1
|
Chen Q, Gao Y, Li F, Yuan L. The role of gut-islet axis in pancreatic islet function and glucose homeostasis. Diabetes Obes Metab 2025; 27:1676-1692. [PMID: 39916498 PMCID: PMC11885102 DOI: 10.1111/dom.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/08/2025]
Abstract
The gastrointestinal tract plays a vital role in the occurrence and treatment of metabolic diseases. Recent studies have convincingly demonstrated a bidirectional axis of communication between the gut and islets, enabling the gut to influence glucose metabolism and energy homeostasis in animals strongly. The 'gut-islet axis' is an essential endocrine signal axis that regulates islet function through the dialogue between intestinal microecology and endocrine metabolism. The discovery of glucagon-like peptide-1 (GLP-1), gastric inhibitory peptide (GIP) and other gut hormones has initially set up a bridge between gut and islet cells. However, the influence of other factors remains largely unknown, such as the homeostasis of the gut microbiota and the integrity of the gut barrier. Although gut microbiota primarily resides and affect intestinal function, they also affect extra-intestinal organs by absorbing and transferring metabolites derived from microorganisms. As a result of this transfer, islets may be continuously exposed to gut-derived metabolites and components. Changes in the composition of gut microbiota can damage the intestinal barrier function to varying degrees, resulting in increased intestinal permeability to bacteria and their derivatives. All these changes contribute to the severe disturbance of critical metabolic pathways in peripheral tissues and organs. In this review, we have outlined the different gut-islet axis signalling mechanisms associated with metabolism and summarized the latest progress in the complex signalling molecules of the gut and gut microbiota. In addition, we will discuss the impact of the gut renin-angiotensin system (RAS) on the various components of the gut-islet axis that regulate energy and glucose homeostasis. This work also indicates that therapeutic approaches aiming to restore gut microbial homeostasis, such as probiotics and faecal microbiota transplantation (FMT), have shown great potential in improving treatment outcomes, enhancing patient prognosis and slowing down disease progression. Future research should further uncover the molecular links between the gut-islet axis and the gut microbiota and explore individualized microbial treatment strategies, which will provide an innovative perspective and approach for the diagnosis and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fangyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Bannon CA, Meek CL, Reimann F, Gribble FM. Fasting and post prandial pancreatic and enteroendocrine hormone levels in obese and non-obese participants. Peptides 2024; 176:171186. [PMID: 38490484 PMCID: PMC7617300 DOI: 10.1016/j.peptides.2024.171186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Circulating insulin levels are known to be increased in people with higher body mass index (BMI) due to effects of adiposity on insulin resistance, whilst gut hormones have a more complex relationship, with fasting peptideYY (PYY) reported to be inversely related to BMI. This study aimed to further explore fasting and post prandial pancreatic and gut hormone concentrations in plasma samples from obese and non-obese participants. Participants with healthy BMI (n=15), overweight BMI (n=29) and obesity (n=161) had samples taken fasting and 30 min post mixed liquid meal for analysis of glucagon-like peptide-1 (GLP-1), PYY, glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon. Data visualiation used linear discriminant analysis for dimensionality reduction, to visualise the data and assess scaling of each hormone. Fasting levels of insulin, GIP and PYY were shown to be key classifiers between the 3 groups on ANCOVA analysis, with an observation of increased GIP levels in overweight, but not obese participants. In non-obese subjects, fasting GIP, PYY and insulin correlated with BMI, whereas in subjects with obesity only the pancreatic hormones glucagon and insulin correlated with BMI. Concentrations of total GLP-1 in the fasting state correlated strongly with glucagon levels, highlighting potential assay cross-reactivities. The study, which included a relatively large number of subjects with severe obesity, supported previous evidence of BMI correlating negatively with fasting PYY and positively with fasting insulin. The observation of increased fasting GIP levels in overweight but not obese participants deserves further validation and mechanistic investigation.
Collapse
Affiliation(s)
- Christopher A Bannon
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ UK.
| | - Claire L Meek
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ UK; Current addresses: Leicester Diabetes Centre, University of Leicester, Gwendoline Road, Leicester LE5 4PW, UK; and University Hospitals Leicester, Leicester General Hospitals, Gwendoline Road, Leicester LE5 4PW, UK
| | - Frank Reimann
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Fiona M Gribble
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
3
|
Liu FS, Wang S, Guo XS, Ye ZX, Zhang HY, Li Z. State of art on the mechanisms of laparoscopic sleeve gastrectomy in treating type 2 diabetes mellitus. World J Diabetes 2023; 14:632-655. [PMID: 37383590 PMCID: PMC10294061 DOI: 10.4239/wjd.v14.i6.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Obesity and type-2 diabetes mellitus (T2DM) are metabolic disorders. Obesity increases the risk of T2DM, and as obesity is becoming increasingly common, more individuals suffer from T2DM, which poses a considerable burden on health systems. Traditionally, pharmaceutical therapy together with lifestyle changes is used to treat obesity and T2DM to decrease the incidence of comorbidities and all-cause mortality and to increase life expectancy. Bariatric surgery is increasingly replacing other forms of treatment of morbid obesity, especially in patients with refractory obesity, owing to its many benefits including good long-term outcomes and almost no weight regain. The bariatric surgery options have markedly changed recently, and laparoscopic sleeve gastrectomy (LSG) is gradually gaining popularity. LSG has become an effective and safe treatment for type-2 diabetes and morbid obesity, with a high cost-benefit ratio. Here, we review the me-chanism associated with LSG treatment of T2DM, and we discuss clinical studies and animal experiments with regard to gastrointestinal hormones, gut microbiota, bile acids, and adipokines to clarify current treatment modalities for patients with obesity and T2DM.
Collapse
Affiliation(s)
- Fa-Shun Liu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Song Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xian-Shan Guo
- Department of Endocrinology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Zhen-Xiong Ye
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hong-Ya Zhang
- Central Laboratory, Yangpu District Control and Prevention Center, Shanghai 200090, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
4
|
Maurer J, Grouzmann E, Eugster PJ. The road to reliable peptide assays is paved with good guidelines. Clin Endocrinol (Oxf) 2023; 98:832-833. [PMID: 36522117 DOI: 10.1111/cen.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Jonathan Maurer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe J Eugster
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Kowalka AM, Alexiadou K, Cuenco J, Clarke RE, Camuzeaux S, Minnion J, Williams EL, Bech P, Purkayastha S, Ahmed AR, Takats Z, Khoo B, Whitwell HJ, Romero MG, Bloom SR, Lewis MR, Tan TM. Commentary on "The road to reliable peptide assays is paved with good guidelines". Clin Endocrinol (Oxf) 2023; 98:763-765. [PMID: 36915993 PMCID: PMC10952462 DOI: 10.1111/cen.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Affiliation(s)
- Anna M. Kowalka
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Kleopatra Alexiadou
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Joyceline Cuenco
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | | | - Stephane Camuzeaux
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - James Minnion
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Emma L. Williams
- Department of Clinical Biochemistry, North West London PathologyCharing Cross HospitalLondonUK
| | - Paul Bech
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Sanjay Purkayastha
- Department of Surgery and CancerImperial College Healthcare NHS TrustLondonUK
| | - Ahmed R. Ahmed
- Department of Surgery and CancerImperial College Healthcare NHS TrustLondonUK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Bernard Khoo
- Endocrinology, Division of MedicineUniversity College LondonLondonUK
| | - Harry J. Whitwell
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Maria G. Romero
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Stephen R. Bloom
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Matthew R. Lewis
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Tricia M.‐M. Tan
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| |
Collapse
|
6
|
Xu TQ, Kindel TL. The role of weight control in the management of type 2 diabetes mellitus: Bariatric surgery. Diabetes Res Clin Pract 2023; 199:110667. [PMID: 37037264 PMCID: PMC10192054 DOI: 10.1016/j.diabres.2023.110667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Diabetes mellitus is one of the major epidemics in the United States. It is heavily associated with obesity and multiple metabolic derangements that lead to long term morbidity, mortality as well as financial burden. Although medical therapy has been the mainstay in the management of diabetes mellitus, there remains a large portion of this patient population which struggles to obtain adequate glycemic control and long-term weight control with medical management alone. Bariatric surgery is a powerful tool in combating diabetes mellitus and affects glucose homeostasis through a variety of pathways. While it does provide a durable pathway for weight loss, improvement in glucose homeostasis is not only affected by the weight loss seen after bariatric surgery. Changes in gut hormone secretion, insulin regulation, and gut microbial composition also affect how these operations improve glucose homeostasis. Through improvement in the management of diabetes mellitus, comorbidities including cardiovascular disease, in turn demonstrate improvement. In this article, we will discuss the role of bariatric (metabolic) surgery as it relates to long term weight loss and the impact that weight loss has on improvement in diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Q Xu
- Division of Minimally Invasive and Gastrointestinal Surgery, The Medical College of Wisconsin, United States
| | - Tammy Lyn Kindel
- Division of Minimally Invasive and Gastrointestinal Surgery, The Medical College of Wisconsin, United States.
| |
Collapse
|