced by anterior cruciate ligament transection (ACLT) on one knee of each rabbit. Rabbits were placed into four groups according to the following lenvatinib doses: untreated control (n = 12), L0.3: 0.3 mg/kg/day (n = 15), L1.0: 1.0 mg/kg/day (n = 14), and L3.0: 3.0 mg/kg/day (n = 13) groups. We evaluated limb pain using the weight distribution ratio measured with an incapacitance tester, macroscopic osteophyte formation, and femoral condyle synovium and cartilage histology. For cartilage evaluation, the following distal sites of the femur were evaluated separately: femoral-tibial (FT), femoral-patellar (FP), and femoral corner (between FP and FT). The weight distribution ratio at 12 weeks after surgery was higher in the L0.3 and L1.0 groups than in the control group. Osteophyte formation and synovitis scores were significantly lower in the L0.3, L1.0, and L3.0 groups than in the control group. The Osteoarthritis Research Society International scores of the FT, corner, and FP sites in the L0.3 group were lower than in the control group. The cartilage thickness ratio at the FT and corner sites was significantly lower in the L0.3 group than in the control group. Krenn's grading system of cartilage synovitis showed that all lenvatinib-administered groups had significantly lower scores than the control group. MMP3 expression level in cartilage tissue was significantly lower in the L3.0 group compared with the other three groups. ADAMTS5 expression was lower in the L3.0 group compared with the control and L0.3 groups. Oral administration of lenvatinib inhibited synovitis, osteophyte formation, and cartilage degeneration and reduced pain in a rabbit ACLT model. Lenvatinib is an oral VEGF inhibitor that is easier to administer than other VEGF inhibitors and may have potential as a treatment of posttraumatic OA.
Collapse
Affiliation(s)
- Yasuyuki Sogo
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (Y.S.); (E.T.); (T.T.); (D.T.); (M.W.)
- Center for Musculoskeletal innovative Research and Advancement (C-MiRA), Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Eriko Toyoda
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (Y.S.); (E.T.); (T.T.); (D.T.); (M.W.)
- Center for Musculoskeletal innovative Research and Advancement (C-MiRA), Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Toshihiro Nagai
- Department of Orthopaedic Surgery, Tokai University Hachioji Hospital, 1838 Ishikawa-cho, Hachioji 192-0032, Kanagawa, Japan;
| | - Takumi Takahashi
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (Y.S.); (E.T.); (T.T.); (D.T.); (M.W.)
- Center for Musculoskeletal innovative Research and Advancement (C-MiRA), Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Daichi Takizawa
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (Y.S.); (E.T.); (T.T.); (D.T.); (M.W.)
- Center for Musculoskeletal innovative Research and Advancement (C-MiRA), Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (Y.S.); (E.T.); (T.T.); (D.T.); (M.W.)
- Center for Musculoskeletal innovative Research and Advancement (C-MiRA), Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (Y.S.); (E.T.); (T.T.); (D.T.); (M.W.)
- Center for Musculoskeletal innovative Research and Advancement (C-MiRA), Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
4
|
Kuang BH, Zhang WX, Lin GH, Fu C, Cao RB, Wang BC. Tyrosine kinase inhibitors in patients with advanced anaplastic thyroid cancer: an effective analysis based on real-world retrospective studies. Front Endocrinol (Lausanne) 2024; 15:1345203. [PMID: 38469143 PMCID: PMC10926020 DOI: 10.3389/fendo.2024.1345203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) contribute to the treatment of patients with anaplastic thyroid cancer (ATC). Although prospective clinical studies of TKIs exhibit limited efficacy, whether ATC patients benefit from TKI treatment in real-world clinical practice may enlighten future explorations. Therefore, we conducted this effective analysis based on real-world retrospective studies to illustrate the efficacy of TKI treatment in ATC patients. Methods We systematically searched the online databases on September 03, 2023. Survival curves were collected and reconstructed to summarize the pooled curves. Responses were analyzed by using the "meta" package. The primary endpoints were progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and disease control rate (DCR). Results 12 studies involving 227 patients were enrolled in the study. Therapeutic strategies included: anlotinib, lenvatinib, dabrafenib plus trametinib, vemurafenib, pembrolizumab plus dabrafenib and trametinib, pembrolizumab plus lenvatinib, pembrolizumab plus trametinib, and sorafenib. The pooled median OS and PFS were 6.37 months (95% CI 4.19-10.33) and 5.50 months (95% CI 2.17-12.03). The integrated ORR and DCR were 32% (95% CI 23%-41%) and 40% (95% CI 12%-74%). Conclusion In real-world clinical practice, ATC patients could benefit from TKI therapy. In future studies, more basic experiments and clinical explorations are needed to enhance the effects of TKIs in the treatment of patients with ATC.
Collapse
Affiliation(s)
- Bo-Hua Kuang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Xuan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-He Lin
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Fu
- Wuhan No.1 Hospital, Wuhan, China
| | - Ru-Bo Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Cheng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Revilla G, Al Qtaish N, Caruana P, Sainz-Ramos M, Lopez-Mendez T, Rodriguez F, Paez-Espinosa V, Li C, Vallverdú NF, Edwards M, Moral A, Pérez JI, Escolà-Gil JC, Pedraz JL, Gallego I, Corcoy R, Céspedes MV, Puras G, Mato E. Lenvatinib-Loaded Poly(lactic-co-glycolic acid) Nanoparticles with Epidermal Growth Factor Receptor Antibody Conjugation as a Preclinical Approach to Therapeutically Improve Thyroid Cancer with Aggressive Behavior. Biomolecules 2023; 13:1647. [PMID: 38002329 PMCID: PMC10668968 DOI: 10.3390/biom13111647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Lenvatinib, a tyrosine kinase inhibitor (TKI) approved for the treatment of progressive and radioactive iodine (RAI)-refractory differentiated thyroid cancer (DTC), is associated with significant adverse effects that can be partially mitigated through the development of novel drug formulations. The utilization of nanoparticles presents a viable option, as it allows for targeted drug delivery, reducing certain side effects and enhancing the overall quality of life for patients. This study aimed to produce and assess, both in vitro and in vivo, the cytotoxicity, biodistribution, and therapeutic efficacy of lenvatinib-loaded PLGA nanoparticles (NPs), both with and without decoration using antibody conjugation (cetuximab), as a novel therapeutic approach for managing aggressive thyroid tumors. METHODS Poly(lactic-co-glycolic acid) nanoparticles (NPs), decorated with or without anti-EGFR, were employed as a lenvatinib delivery system. These NPs were characterized for size distribution, surface morphology, surface charge, and drug encapsulation efficiency. Cytotoxicity was evaluated through MTT assays using two cellular models, one representing normal thyroid cells (Nthy-ori 3-1) and the other representing anaplastic thyroid cells (CAL-62). Additionally, an in vivo xenograft mouse model was established to investigate biodistribution and therapeutic efficacy following intragastric administration. RESULTS The NPs demonstrated success in terms of particle size, polydispersity index (PDI), zeta potential, morphology, encapsulation efficiency, and cetuximab distribution across the surface. In vitro analysis revealed cytotoxicity in both cellular models with both formulations, but only the decorated NPs achieved an ID50 value in CAL-62 cells. Biodistribution analysis following intragastric administration in xenografted thyroid mice demonstrated good stability in terms of intestinal barrier function and tumor accumulation. Both formulations were generally well tolerated without inducing pathological effects in the examined organs. Importantly, both formulations increased tumor necrosis; however, decorated NPs exhibited enhanced parameters related to apoptotic/karyolytic forms, mitotic index, and vascularization compared with NPs without decoration. CONCLUSIONS These proof-of-concept findings suggest a promising strategy for administering TKIs in a more targeted and effective manner.
Collapse
Affiliation(s)
- Giovanna Revilla
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
- Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, C/Antoni M. Claret 167, 08025 Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Nuseibah Al Qtaish
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Pharmacy Department, College of Pharmacy, Amman Arab University, P.O. Box 2234, Amman 11953, Jordan
| | - Pablo Caruana
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
| | - Myriam Sainz-Ramos
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Tania Lopez-Mendez
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Francisco Rodriguez
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
| | - Verónica Paez-Espinosa
- Department Clinical Biochemistry, School of Medicine, Pontificia Universidad Católica del Ecuador (PUCE), Av. 12 de Octubre 1076 y Roca, Quito 17012184, Pichincha, Ecuador;
| | - Changda Li
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
- Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, C/Antoni M. Claret 167, 08025 Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Núria Fucui Vallverdú
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
| | - Maria Edwards
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
| | - Antonio Moral
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/Sant Quintí 89, 08041 Barcelona, Spain;
| | - José Ignacio Pérez
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/Sant Quintí 89, 08041 Barcelona, Spain;
| | - Juan Carlos Escolà-Gil
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
- Departament of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, C/Antoni M. Claret 167, 08025 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - José Luis Pedraz
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Rosa Corcoy
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María Virtudes Céspedes
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
| | - Gustavo Puras
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Eugènia Mato
- Research Biomedical Institute (IIB) Sant Pau, C/Sant Quintí 77, 08041 Barcelona, Spain; (G.R.); (P.C.); (F.R.); (C.L.); (N.F.V.); (M.E.); (J.C.E.-G.); (R.C.)
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain; (N.A.Q.); (M.S.-R.); (T.L.-M.); (A.M.); (J.L.P.); (I.G.); (G.P.)
| |
Collapse
|
6
|
A multifunctional nanotheranostic agent based on Lenvatinib for multimodal synergistic hepatocellular carcinoma therapy with remarkably enhanced efficacy. J Colloid Interface Sci 2023; 638:375-391. [PMID: 36746055 DOI: 10.1016/j.jcis.2023.01.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Lenvatinib (LT), a first-line molecular targeted therapeutic drug for hepatocellular carcinoma (HCC), has been replacing the status of Sorafenib (SF) as the clinically preferred and irreplaceable treatment for a decade. To overcome the low drug utilization and limited single efficacy of LT, ultrasmall copper sulfide nanocrystals (Cu2-xS NCs), and ultrasmall gold nanoparticle (AuNPs) were evenly wrapped into galactosamine conjugated poly(lactide-co-glycolide) (PLGA) as the drug delivery nanoparticles (CAL@PG) by nanoprecipitation. The CAL@PG NPs exhibited excellent stability under physiological conditions, whereas they released LT rapidly in the unique tumor microenvironment (TME) and high temperature, which could be provided by the near-infrared-II (NIR-II) photothermal effect of Cu2-xS NCs. Moreover, the temperature elevation, regenerated hydrogen peroxide (H2O2), and lower pH of TME could substantially boost the reaction potency of copper Fenton-like chemistry. More importantly, this combined therapy significantly improved the efficacy of LT, provided a multifunctional LT delivery system, and enriched the nanoparticle-augmented multimodal synergistic HCC therapy modality.
Collapse
|
7
|
Su J, Fu Y, Wang M, Lin S. Reply: Clinical efficacy of lenvatinib for the treatment of radioiodine-refractory thyroid carcinoma: A systematic review and meta-analysis of clinical trials. Clin Endocrinol (Oxf) 2023; 98:275-276. [PMID: 35261050 DOI: 10.1111/cen.14718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Jingyang Su
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yue Fu
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Menglei Wang
- Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Shengyou Lin
- Department of Oncolgy, Hangzhou Hospital of Traditional Chinese Medicine affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Shobab L, Wartofsky L. Perspective: The Molecular Landscape of Radioactive Iodine Refractory Differentiated Thyroid Cancer and Poorly Differentiated Thyroid Cancer. Thyroid 2023; 33:138-142. [PMID: 36345225 DOI: 10.1089/thy.2022.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Leila Shobab
- MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Leonard Wartofsky
- MedStar Health Research Institute, Washington, District of Columbia, USA
| |
Collapse
|
9
|
Krstulović L, Leventić M, Rastija V, Starčević K, Jirouš M, Janić I, Karnaš M, Lasić K, Bajić M, Glavaš-Obrovac L. Novel 7-Chloro-4-aminoquinoline-benzimidazole Hybrids as Inhibitors of Cancer Cells Growth: Synthesis, Antiproliferative Activity, in Silico ADME Predictions, and Docking. Molecules 2023; 28:540. [PMID: 36677600 PMCID: PMC9866588 DOI: 10.3390/molecules28020540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
In this study, new 7-chloro-4-aminoquinoline-benzimidazole compounds were synthesized and characterized by NMR, MS, and elemental analysis. These novel hybrids differ in the type of linker and in the substituent on the benzimidazole moiety. Their antiproliferative activities were evaluated on one non-tumor (MDCK1) and seven selected tumor (CaCo-2, MCF-7, CCRF-CEM, Hut78, THP-1, and Raji) cell lines by MTT test and flow cytometry analysis. The compounds with different types of linkers and an unsubstituted benzimidazole ring, 5d, 8d, and 12d, showed strong cytotoxic activity (the GI50 ranged from 0.4 to 8 µM) and effectively suppressed the cell cycle progression in the leukemia and lymphoma cells. After 24 h of treatment, compounds 5d and 12d induced the disruption of the mitochondrial membrane potential as well as apoptosis in HuT78 cells. The drug-like properties and bioavailability of the compounds were calculated using the Swiss ADME web tool, and a molecular docking study was performed on tyrosine-protein kinase c-Src (PDB: 3G6H). Compound 12d showed good solubility and permeability and bound to c-Src with an energy of -119.99 kcal/mol, forming hydrogen bonds with Glu310 and Asp404 in the active site and other residues with van der Waals interactions. The results suggest that compound 12d could be a leading compound in the further design of effective antitumor drugs.
Collapse
Affiliation(s)
- Luka Krstulović
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Marijana Leventić
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Maja Jirouš
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Ivana Janić
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Maja Karnaš
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Kornelija Lasić
- R&D, Pliva Croatia Ltd., TEVA Group Member, HR-10000 Zagreb, Croatia
| | - Miroslav Bajić
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| |
Collapse
|
10
|
Li YR, Wang SY, Yeh CN. Letter to the editors on 'Clinical efficacy of lenvatinib for the treatment of radioiodine-refractory thyroid carcinoma: A systematic review and meta-analysis of clinical trials'. Clin Endocrinol (Oxf) 2023; 98:133. [PMID: 34288014 DOI: 10.1111/cen.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Yan-Rong Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shang-Yu Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of General Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Nan Yeh
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of General Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
11
|
Wu H, Ding X, Zhang Y, Li W, Chen J. Incidence and risk of hypertension with lenvatinib in treatment of solid tumors: An updated systematic review and meta-analysis. J Clin Hypertens (Greenwich) 2022; 24:667-676. [PMID: 35538636 PMCID: PMC9180318 DOI: 10.1111/jch.14463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/26/2022]
Abstract
This meta‐analysis was performed to assess the relationship between Lenvatinib use for malignancy and hypertension (HTN). A total of 2483 patients met inclusion criteria. The relative risk (RR) for all‐grade and high‐grade (≧3) HTN were 2.61 (p ≦ .001) and 3.35 (p≦ .001), respectively, for Lenvatinib compared with other multitarget tyrosine kinase inhibitors or placebo. The cumulative incidence of all‐grade and high‐grade HTN was 70% and 34%, respectively. The studies with median treatment duration (TD) longer than 7.4 months demonstrated a higher incidence of high‐grade HTN than studies with shorter TD (34% vs 28%). The incidence of all levels of HTN increased with TD (68% vs 49%). Trials with median progression‐free survival (PFS) longer than nine months had a higher incidence of both all‐grade (37% vs 28%) and high‐grade (71% vs 48%) HTN. Lenvatinib, a drug commonly used in cancer treatment, is a risk factor for the development of HTN. A longer duration of Lenvatinib treatment was associated with higher frequency of HTN. Further investigation for Lenvatinib of the association between the occurrence of HTN and prognosis will be warranted.
Collapse
Affiliation(s)
- Hongxiao Wu
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Ding
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yongchao Zhang
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jinglong Chen
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|