1
|
Carballal S, Balaguer F, Bujanda L, Capellá G, González Santiago S, Jover R, Moreira L, Pineda M, Ruiz-Ponte C, Sánchez Heras AB, Serrano Blanch R, Soto JL, Vidal Tocino R, Cubiella J. Use of multi-gene panels in patients at high risk of hereditary digestive cancer: position statement of AEG, SEOM, AEGH and IMPaCT-GENÓMICA consortium. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:293-318. [PMID: 37315767 DOI: 10.1016/j.gastrohep.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
This position statement, sponsored by the Asociación Española de Gastroenterología, the Sociedad Española de Oncología Médica, the Asociación Española de Genética Humana and the IMPaCT-Genómica Consortium aims to establish recommendations for use of multi-gene panel testing in patients at high risk of hereditary gastrointestinal and pancreatic cancer. To rate the quality of the evidence and the levels of recommendation, we used the methodology based on the GRADE system (Grading of Recommendations Assessment, Development and Evaluation). We reached a consensus among experts using a Delphi method. The document includes recommendations on clinical scenarios where multi-gene panel testing is recommended in colorectal cancer, polyposis syndromes, gastric and pancreatic cancer, as well as the genes to be considered in each clinical scenario. Recommendations on the evaluation of mosaicisms, counseling strategies in the absence of an index subject and, finally, constitutional analysis after identification of pathogenic tumor variants are also made.
Collapse
Affiliation(s)
- Sabela Carballal
- Servicio de Gastroenterología, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, España.
| | - Francesc Balaguer
- Servicio de Gastroenterología, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, España
| | - Luis Bujanda
- Servicio de Aparato Digestivo, Hospital Universitario Donostia, Instituto Biodonostia. Universidad del País Vasco (UPV/EHU), CIBEREHD, San Sebastián, Guipúzcoa, España
| | - Gabriel Capellá
- Programa de Cáncer Hereditario, Instituto Catalán de Oncología, Programa ONCOBELL, IDIBELL, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), L'Hospitalet de Llobregat, Barcelona, España
| | | | - Rodrigo Jover
- Servicio de Medicina Digestiva, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria de Alicante (ISABIAL), Departamento de Medicina Clínica, Universidad Miguel Hernández, Alicante, España
| | - Leticia Moreira
- Servicio de Gastroenterología, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, España
| | - Marta Pineda
- Programa de Cáncer Hereditario, Instituto Catalán de Oncología, Programa ONCOBELL, IDIBELL, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), L'Hospitalet de Llobregat, Barcelona, España
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), Grupo de Medicina Xenomica (USC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, La Coruña, España
| | - Ana Beatriz Sánchez Heras
- Unidad de Consejo Genético en Cáncer, Servicio de Oncología Médica, Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Elche, Alicante, España
| | - Raquel Serrano Blanch
- Unidad de Consejo Genético en Cáncer, Unidad de Gestión Clínica de Oncología Médica, H.U. Reina Sofía de Córdoba. Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBERONC, Universidad de Córdoba (UCO), Córdoba, España
| | - José Luis Soto
- Unidad de Genética Molecular, Hospital General Universitario de Elche, FISABIO, Elche, Alicante, España
| | - Rosario Vidal Tocino
- Servicio de Oncología Médica, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, España
| | - Joaquín Cubiella
- Servicio de Aparato Digestivo, Hospital Universitario de Ourense, Grupo de Investigación en Oncología Digestiva-Ourense (GIODO), CIBEREHD, Ourense, España.
| |
Collapse
|
2
|
Broekema MF, Redeker EJW, Uiterwaal MT, van Hest LP. A novel pathogenic frameshift variant in AXIN2 in a man with polyposis and hypodontia. Hered Cancer Clin Pract 2023; 21:16. [PMID: 37626374 PMCID: PMC10464116 DOI: 10.1186/s13053-023-00260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND WNT signaling is pivotal in embryogenesis and tissue homeostasis. Aberrant WNT signaling, due to mutations in components of this pathway, contributes to the development and progression of human cancers, including colorectal cancer. AXIN2, encoded by the AXIN2 gene, is a key negative regulator and target of the canonical WNT signaling pathway. Germline mutations in AXIN2 are associated with absence of permanent teeth (hypo- and oligodontia) and predisposition to gastrointestinal polyps and cancer. The limited number of patients makes an accurate genotype-phenotype analysis currently challenging. CASE PRESENTATION We present the case of a 55-year-old male with colorectal polyposis and hypodontia. Genetic testing confirmed a novel frameshift germline mutation in exon 8 of the AXIN2 gene. In addition, we provide an updated overview of germline AXIN2 mutations reported in literature. CONCLUSIONS Although the number of missing teeth is less severe in our patient than in some previously reported cases, our findings provide additional evidence that missing teeth and gastrointestinal neoplasia are associated with rare pathogenic AXIN2 germline mutations.
Collapse
Affiliation(s)
- M F Broekema
- Department of Human Genetics, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands.
| | - E J W Redeker
- Department of Human Genetics, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| | - M T Uiterwaal
- Department of Gastroenterology, Spaarne Hospital, Hoofddorp, The Netherlands
| | - L P van Hest
- Department of Human Genetics, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Stefan-van Staden RI, Bratei AA, Ilie-Mihai RM, Gheorghe DC, Tuchiu BM, Gurzu S. Bioanalysis of MMR and KRAS - a key factor in diagnosis of colorectal cancer. RSC Adv 2023; 13:24086-24092. [PMID: 37577090 PMCID: PMC10415748 DOI: 10.1039/d3ra04260j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Two miniaturized electrochemical devices were designed for the simultaneous bioanalysis of MMR (MLH1, MSH2, MSH6, PMS2), and of KRAS in whole blood, urine, saliva, and tumoral tissues. The devices comprised besides the electronic part of the potentiostat a combined 3D stochastic microsensor (combined microplatform) with the sensing part based on the modification of graphene decorated with nitrogen, sulfur and boron (NSB-EGR) modified with two types of frutafit: FTEX and FHD. For the assay of MSH2, MSH6, KRAS, and PMS2 higher sensitivities were recorded when the microdevice based on FHD was used, while for the assay of MLH1 the best sensitivity was achieved by using the microdevice based on FTEX. While the limits of quantification for MLH1, MSH2, and PMS2 were not influenced by the modifier, the microdevice based on FHD provided the lowest limit of quantification for KRAS, the microdevice based on FTEX provided the lowest limit of quantification for MSH6. The validation tests performed proved that recoveries of MLH1, MSH2, MSH6, PMS2, and of KRAS in whole blood, urine, saliva, and tumoral tissues higher than 98.50% with RSD (%) values lower than 0.10% were recorded.
Collapse
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40213163113 +40751507779
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest Bucharest Romania
| | - Alexandru Adrian Bratei
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40213163113 +40751507779
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest Bucharest Romania
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology Targu-Mures Romania
| | - Ruxandra-Maria Ilie-Mihai
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40213163113 +40751507779
| | - Damaris-Cristina Gheorghe
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40213163113 +40751507779
| | - Bianca Maria Tuchiu
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter 202 Splaiul Independentei Str. 060021 Bucharest-6 Romania +40213163113 +40751507779
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology Targu-Mures Romania
| |
Collapse
|
4
|
O’Shea R, Crook A, Jacobs C, Kentwell M, Gleeson M, Tucker KM, Hampel H, Rahm AK, Taylor N, Lewis S, Rankin NM. A mainstreaming oncogenomics model: improving the identification of Lynch syndrome. Front Oncol 2023; 13:1140135. [PMID: 37305562 PMCID: PMC10256118 DOI: 10.3389/fonc.2023.1140135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction "Mainstreaming" is a proposed strategy to integrate genomic testing into oncology. The aim of this paper is to develop a mainstreaming oncogenomics model by identifying health system interventions and implementation strategies for mainstreaming Lynch syndrome genomic testing. Methods A rigorous theoretical approach inclusive of conducting a systematic review and qualitative and quantitative studies was undertaken using the Consolidated Framework for Implementation Research. Theory-informed implementation data were mapped to the Genomic Medicine Integrative Research framework to generate potential strategies. Results The systematic review identified a lack of theory-guided health system interventions and evaluation for Lynch syndrome and other mainstreaming programs. The qualitative study phase included 22 participants from 12 health organizations. The quantitative Lynch syndrome survey included 198 responses: 26% and 66% from genetic and oncology health professionals, respectively. Studies identified the relative advantage and clinical utility of mainstreaming to improve genetic test access and to streamline care, and adaptation of current processes was recognized for results delivery and follow-up. Barriers identified included funding, infrastructure and resources, and the need for process and role delineation. The interventions to overcome barriers were as follows: embedded mainstream genetic counselors, electronic medical record genetic test ordering, results tracking, and mainstreaming education resources. Implementation evidence was connected through the Genomic Medicine Integrative Research framework resulting in a mainstreaming oncogenomics model. Discussion The proposed mainstreaming oncogenomics model acts as a complex intervention. It features an adaptable suite of implementation strategies to inform Lynch syndrome and other hereditary cancer service delivery. Implementation and evaluation of the model are required in future research.
Collapse
Affiliation(s)
- Rosie O’Shea
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ashley Crook
- Discipline of Genetic Counselling, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Chris Jacobs
- Discipline of Genetic Counselling, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Maira Kentwell
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Oncology, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Margaret Gleeson
- Hunter Genetics, Hunter Family Cancer Service, Newcastle, NSW, Australia
| | | | - Heather Hampel
- Division of Clinical Cancer Genomics, Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | | | - Natalie Taylor
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Cancer Research Division, Cancer Council NSW, Sydney, NSW, Australia
| | - Sarah Lewis
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Nicole M. Rankin
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Melbourne School of Population and Global Health, Melbourne University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Jinda W, Moungthard H, Limwongse C, Pithukpakorn M, Saelee P, Pokkasup N, Khunpukdee S, Sukthaworn S, Jumpasri J. Identification of Genomic Alterations in Thai Patients With Colorectal Cancer Using Next-Generation Sequencing-Based Multigene Cancer Panel. Cureus 2023; 15:e39067. [PMID: 37323311 PMCID: PMC10267666 DOI: 10.7759/cureus.39067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is one of the leading causes of death and illness in the general population. Although the incidence of CRC is steadily decreasing worldwide, it is being diagnosed more in individuals under 50 years of age. Multiple disease-causing variants have been reported to be involved in the development of CRC. This study aimed to investigate the molecular and clinical characteristics of Thai patients with CRC. Methods NGS-based multigene cancer panel testing was performed on 21 unrelated patients. Target enrichment was performed using a custom-designed Ion AmpliSeq on-demand panel. Thirty-six genes associated with CRC and other cancer were analyzed for variant detection. Results Sixteen variants (five nonsense, eight missense, two deletions, and one duplication) in nine genes were identified in 12 patients. Eight (66.7%) patients harboring disease-causing deleterious variants in genes APC, ATM, BRCA2, MSH2, and MUTYH. One of the eight patients also carried additional heterozygous variants in genes ATM, BMPR1A, and MUTYH. In addition, four patients carried variants of uncertain significance in genes APC, MLH1, MSH2, STK11, and TP53. Among all detected genes, APC was the most frequent causative gene observed in CRC patients, which is consistent with previous reports. Conclusion This study demonstrated the comprehensive molecular and clinical characterization of CRC patients. These findings showed the benefits of using multigene cancer panel sequencing for pathogenic gene detection and showed the prevalence of genetic aberrations in Thai patients with CRC.
Collapse
Affiliation(s)
- Worapoj Jinda
- Division of Research and Technology Assessment, National Cancer Institute, Bangkok, THA
| | - Hathaiwan Moungthard
- Division of Gastrointestinal and Liver Clinic, National Cancer Institute, Bangkok, THA
| | - Chanin Limwongse
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Manop Pithukpakorn
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, THA
| | - Pensri Saelee
- Division of Research and Technology Assessment, National Cancer Institute, Bangkok, THA
| | - Nareerat Pokkasup
- Division of Gastrointestinal and Liver Clinic, National Cancer Institute, Bangkok, THA
| | - Saipan Khunpukdee
- Division of Gastrointestinal and Liver Clinic, National Cancer Institute, Bangkok, THA
| | | | - Jaruphan Jumpasri
- Division of Policy and Medical Strategy Development, National Cancer Institute, Bangkok, THA
| |
Collapse
|
6
|
Leclerc J, Beaumont M, Vibert R, Pinson S, Vermaut C, Flament C, Lovecchio T, Delattre L, Demay C, Coulet F, Guillerm E, Hamzaoui N, Benusiglio PR, Brahimi A, Cornelis F, Delhomelle H, Fert-Ferrer S, Fournier BPJ, Hovnanian A, Legrand C, Lortholary A, Malka D, Petit F, Saurin JC, Lejeune S, Colas C, Buisine MP. AXIN2 germline testing in a French cohort validates pathogenic variants as a rare cause of predisposition to colorectal polyposis and cancer. Genes Chromosomes Cancer 2023; 62:210-222. [PMID: 36502525 PMCID: PMC10107344 DOI: 10.1002/gcc.23112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Only a few patients with germline AXIN2 variants and colorectal adenomatous polyposis or cancer have been described, raising questions about the actual contribution of this gene to colorectal cancer (CRC) susceptibility. To assess the clinical relevance for AXIN2 testing in patients suspected of genetic predisposition to CRC, we collected clinical and molecular data from the French Oncogenetics laboratories analyzing AXIN2 in this context. Between 2004 and June 2020, 10 different pathogenic/likely pathogenic AXIN2 variants were identified in 11 unrelated individuals. Eight variants were from a consecutive series of 3322 patients, which represents a frequency of 0.24%. However, loss-of-function AXIN2 variants were strongly associated with genetic predisposition to CRC as compared with controls (odds ratio: 11.89, 95% confidence interval: 5.103-28.93). Most of the variants were predicted to produce an AXIN2 protein devoid of the SMAD3-binding and DIX domains, but preserving the β-catenin-binding domain. Ninety-one percent of the AXIN2 variant carriers who underwent colonoscopy had adenomatous polyposis. Forty percent of the variant carriers developed colorectal or/and other digestive cancer. Multiple tooth agenesis was present in at least 60% of them. Our report provides further evidence for a role of AXIN2 in CRC susceptibility, arguing for AXIN2 testing in patients with colorectal adenomatous polyposis or cancer.
Collapse
Affiliation(s)
- Julie Leclerc
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.,Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Marie Beaumont
- Laboratoire de Génétique Moléculaire et Génomique, CHU Rennes, Rennes, France
| | - Roseline Vibert
- UF d'Oncogénétique Clinique, Département de Génétique et Institut Universitaire de Cancérologie, Hôpitaux Pitié-Salpêtrière et Saint-Antoine, AP-HP. Sorbonne Université, Paris, France
| | - Stéphane Pinson
- Human Genetics Department, Hospices Civils de Lyon, Lyon, France
| | - Catherine Vermaut
- Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Cathy Flament
- Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Tonio Lovecchio
- Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Lucie Delattre
- Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Christophe Demay
- Bioinformatics Unit, Molecular Biology Facility, Lille University Hospital, Lille, France
| | - Florence Coulet
- Sorbonne University, INSERM, Saint-Antoine Research Center, Microsatellites instability and Cancer, CRSA, Genetics Department, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne University, Paris, France
| | - Erell Guillerm
- Sorbonne University, INSERM, Saint-Antoine Research Center, Microsatellites instability and Cancer, CRSA, Genetics Department, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne University, Paris, France
| | - Nadim Hamzaoui
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, AP-HP Centre, Université de Paris, and INSERM UMR_S1016, Institut Cochin, Université de Paris, Paris, France
| | - Patrick R Benusiglio
- UF d'Oncogénétique Clinique, Département de Génétique et Institut Universitaire de Cancérologie, Hôpitaux Pitié-Salpêtrière et Saint-Antoine, AP-HP. Sorbonne Université, Paris, France
| | | | - François Cornelis
- Department of Genetics-Oncogénétics-Prevention, Clermont-Ferrand Hospital, Clermont-Auvergne University, Clermont Ferrand, France
| | - Hélène Delhomelle
- Department of Genetics, Curie Institute, Paris Sciences & Lettres Research University, Paris, France
| | | | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, University of Paris, Sorbonne University, INSERM UMRS 1138 - Molecular Oral Pathophysiology, Paris, France.,Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral and Dental Rare Diseases, AP-HP, University of Paris, Paris, France
| | - Alain Hovnanian
- INSERM UMR 1163 - Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France.,University of Paris, Paris, France.,Department of Genetics, Necker Hospital for sick children, AP-HP, Paris, France
| | - Clémentine Legrand
- Service de Génétique, Génomique et Procréation, CHU Grenoble Alpes, Grenoble, France
| | - Alain Lortholary
- Centre Catherine de Sienne, hôpital privé du Confluent, Nantes, France
| | - David Malka
- Department of Cancer Medicine, Gustave Roussy, Paris-Saclay University, INSERM UMR 1279 - Unité Dynamique des Cellules Tumorales, Villejuif, France
| | - Florence Petit
- Clinique de Génétique, CHU Lille, Lille, France.,Univ. Lille, EA7364 - RADEME, CHU Lille, Lille, France
| | | | | | - Chrystelle Colas
- Department of Genetics, Curie Institute, Paris Sciences & Lettres Research University, Paris, France
| | - Marie-Pierre Buisine
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.,Molecular Oncogenetics, Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| |
Collapse
|
7
|
DNA Mismatch Repair Proteins and BRAF V600E Detection by Immunohistochemistry in Colorectal Cancer Demonstrates Concordance with Next Generation Sequencing. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Multiple laboratory methods are used to screen patients with colorectal cancer (CRC) for mismatch repair (MMR) protein deficiency to identify possible Lynch syndrome patients. The goal of this study was to compare the agreement between ready-to-use immunohistochemistry (IHC) assays for MLH-1, PMS-2, MSH-2, MSH-6, and mutated BRAF at V600E and molecular methods in CRC cases. The inclusion of the BRAF V600E mutation testing is important for the identification of patients with sporadic CRC, as the BRAF V600E mutation is very rarely observed in patients with Lynch syndrome tumors. Methods: CRC cases were analyzed by ColoSeqTM tumor sequencing assay and VENTANA MMR IHC Panel that included anti-MLH1, anti-PMS2, anti-MSH2, anti-MSH6, and anti-BRAF V600E antibodies. Additionally, CRC cases with MLH1 IHC loss were evaluated for MLH1 promoter hypermethylation. Results: One hundred and eighteen cases were analyzed. The overall percent agreement (OPA) for each evaluated marker status compared to next-generation sequencing (NGS) exceeded 96%. Twenty-three cases were positive for the BRAF V600E mutation by IHC and NGS, and twenty cases showed loss of MLH1 protein and were positive for MLH1 hypermethylation. Samples with loss of MMR protein expression by IHC demonstrated genetic and/or epigenetic alterations that were consistent with the observed protein expression patterns. Conclusions: The results of this study indicate that ready-to-use IHC assays can correctly identify the loss of MMR proteins and the presence of mutated BRAF V600E protein, supporting the utility of the VENTANA MMR IHC Panel as an aid to stratify patients with sporadic CRC vs. potential Lynch syndrome.
Collapse
|
8
|
Jensen JM, Skakkebæk A, Gaustadness M, Sommerlund M, Gjørup H, Ljungmann K, Lautrup CK, Sunde L. Familial colorectal cancer and tooth agenesis caused by an AXIN2 variant: how do we detect families with rare cancer predisposition syndromes? Fam Cancer 2022; 21:325-332. [PMID: 34637023 DOI: 10.1007/s10689-021-00280-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/03/2021] [Indexed: 11/29/2022]
Abstract
We present a three-generation family with an AXIN2 variant and a family history of colorectal cancer (CRC), colon polyps and tooth agenesis. A likely pathogenic variant was detected in the AXIN2 gene (c.1994dup; p.(Asn666Glnfs*41)). This variant has previously been associated with tooth agenesis and polyposis, only. In this case report we describe eight carriers with tooth agenesis and variable clinical findings, including polyps and CRC. Our case provides additional knowledge to the sparse data on genotype-phenotype association related to AXIN2 associated cancer syndrome. Further, our case highlights the importance of analysing an extended CRC and oligodontia/ectodermal dysplasia gene panel including AXIN2 but also raises awareness and discussion about appropriate surveillance program.
Collapse
Affiliation(s)
- Janni M Jensen
- Department of Clinical Genetics, Aalborg University Hospital, Ladegaardsgade 5,5, 9000, Aalborg, Denmark.
| | - Anne Skakkebæk
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Gaustadness
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Sommerlund
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Gjørup
- Department of Oral and Maxillofacial Surgery, Resource Centre for Oral Health in Rare Medical Conditions, Aarhus University Hospital, Aarhus, Denmark
| | - Ken Ljungmann
- Department of Surgery, Aarhus University Hospital, Aarhus, Denmark
- Institute of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Charlotte K Lautrup
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Lone Sunde
- Department of Clinical Genetics, Aalborg University Hospital, Ladegaardsgade 5,5, 9000, Aalborg, Denmark
- Institute of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Skopelitou D, Srivastava A, Miao B, Kumar A, Dymerska D, Paramasivam N, Schlesner M, Lubinski J, Hemminki K, Försti A, Reddy Bandapalli O. Whole exome sequencing identifies novel germline variants of SLC15A4 gene as potentially cancer predisposing in familial colorectal cancer. Mol Genet Genomics 2022; 297:965-979. [PMID: 35562597 PMCID: PMC9250485 DOI: 10.1007/s00438-022-01896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
About 15% of colorectal cancer (CRC) patients have first-degree relatives affected by the same malignancy. However, for most families the cause of familial aggregation of CRC is unknown. To identify novel high-to-moderate-penetrance germline variants underlying CRC susceptibility, we performed whole exome sequencing (WES) on four CRC cases and two unaffected members of a Polish family without any mutation in known CRC predisposition genes. After WES, we used our in-house developed Familial Cancer Variant Prioritization Pipeline and identified two novel variants in the solute carrier family 15 member 4 (SLC15A4) gene. The heterozygous missense variant, p. Y444C, was predicted to affect the phylogenetically conserved PTR2/POT domain and to have a deleterious effect on the function of the encoded peptide/histidine transporter. The other variant was located in the upstream region of the same gene (GRCh37.p13, 12_129308531_C_T; 43 bp upstream of transcription start site, ENST00000266771.5) and it was annotated to affect the promoter region of SLC15A4 as well as binding sites of 17 different transcription factors. Our findings of two distinct variants in the same gene may indicate a synergistic up-regulation of SLC15A4 as the underlying genetic cause and implicate this gene for the first time in genetic inheritance of familial CRC.
Collapse
Affiliation(s)
- Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
D'Arcy BM, Arrington J, Weisman J, McClellan SB, Vandana , Yang Z, Deivanayagam C, Blount J, Prakash A. PMS2 variant results in loss of ATPase activity without compromising mismatch repair. Mol Genet Genomic Med 2022; 10:e1908. [PMID: 35189042 PMCID: PMC9034662 DOI: 10.1002/mgg3.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Hereditary cancer syndromes account for approximately 5%-10% of all diagnosed cancer cases. Lynch syndrome (LS) is an autosomal dominant hereditary cancer condition that predisposes individuals to an elevated lifetime risk for developing colorectal, endometrial, and other cancers. LS results from a pathogenic mutation in one of four mismatch repair (MMR) genes (MSH2, MSH6, MLH1, and PMS2). The diagnosis of LS is often challenged by the identification of missense mutations, termed variants of uncertain significance, whose functional effect on the protein is not known. Of the eight PMS2 variants initially selected for this study, we identified a variant within the N-terminal domain where asparagine 335 is mutated to serine, p.Asn335Ser, which lacked ATPase activity, yet appears to be proficient in MMR. To expand our understanding of this functional dichotomy, we performed biophysical and structural studies, and noted that p.Asn335Ser binds to ATP but is unable to hydrolyze it to ADP. To examine the impact of p.Asn335Ser on MMR, we developed a novel in-cell fluorescent-based microsatellite instability reporter that revealed p.Asn335Ser maintained genomic stability. We conclude that in the absence of gross structural changes, PMS2 ATP hydrolysis is not necessary for proficient MMR and that the ATPase deficient p.Asn335Ser variant is likely benign.
Collapse
Affiliation(s)
- Brandon M. D'Arcy
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Jennifer Arrington
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Justin Weisman
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Steven B. McClellan
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Flow Cytometry Shared Resource LabMitchell Cancer InstituteMobileAlabamaUSA
| | - Vandana
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Zhengrong Yang
- Department of Biochemistry and Molecular GeneticsSchool of Medicine University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular GeneticsSchool of Medicine University of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Aishwarya Prakash
- Mitchell Cancer InstituteUniversity of South Alabama HealthMobileAlabamaUSA
- Department of Biochemistry and Molecular BiologyUniversity of South AlabamaMobileAlabamaUSA
| |
Collapse
|
11
|
Kim JC, Bodmer WF. Genomic landscape of colorectal carcinogenesis. J Cancer Res Clin Oncol 2022; 148:533-545. [PMID: 35048197 DOI: 10.1007/s00432-021-03888-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
|
12
|
Kim JC, Bodmer WF. Genotypic and Phenotypic Characteristics of Hereditary Colorectal Cancer. Ann Coloproctol 2021; 37:368-381. [PMID: 34961301 PMCID: PMC8717071 DOI: 10.3393/ac.2021.00878.0125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
The genomic causes and clinical manifestations of hereditary colorectal cancer (HCRC) might be stratified into 2 groups, namely, familial (FCRC) and a limited sense of HCRC, respectively. Otherwise, FCRC is canonically classified into 2 major categories; Lynch syndrome (LS) or associated spectra and inherited polyposis syndrome. By contrast, despite an increasing body of genotypic and phenotypic traits, some FCRC cannot be clearly differentiated as definitively single type, and the situation has become more complex as additional causative genes have been discovered. This review provides an overview of HCRC, including 6 LS or associated spectra and 8 inherited polyposis syndromes, according to molecular pathogenesis. Variants and newly-identified FCRC are particularly emphasized, including MUTYH (or MYH)-associated polyposis, Muir-Torre syndrome, constitutional mismatch repair deficiency, EPCAM-associated LS, polymerase proofreading-associated polyposis, RNF43- or NTHL1-associated serrated polyposis syndrome, PTEN hamartoma tumor syndrome, and hereditary mixed polyposis syndrome. We also comment on the clinical utility of multigene panel tests, focusing on comprehensive cancer panels that include HCRC. Finally, HCRC surveillance strategies are recommended, based on revised or notable concepts underpinned by competent validation and clinical implications, and favoring major guidelines. As hereditary syndromes are mainly attributable to genomic constitutions of distinctive ancestral groups, an integrative national HCRC registry and guideline is an urgent priority.
Collapse
Affiliation(s)
- Jin Cheon Kim
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.,Laboratory of Cancer Biology and Genetics, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Walter F Bodmer
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Hernandez F, Conner BR, Richardson ME, LaDuca H, Chao E, Pesaran T, Karam R. Classification of the canonical splice alteration MUTYH c.934-2A>G is likely benign based on RNA and clinical data. Cold Spring Harb Mol Case Stud 2021; 8:mcs.a006152. [PMID: 34716202 PMCID: PMC8744492 DOI: 10.1101/mcs.a006152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022] Open
Abstract
MUTYH-associated polyposis (MAP) is an autosomal recessive disorder characterized by the development of multiple adenomatous colonic polyps and an increased lifetime risk of colorectal cancer. Germline biallelic pathogenic variants in MUTYH are responsible for MAP. The MUTYH c.934-2A > G (NM_001128425.1) variant, which is also known as c.850-2A > G for NM_001048174.2, has been identified in our laboratory in more than 800 patients, including homozygous and compound heterozygote carriers. The variant was initially classified as a variant of uncertain significance (VUS) because of lack of a MAP phenotype in biallelic carriers. In two unrelated female patients who were heterozygous carriers of this variant, further testing by RNA sequencing identified an aberrant transcript with a deletion of 9 nt at the start of exon 11 (MUTYH r.934_942del9). This event is predicted to lead to an in-frame loss of three amino acids in a noncritical domain of the protein. This was the only splice defect identified in these patients that was not present in the controls, and the aberrant transcript is derived exclusively from the variant allele, strongly supporting the cause of this splice defect as being the intronic variant, MUTYH c.934-2A > G. The splicing analysis demonstrating a small in-frame skipping of three amino acids in a noncritical domain, along with the absence of a MAP phenotype in our internal cohort of biallelic carriers, provides evidence that the variant is likely benign and not of clinical significance.
Collapse
|
14
|
Olkinuora AP, Peltomäki PT, Aaltonen LA, Rajamäki K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum Mol Genet 2021; 30:R206-R224. [PMID: 34329396 PMCID: PMC8490010 DOI: 10.1093/hmg/ddab208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Hereditary colorectal cancer (CRC) syndromes attributable to high penetrance mutations represent 9-26% of young-onset CRC cases. The clinical significance of many of these mutations is understood well enough to be used in diagnostics and as an aid in patient care. However, despite the advances made in the field, a significant proportion of familial and early-onset cases remains molecularly uncharacterized and extensive work is still needed to fully understand the genetic nature of CRC susceptibility. With the emergence of next-generation sequencing and associated methods, several predisposition loci have been unraveled, but validation is incomplete. Individuals with cancer-predisposing mutations are currently enrolled in life-long surveillance, but with the development of new treatments, such as cancer vaccinations, this might change in the not so distant future for at least some individuals. For individuals without a known cause for their disease susceptibility, prevention and therapy options are less precise. Herein, we review the progress achieved in the last three decades with a focus on how CRC predisposition genes were discovered. Furthermore, we discuss the clinical implications of these discoveries and anticipate what to expect in the next decade.
Collapse
Affiliation(s)
- Alisa P Olkinuora
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi T Peltomäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Mio C, Verrienti A, Pecce V, Sponziello M, Damante G. Rare germline variants in DNA repair-related genes are accountable for papillary thyroid cancer susceptibility. Endocrine 2021; 73:648-657. [PMID: 33821390 PMCID: PMC8325654 DOI: 10.1007/s12020-021-02705-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Understanding the molecular mechanisms underlying papillary thyroid cancer (PTC) proved to be vital not only for diagnostic purposes but also for tailored treatments. Despite the strong evidence of heritability, only a small subset of alterations has been implicated in PTC pathogenesis. To this reason, we used targeted next-generation sequencing (NGS) to identify candidate variants implicated in PTC pathogenesis, progression, and invasiveness. METHODS A total of 42 primary PTC tissues were investigated using a targeted next-generation sequencing (NGS) panel enlisting 47 genes involved in DNA repair and tumor progression. RESULTS We identified 57 point mutations in 78.5% of samples (n = 32). Thirty-two somatic mutations were identified exclusively in known thyroid cancer genes (BRAF, KRAS, NRAS, and TERT). Unpredictably, 45% of the all identified mutations (n = 25) resulted to be germline, most affecting DNA repair genes. Interestingly, none of the latter variants was in the main population databases. Following ACMG classification, 20% of pathogenic/likely pathogenic and 68% of variant of unknown significance were identified. CONCLUSIONS Overall, our results support the hypothesis that rare germline variants in DNA repair genes are accountable for PTC susceptibility. More data, including the segregation analysis in affected families, should be collected before definitely annotate these alterations and to establish their potential prognostic and treatment implications.
Collapse
Affiliation(s)
- Catia Mio
- Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Giuseppe Damante
- Department of Medicine, University of Udine, 33100, Udine, Italy
| |
Collapse
|
16
|
Terradas M, Mur P, Belhadj S, Woodward ER, Burghel GJ, Munoz-Torres PM, Quintana I, Navarro M, Brunet J, Lazaro C, Pineda M, Moreno V, Capella G, Evans DGR, Valle L. TP53, a gene for colorectal cancer predisposition in the absence of Li-Fraumeni-associated phenotypes. Gut 2021; 70:1139-1146. [PMID: 32998877 DOI: 10.1136/gutjnl-2020-321825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Germline TP53 pathogenic (P) variants cause Li-Fraumeni syndrome (LFS), an aggressive multitumor-predisposing condition. Due to the implementation of multigene panel testing, TP53 variants have been detected in individuals without LFS suspicion, for example, patients with colorectal cancer (CRC). We aimed to decipher whether these findings are the result of detecting the background population prevalence or the aetiological basis of CRC. DESIGN We analysed TP53 in 473 familial/early-onset CRC cases and evaluated the results together with five additional studies performed in patients with CRC (total n=6200). Control population and LFS data were obtained from Genome Aggregation Database (gnomAD V.2.1.1) and the International Agency for Research on Cancer (IARC) TP53 database, respectively. All variants were reclassified according to the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), following the ClinGen TP53 Expert Panel specifications. RESULTS P or likely pathogenic (LP) variants were identified in 0.05% of controls (n=27/59 095) and 0.26% of patients with CRC (n=16/6200) (p<0.0001) (OR=5.7, 95% CI 2.8 to 10.9), none of whom fulfilled the clinical criteria established for TP53 testing. This association was still detected when patients with CRC diagnosed at more advanced ages (>50 and>60 years) were excluded from the analysis to minimise the inclusion of variants caused by clonal haematopoiesis. Loss-of-function and missense variants were strongly associated with CRC as compared with controls (OR=25.44, 95% CI 6.10 to 149.03, for loss of function and splice-site alleles, and OR=3.58, 95% CI 1.46 to 7.98, for missense P or LP variants). CONCLUSION TP53 P variants should not be unequivocally associated with LFS. Prospective follow-up of carriers of germline TP53 P variants in the absence of LFS phenotypes will define how surveillance and clinical management of these individuals should be performed.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Pau M Munoz-Torres
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel Quintana
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Catalan Institute of Oncology, IDIBGi, Girona, Spain
| | - Conxi Lazaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Victor Moreno
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Gabriel Capella
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - D Gareth R Evans
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain .,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
17
|
Roy JCL, Vitalo A, Andrew MA, Mota-Silva E, Kovalenko M, Burch Z, Nhu AM, Cohen PE, Grabczyk E, Wheeler VC, Mouro Pinto R. Somatic CAG expansion in Huntington's disease is dependent on the MLH3 endonuclease domain, which can be excluded via splice redirection. Nucleic Acids Res 2021; 49:3907-3918. [PMID: 33751106 PMCID: PMC8053082 DOI: 10.1093/nar/gkab152] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
Somatic expansion of the CAG repeat tract that causes Huntington's disease (HD) is thought to contribute to the rate of disease pathogenesis. Therefore, factors influencing repeat expansion are potential therapeutic targets. Genes in the DNA mismatch repair pathway are critical drivers of somatic expansion in HD mouse models. Here, we have tested, using genetic and pharmacological approaches, the role of the endonuclease domain of the mismatch repair protein MLH3 in somatic CAG expansion in HD mice and patient cells. A point mutation in the MLH3 endonuclease domain completely eliminated CAG expansion in the brain and peripheral tissues of a HD knock-in mouse model (HttQ111). To test whether the MLH3 endonuclease could be manipulated pharmacologically, we delivered splice switching oligonucleotides in mice to redirect Mlh3 splicing to exclude the endonuclease domain. Splice redirection to an isoform lacking the endonuclease domain was associated with reduced CAG expansion. Finally, CAG expansion in HD patient-derived primary fibroblasts was also significantly reduced by redirecting MLH3 splicing to the endogenous endonuclease domain-lacking isoform. These data indicate the potential of targeting the MLH3 endonuclease domain to slow somatic CAG repeat expansion in HD, a therapeutic strategy that may be applicable across multiple repeat expansion disorders.
Collapse
Affiliation(s)
- Jennie C L Roy
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Antonia Vitalo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Marissa A Andrew
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eduarda Mota-Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marina Kovalenko
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zoe Burch
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anh M Nhu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.,Center for Reproductive Genomics, Cornell University, Ithaca, NY 14853, USA
| | - Ed Grabczyk
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Vanessa C Wheeler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo Mouro Pinto
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
18
|
Djursby M, Madsen MB, Frederiksen JH, Berchtold LA, Therkildsen C, Willemoe GL, Hasselby JP, Wikman F, Okkels H, Skytte AB, Nilbert M, Wadt K, Gerdes AM, van Overeem Hansen T. New Pathogenic Germline Variants in Very Early Onset and Familial Colorectal Cancer Patients. Front Genet 2020; 11:566266. [PMID: 33193653 PMCID: PMC7541943 DOI: 10.3389/fgene.2020.566266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
A genetic diagnosis facilitates personalized cancer treatment and clinical care of relatives at risk, however, although 25% of colorectal cancer cases are familial, around 95% of the families are genetically unresolved. In this study, we performed gene panel analysis on germline DNA of 32 established or candidate colorectal cancer predisposing genes in 149 individuals from either families with an accumulation of colorectal cancers or families with only one sporadic case of very early onset colorectal cancer (≤40 years at diagnosis). We identified pathogenic or likely pathogenic genetic variants in 10.1% of the participants in genes such as APC, POLE, MSH2 or PMS2. The MSH2 variant, c.2168C>T, p.(Ser723Phe) was previously described as a variant of unknown significance, but we have now reclassified it to be likely pathogenic. The POLE variant, c.1089C>A, p.(Asn363Lys) was identified in a patient with three metachronous colorectal cancers from age 28 and turned out to be de novo. One pathogenic PMS2 variant was novel. We also identified a number of highly interesting variants of unknown significance in APC, BUB1, TP53 and RPS20. The RPS20 variant is novel and was found in a large Amsterdam I positive family with a multi tumor phenotype including 12 cases of CRC from as early as age 24. This variant was found to segregate with cancer in the family and multiple in silico tools predict it to be pathogenic. Our data further support the shift from phenotypic-based cancer panels to large panels including all established genes involved in hereditary cancer syndromes or (targeted) whole genome sequencing. Additionally, identification of a likely disease-predisposing variant in RPS20 expands the phenotypic spectrum of RPS20-related cancers and emphasize that this gene is relevant to include in colorectal cancer gene panels.
Collapse
Affiliation(s)
- Malene Djursby
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Majbritt B Madsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane H Frederiksen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lukas A Berchtold
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina Therkildsen
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Gro L Willemoe
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane P Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Friedrik Wikman
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Okkels
- Section of Molecular Diagnostics, Department of Clinical Chemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Anne-Bine Skytte
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Mef Nilbert
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
19
|
Belhadj S, Terradas M, Munoz-Torres PM, Aiza G, Navarro M, Capellá G, Valle L. Candidate genes for hereditary colorectal cancer: Mutational screening and systematic review. Hum Mutat 2020; 41:1563-1576. [PMID: 32449991 DOI: 10.1002/humu.24057] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Genome-wide approaches applied for the identification of new hereditary colorectal cancer (CRC) genes, identified several potential causal genes, including RPS20, IL12RB1, LIMK2, POLE2, MRE11, POT1, FAN1, WIF1, HNRNPA0, SEMA4A, FOCAD, PTPN12, LRP6, POLQ, BLM, MCM9, and the epigenetic inactivation of PTPRJ. Here we attempted to validate the association between variants in these genes and nonpolyposis CRC by performing a mutational screening of the genes and PTPRJ promoter methylation analysis in 473 familial/early-onset CRC cases, a systematic review of the published cases, and assessment of allele frequencies in control population. In the studied cohort, 24 (5%) carriers of (predicted) deleterious variants in the studied genes and no constitutional PTPRJ epimutations were identified. Assessment of allele frequencies in controls compared with familial/early-onset patients with CRC showed association with increased nonpolyposis CRC risk of disruptive variants in RPS20, IL12RB1, POLE2, MRE11 and POT1, and of FAN1 c.149T>G (p.Met50Arg). Lack of association was demonstrated for LIMK2, PTPN12, LRP6, PTPRJ, POLQ, BLM, MCM9 and FOCAD variants. Additional studies are required to provide conclusive evidence for SEMA4A, WIF1, HNRNPA0 c.-110G>C, and FOCAD large deletions.
Collapse
Affiliation(s)
- Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Pau M Munoz-Torres
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
20
|
Terradas M, Capellá G, Valle L. Dominantly Inherited Hereditary Nonpolyposis Colorectal Cancer Not Caused by MMR Genes. J Clin Med 2020; 9:jcm9061954. [PMID: 32585810 PMCID: PMC7355797 DOI: 10.3390/jcm9061954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
In the past two decades, multiple studies have been undertaken to elucidate the genetic cause of the predisposition to mismatch repair (MMR)-proficient nonpolyposis colorectal cancer (CRC). Here, we present the proposed candidate genes according to their involvement in specific pathways considered relevant in hereditary CRC and/or colorectal carcinogenesis. To date, only pathogenic variants in RPS20 may be convincedly linked to hereditary CRC. Nevertheless, accumulated evidence supports the involvement in the CRC predisposition of other genes, including MRE11, BARD1, POT1, BUB1B, POLE2, BRF1, IL12RB1, PTPN12, or the epigenetic alteration of PTPRJ. The contribution of the identified candidate genes to familial/early onset MMR-proficient nonpolyposis CRC, if any, is extremely small, suggesting that other factors, such as the accumulation of low risk CRC alleles, shared environmental exposures, and/or gene-environmental interactions, may explain the missing heritability in CRC.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-260-7145
| |
Collapse
|
21
|
Bai H, Wang R, Cheng W, Shen Y, Li H, Xia W, Ding Z, Zhang Y. Evaluation of Concordance Between Deficient Mismatch Repair and Microsatellite Instability Testing and Their Association with Clinicopathological Features in Colorectal Cancer. Cancer Manag Res 2020; 12:2863-2873. [PMID: 32425600 PMCID: PMC7187941 DOI: 10.2147/cmar.s248069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Background Microsatellite instability (MSI) is one of the most important molecular characteristics of colorectal cancer (CRC), which mainly results from defective DNA mismatch repair (MMR). This study was performed to investigate the concordance between deficient MMR and MSI testing, and to evaluate the association of these two results with clinicopathological characteristics in Chinese CRC patients. Methods A total of 738 CRC patients were included. Tumor tissues and paired peripheral blood specimens were obtained. Screening for MMR was investigated using immunohistochemical (IHC) technique, and multiple polymerase chain reaction-capillary electrophoresis (PCR-CE) method was performed to detect the MSI status. All clinicopathological data, immunohistochemistry and microsatellite instability analyses were then statistically analyzed. Results Of the 738 (17.75%) CRC patients, 131 expressed as deficient mismatch repair (dMMR) status, and postmeiotic segregation increased 2 (PMS2) deficiency was the most frequent deficiency among these four MMR proteins. MSI-high (MSI-H) status occurred in 74 of the 738 (10.03%) CRC patients, 55 of whom showed instability at all six mononucleotides repeat markers. dMMR was significantly associated with MSI-H and moderate concordance was observed between IHC and PCR-CE in evaluating deficient MMR/MSI through Kappa test. Statistically, dMMR was significantly associated with younger age, right-sided colon and poor differentiation. MSI-H was associated with younger age, right-sided colon, poor differentiation, mucinous type and tumor, node, metastasis (TNM) stage II. Conclusion A moderate concordance between deficient MMR and MSI testing indicates that both IHC and PCR-CE methods should be routinely tested to provide reliable data for clinical treatment decisions.
Collapse
Affiliation(s)
- Huili Bai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Rong Wang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Laboratory Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan, People's Republic of China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yifan Shen
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haijun Li
- Department of Laboratory Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan, People's Republic of China
| | - Wei Xia
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhenglin Ding
- Department of Laboratory Medicine, The People's Hospital of Nanchuan, Chongqing, People's Republic of China
| | - Yuhong Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
22
|
Kastrinos F, Samadder NJ, Burt RW. Use of Family History and Genetic Testing to Determine Risk of Colorectal Cancer. Gastroenterology 2020; 158:389-403. [PMID: 31759928 DOI: 10.1053/j.gastro.2019.11.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
Approximately 35% of patients with colorectal cancer (CRC) have a family history of the disease attributed to genetic factors, common exposures, or both. Some families with a history of CRC carry genetic variants that cause CRC with high or moderate penetrance, but these account for only 5% to 10% of CRC cases. Most families with a history of CRC and/or adenomas do not carry genetic variants associated with cancer syndromes; this is called common familial CRC. Our understanding of familial predisposition to CRC and cancer syndromes has increased rapidly due to advances in next-generation sequencing technologies. As a result, there has been a shift from genetic testing for specific inherited cancer syndromes based on clinical criteria alone, to simultaneous testing of multiple genes for cancer-associated variants. We summarize current knowledge of common familial CRC, provide an update on syndromes associated with CRC (including the nonpolyposis and polyposis types), and review current recommendations for CRC screening and surveillance. We also provide an approach to genetic evaluation and testing in clinical practice. Determination of CRC risk based on family cancer history and results of genetic testing can provide a personalized approach to cancer screening and prevention, with optimal use of colonoscopy to effectively decrease CRC incidence and mortality.
Collapse
Affiliation(s)
- Fay Kastrinos
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York; Division of Digestive and Liver Diseases, Columbia University Irving Medical Center and the Vagelos College of Physicians and Surgeons, New York, New York.
| | - N Jewel Samadder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona
| | - Randall W Burt
- Department of Gastroenterology, University of Utah, Salt Lake City, Utah; Emeritus Professor of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
23
|
Al-Shaheri FN, Al-Shami KM, Gamal EH, Mahasneh AA, Ayoub NM. Association of DNA repair gene polymorphisms with colorectal cancer risk and treatment outcomes. Exp Mol Pathol 2019; 113:104364. [PMID: 31881200 DOI: 10.1016/j.yexmp.2019.104364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common carcinoma worldwide. Despite the progress in screening and treatment, CRC remains a leading cause of cancer-related mortality. Alterations to normal nucleic acid processing may drive neoplastic transformation of colorectal epithelium. DNA repair machinery performs an essential function in the protection of genome by reducing the number of genetic polymorphisms/variations that may drive carcinogenicity. Four essential DNA repair systems are known which include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). Polymorphisms of DNA repair genes have been shown to influence the risk of cancer development as well as outcomes of treatment. Several studies demonstrated the association between genetic polymorphism of DNA repair genes and increased risk of CRC in different populations. In this review, we have summarized the impact of DNA repair gene polymorphisms on risk of CRC development and treatment outcomes. Advancements of the current understanding for the impact of DNA repair gene polymorphisms on the risk and treatment of CRC may support diagnostic and predictive roles in patients with CRC.
Collapse
Affiliation(s)
- Fawaz N Al-Shaheri
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), ImNeuenheimer Feld 580, 69120 Heidelberg, Germany; Medical Faculty Heidelberg, University of Heidelberg, ImNeuenheimer Feld 672, 69120 Heidelberg, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, 720 South Donahue Drive, Auburn, Alabama 36849, United States of America; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Eshrak H Gamal
- Department of Oncology, Collage of Medicine, Bonn University, Germany; Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | - Amjad A Mahasneh
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
24
|
Chang SC, Lan YT, Lin PC, Yang SH, Lin CH, Liang WY, Chen WS, Jiang JK, Lin JK. Patterns of germline and somatic mutations in 16 genes associated with mismatch repair function or containing tandem repeat sequences. Cancer Med 2019; 9:476-486. [PMID: 31769227 PMCID: PMC6970039 DOI: 10.1002/cam4.2702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/19/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We assumed that targeted next-generation sequencing (NGS) of mismatch repair-associated genes could improve the detection of driving mutations in colorectal cancers (CRC) with microsatellite instability (MSI) and microsatellite alterations at selected tetranucleotide repeats (EMAST) and clarify the somatic mutation patterns of CRC subtypes. MATERIAL AND METHODS DNAs from tumors and white blood cells were obtained from 81 patients with EMAST(+)/MSI-high (MSI-H), 78 patients with EMAST(+)/microsatellite stable (MSS), and 72 patients with EMAST(-)/MSI-H. The germline and somatic mutations were analyzed with a 16-genes NGS panel. RESULTS In total, 284 germline mutations were identified in 161 patients. The most common mutations were in EPCAM (24.8%), MSH6 (24.2%), MLH1 (21.7%), and AXIN2 (21.7%). Germline mutations of AXIN2, POLE, POLD1, and TGFBR2 also resulted in EMAST and MSI. EMAST(+)/MSI-H tumors had a significant higher mutation number (205.9 ± 95.2 mut/MB) than tumors that were only EMAST(+) or MSI-H (118.6 ± 64.2 and 106.2 ± 54.5 mut/MB, respectively; both P < .001). In patients with AXIN2 germline mutations, the number of pathological somatic mutations in the tumors was significantly higher than those without AXIN2 germline mutations (176.7 ± 94.2 mut/MB vs 139.6 ± 85.0 mut/MB, P = .002). CONCLUSION Next-generation sequencing could enhance the detection of familial CRC. The somatic mutation burden might result from not only the affected genes in germline mutations but also through the dysfunction of downstream effectors. The AXIN2 gene might associate with hypermutation in tumors. Further in vitro experiments to confirm the causal relationship is deserved.
Collapse
Affiliation(s)
- Shih-Ching Chang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Tzu Lan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ching Lin
- Department of Clinical Pathology, Yang-Ming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Health and Welfare, University of Taipei, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chien-Hsing Lin
- Division of Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Yi Liang
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Shone Chen
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Kou Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
25
|
Liu GC, Liu RY, Yan JP, An X, Jiang W, Ling YH, Chen JW, Bei JX, Zuo XY, Cai MY, Liu ZX, Zuo ZX, Liu JH, Pan ZZ, Ding PR. The Heterogeneity Between Lynch-Associated and Sporadic MMR Deficiency in Colorectal Cancers. J Natl Cancer Inst 2019; 110:975-984. [PMID: 29471527 DOI: 10.1093/jnci/djy004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/04/2018] [Indexed: 11/12/2022] Open
Abstract
Background Previous studies demonstrated that prognosis of germline deficiency in mismatch repair protein (dMMR) was different from that of sporadic dMMR. The underlying mechanism has not been studied. Methods From a prospectively maintained database, we collected dMMR colorectal cancer (CRC) patients identified by postoperative immunohistochemistry screening. According to genetic test, patients were grouped as Lynch-associated or sporadic dMMR. We compared the clinical-pathological features, prognosis, and immunoreactive differences between the two groups. By whole-exome sequencing and neoantigen detection pipeline, mutational frequencies and neoantigen burdens were also compared. All statistical tests were two-sided. Results Sixty-seven sporadic dMMR and 85 Lynch-associated CRC patients were included in the study. Sporadic dMMR patients were older (P < .001) and their tumors were poorly differentiated (P = .03). The survival was better in the Lynch-associated group (P = .001). After adjustment, the difference still remained statistically significant (hazard ratio = 0.29, 95% confidence interval = 0.09 to 0.95, P = .04). The scores of Crohn's-like reaction (CRO; P < .001), immunoreactions in the invasive margin (IM; P = .01), tumor stroma (TS; P = .009), and cancer nest (CN; P = .02) of the Lynch-associated group were statistically significantly higher. The numbers of CD3+, CD8+, Foxp3+ tumor-infiltrating lymphocytes (TILs) in IM; CD3+, CD4+ TILs in TS; and CD3+, CD4+, CD8+ TILs in CN were statistically significantly higher in Lynch-associated dMMR patients. Based on the 16 patients who under went whole-exome sequencing, there were also more somatic mutations and neoantigen burdens in the Lynch-associated group compared with the sporadic dMMR group (439/pt vs 68/pt, P = .006; 628/pt vs 97/pt, P = .009). Conclusions There are heterogeneities in dMMR CRCs. Lynch-associated dMMR patients present with more somatic mutations and neoantigens compared with sporadic dMMR, which probably results in stronger immunoreactions and survival improvement.
Collapse
Affiliation(s)
- Guo-Chen Liu
- Department of Gynecologic Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Ran-Yi Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Jun-Ping Yan
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, P. R. China
| | - Xin An
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Wu Jiang
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Yi-Hong Ling
- Department of Pathology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Jie-Wei Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Jin-Xin Bei
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Xiao-Yu Zuo
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Mu-Yan Cai
- Department of Pathology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Ze-Xian Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Zhi-Xiang Zuo
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Ji-Hong Liu
- Department of Gynecologic Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Zhi-Zhong Pan
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Pei-Rong Ding
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
26
|
Niu X, Amendola LM, Hart R, Bennette CS, Heagerty P, Horike-Pyne M, Trinidad SB, Rosenthal EA, Comstock B, Nefcy C, Hisama FM, Bennett RL, Grady WM, Gallego CJ, Tarczy-Hornoch P, Fullerton SM, Burke W, Regier DA, Dorschner MO, Shirts BH, Robertson PD, Nickerson DA, Patrick DL, Jarvik GP, Veenstra DL. Clinical exome sequencing vs. usual care for hereditary colorectal cancer diagnosis: A pilot comparative effectiveness study. Contemp Clin Trials 2019; 84:105820. [PMID: 31400517 PMCID: PMC6741782 DOI: 10.1016/j.cct.2019.105820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/26/2019] [Accepted: 08/04/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Clinical exome sequencing (CES) provides the advantage of assessing genetic variation across the human exome compared to a traditional stepwise diagnostic approach or multi-gene panels. Comparative effectiveness research methods offer an approach to better understand the patient-centered and economic outcomes of CES. PURPOSE To evaluate CES compared to usual care (UC) in the diagnostic work-up of inherited colorectal cancer/polyposis (CRCP) in a randomized controlled trial (RCT). METHODS The primary outcome was clinical sensitivity for the diagnosis of inherited CRCP; secondary outcomes included psychosocial outcomes, family communication, and healthcare resource utilization. Participants were surveyed 2 and 4 weeks after results return and at 3-month intervals up to 1 year. RESULTS Evolving outcome measures and standard of care presented critical challenges. The majority of participants in the UC arm received multi-gene panels [94.73%]. Rates of genetic findings supporting the diagnosis of hereditary CRCP were 7.5% [7/93] vs. 5.4% [5/93] in the CES and UC arms, respectively (P = 0.28). Differences in privacy concerns after receiving CRCP results were identified (0.88 in UC vs 0.38 in CES, P = 0.05); however, healthcare resource utilization, family communication and psychosocial outcomes were similar between the two arms. More participants with positive results (17.7%) intended to change their life insurance 1 month after the first return visit compared to participants returned a variant of uncertain significance (9.1%) or negative result (4.8%) (P = 0.09). CONCLUSION Our results suggest that CES provides similar clinical benefits to multi-gene panels in the diagnosis of hereditary CRCP.
Collapse
Affiliation(s)
- Xin Niu
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Laura M Amendola
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Ragan Hart
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | | | - Patrick Heagerty
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Martha Horike-Pyne
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Susan B Trinidad
- Department of Bioethics and Humanities, University of Washington, Seattle, WA 98195, USA
| | - Elisabeth A Rosenthal
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Bryan Comstock
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Chris Nefcy
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Fuki M Hisama
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Robin L Bennett
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98101, USA
| | - Carlos J Gallego
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; Comparative Health Outcomes, Economics and Policy Institute (CHOICE), University of Washington, Seattle, WA 98195, USA
| | - Peter Tarczy-Hornoch
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Stephanie M Fullerton
- Department of Bioethics and Humanities, University of Washington, Seattle, WA 98195, USA
| | - Wylie Burke
- Department of Bioethics and Humanities, University of Washington, Seattle, WA 98195, USA
| | - Dean A Regier
- Canadian Centre for Applied Research in Cancer Control, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Michael O Dorschner
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brian H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Peggy D Robertson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Donald L Patrick
- Department of Health Services, University of Washington, Seattle, WA 98195, USA
| | - Gail P Jarvik
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - David L Veenstra
- Comparative Health Outcomes, Economics and Policy Institute (CHOICE), University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
27
|
Xavier A, Olsen MF, Lavik LA, Johansen J, Singh AK, Sjursen W, Scott RJ, Talseth‐Palmer BA. Comprehensive mismatch repair gene panel identifies variants in patients with Lynch-like syndrome. Mol Genet Genomic Med 2019; 7:e850. [PMID: 31297992 PMCID: PMC6687620 DOI: 10.1002/mgg3.850] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background Lynch‐like syndrome (LLS) represents around 50% of the patients fulfilling the Amsterdam Criteria II/revised Bethesda Guidelines, characterized by a strong family history of Lynch Syndrome (LS) associated cancer, where a causative variant was not identified during genetic testing for LS. Methods Using data extracted from a larger gene panel, we have analyzed next‐generation sequencing data from 22 mismatch repair (MMR) genes (MSH3, PMS1, MLH3, EXO1, POLD1, POLD3 RFC1, RFC2, RFC3, RFC4, RFC5, PCNA, LIG1, RPA1, RPA2, RPA3, POLD2, POLD4, MLH1, MSH2, MSH6, and PMS2) in 274 LLS patients. Detected variants were annotated and filtered using ANNOVAR and FILTUS software. Results Thirteen variants were revealed in MLH1, MSH2, and MSH6, all genes previously linked to LS. Five additional genes (EXO1, POLD1, RFC1, RPA1, and MLH3) were found to harbor 11 variants of unknown significance in our sample cohort, two of them being frameshift variants. Conclusion We have shown that other genes associated with the process of DNA MMR have a high probability of being associated with LLS families. These findings indicate that the spectrum of genes that should be tested when considering an entity like Lynch‐like syndrome should be expanded so that a more inclusive definition of this entity can be developed.
Collapse
Affiliation(s)
- Alexandre Xavier
- University of Newcastle Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Maren Fridtjofsen Olsen
- Faculty of Medicine and Health Sciences, Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Medical GeneticsSaint Olavs Hospital University HospitalTrondheimNorway
| | - Liss A. Lavik
- Department of Medical GeneticsSaint Olavs Hospital University HospitalTrondheimNorway
| | - Jostein Johansen
- Faculty of Medicine and Health Sciences, Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Ashish Kumar Singh
- Department of Medical GeneticsSaint Olavs Hospital University HospitalTrondheimNorway
| | - Wenche Sjursen
- Faculty of Medicine and Health Sciences, Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Medical GeneticsSaint Olavs Hospital University HospitalTrondheimNorway
| | - Rodney J. Scott
- University of Newcastle Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Pathology NorthHunter New England HealthNewcastleNew South WalesAustralia
| | - Bente A. Talseth‐Palmer
- University of Newcastle Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Møre and Romsdal Hospital Trust, Clinic Research and DevelopmentMoldeNorway
| |
Collapse
|
28
|
Development, technical validation, and clinical application of a multigene panel for hereditary gastrointestinal cancer and polyposis. TUMORI JOURNAL 2019; 105:338-352. [DOI: 10.1177/0300891619847085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Recent advances in technology and research are rapidly changing the diagnostic approach to hereditary gastrointestinal cancer (HGIC) syndromes. Although the practice of clinical genetics is currently transitioning from targeted criteria-based testing to multigene panels, important challenges remain to be addressed. The aim of this study was to develop and technically validate the performance of a multigene panel for HGIC. Methods: CGT-colon-G14 is an amplicon-based panel designed to detect single nucleotide variants and small insertions/deletions in 14 well-established or presumed high-penetrance genes involved in HGIC. The assay parameters tested were sensitivity, specificity, accuracy, and inter-run and intra-run reproducibility. Performance and clinical impact were determined using 48 samples of patients with suspected HGIC/polyposis previously tested with the targeted approach. Results: The CGT-colon-G14 panel showed 99.99% accuracy and 100% inter- and intra-run reproducibility. Moreover, panel testing detected 1 actionable pathogenic variant and 16 variants with uncertain clinical impact that were missed by the conventional approach because they were located in genes not previously analyzed. Conclusion: Introduction of the CGT-colon-G14 panel into the clinic could provide a higher diagnostic yield than a step-wise approach; however, results may not always be straightforward without the implementation of new genetic counseling models.
Collapse
|
29
|
Feliubadaló L, López-Fernández A, Pineda M, Díez O, Del Valle J, Gutiérrez-Enríquez S, Teulé A, González S, Stjepanovic N, Salinas M, Capellá G, Brunet J, Lázaro C, Balmaña J. Opportunistic testing of BRCA1, BRCA2 and mismatch repair genes improves the yield of phenotype driven hereditary cancer gene panels. Int J Cancer 2019; 145:2682-2691. [PMID: 30927264 DOI: 10.1002/ijc.32304] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/07/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022]
Abstract
Multigene panels provide a powerful tool for analyzing several genes simultaneously. We evaluated the frequency of pathogenic variants (PV) in customized predefined panels according to clinical suspicion by phenotype and compared it to the yield obtained in the analysis of our clinical research gene panel. We also investigated mutational yield of opportunistic testing of BRCA1/2 and mismatch repair (MMR) genes in all patients. A total of 1,205 unrelated probands with clinical suspicion of hereditary cancer were screened for germline mutations using panel testing. Overall, 1,048 females and 157 males were analyzed, mean age at cancer diagnosis was 48; 883 had hereditary breast/ovarian cancer-suspicion, 205 hereditary nonpolyposis colorectal cancer (HNPCC)-suspicion, 73 adenomatous-polyposis-suspicion and 44 with other/multiple clinical criteria. At least one PV was found in 150 probands (12%) analyzed by our customized phenotype-driven panel. Tumoral MMR deficiency predicted for the presence of germline MMR gene mutations in patients with HNPCC-suspicion (46/136 vs. 0/56 in patients with and without MMR deficiency, respectively). Opportunistic testing additionally identified five MSH6, one BRCA1 and one BRCA2 carriers (0.6%). The analysis of the extended 24-gene panel provided 25 additional PVs (2%), including in 4 out of 51 individuals harboring MMR-proficient colorectal tumors (2 CHEK2 and 2 ATM). Phenotype-based panels provide a notable rate of PVs with clinical actionability. Opportunistic testing of MMR and BRCA genes leads to a significant straightforward identification of MSH6, BRCA1 and BRCA2 mutation carriers, and endorses the model of opportunistic testing of genes with clinical utility within a standard genetic counseling framework.
Collapse
Affiliation(s)
- Lídia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | | | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology Barcelona, Barcelona, Spain.,Molecular and Clinical Genetics Area. Hospital Vall d'Hebron, Universitat Autonòma de Barcelona, Barcelona, Spain
| | - Jesús Del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | | | - Alex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Sara González
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Neda Stjepanovic
- High Risk and Familial Cancer, Vall d'Hebron Institute of Oncology, Barcelona.,Medical Oncology Department. Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mónica Salinas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGI, Girona, Spain.,Medical Sciences Department, School of Medicine, University of Girona, Girona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Judith Balmaña
- High Risk and Familial Cancer, Vall d'Hebron Institute of Oncology, Barcelona.,Medical Oncology Department. Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
30
|
Valle L, Vilar E, Tavtigian SV, Stoffel EM. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J Pathol 2019; 247:574-588. [PMID: 30584801 PMCID: PMC6747691 DOI: 10.1002/path.5229] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022]
Abstract
This article reviews genes and syndromes associated with predisposition to colorectal cancer (CRC), with an overview of gene variant classification. We include updates on the application of preventive and therapeutic measures, focusing on the use of non-steroidal anti-inflammatory drugs (NSAIDs) and immunotherapy. Germline pathogenic variants in genes conferring high or moderate risk to cancer are detected in 6-10% of all CRCs and 20% of those diagnosed before age 50. CRC syndromes can be subdivided into nonpolyposis and polyposis entities, the most common of which are Lynch syndrome and familial adenomatous polyposis, respectively. In addition to known and novel genes associated with highly penetrant CRC risk, identification of pathogenic germline variants in genes associated with moderate-penetrance cancer risk and/or hereditary cancer syndromes not traditionally linked to CRC may have an impact on genetic testing, counseling, and surveillance. The use of multigene panels in genetic testing has exposed challenges in the classification of variants of uncertain significance. We provide an overview of the main classification systems and strategies for improving these. Finally, we highlight approaches for integrating chemoprevention in the care of individuals with genetic predisposition to CRC and use of targeted agents and immunotherapy for treatment of mismatch repair-deficient and hypermutant tumors. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Eduardo Vilar
- Departments of Clinical Cancer Prevention, GI Medical Oncology and Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sean V. Tavtigian
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Elena M. Stoffel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
31
|
Valle L, de Voer RM, Goldberg Y, Sjursen W, Försti A, Ruiz-Ponte C, Caldés T, Garré P, Olsen MF, Nordling M, Castellvi-Bel S, Hemminki K. Update on genetic predisposition to colorectal cancer and polyposis. Mol Aspects Med 2019; 69:10-26. [PMID: 30862463 DOI: 10.1016/j.mam.2019.03.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
The present article summarizes recent developments in the characterization of genetic predisposition to colorectal cancer (CRC). The main themes covered include new hereditary CRC and polyposis syndromes, non-CRC hereditary cancer genes found mutated in CRC patients, strategies used to identify novel causal genes, and review of candidate genes that have been proposed to predispose to CRC and/or colonic polyposis. We provide an overview of newly described genes and syndromes associated with predisposition to CRC and polyposis, including: polymerase proofreading-associated polyposis, NTHL1-associated polyposis, mismatch repair gene biallelic inactivation-related adenomatous polyposis (including MSH3- and MLH3-associated polyposes), GREM1-associated mixed polyposis, RNF43-associated serrated polyposis, and RPS20 mutations as a rare cause of hereditary nonpolyposis CRC. The implementation of next generation sequencing approaches for genetic testing has exposed the presence of pathogenic germline variants in genes associated with hereditary cancer syndromes not traditionally linked to CRC, which may have an impact on genetic testing, counseling and surveillance. The identification of new hereditary CRC and polyposis genes has not deemed an easy endeavor, even though known CRC-related genes explain a small proportion of the estimated familial risk. Whole-genome sequencing may offer a technology for increasing this proportion, particularly if applied on pedigree data allowing linkage type of analysis. The final section critically surveys the large number of candidate genes that have been recently proposed for CRC predisposition.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| | - Richarda M de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yael Goldberg
- Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Trinidad Caldés
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Oncology Molecular Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Pilar Garré
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Oncology Molecular Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Maren F Olsen
- Department of Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Margareta Nordling
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sergi Castellvi-Bel
- Genetic Predisposition to Gastrointestinal Cancer Group, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Liu Q, Tan YQ. Advances in Identification of Susceptibility Gene Defects of Hereditary Colorectal Cancer. J Cancer 2019; 10:643-653. [PMID: 30719162 PMCID: PMC6360424 DOI: 10.7150/jca.28542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/08/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system worldwide, associated with hereditary genetic features. CRC with a Mendelian genetic predisposition accounts for approximately 5-10% of total CRC cases, mainly caused by a single germline mutation of a CRC susceptibility gene. The main subtypes of hereditary CRC are hereditary non-polyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP). With the rapid development of genetic testing methods, especially next-generation sequencing technology, multiple genes have now been confirmed to be pathogenic, including DNA repair or DNA mismatch repair genes such as APC, MLH1, and MSH2. Since familial CRC patients have poor clinical outcomes, timely clinical diagnosis and mutation screening of susceptibility genes will aid clinicians in establishing appropriate risk assessment and treatment interventions at a personal level. Here, we systematically summarize the susceptibility genes identified to date and the potential pathogenic mechanism of HNPCC and FAP development. Moreover, clinical recommendations for susceptibility gene screening, diagnosis, and treatment of HNPCC and FAP are discussed.
Collapse
Affiliation(s)
- Qiang Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan cancer Hospital and The Affiliated Cancer of Xiangya School of Medicine, Central South University, Changsha, China.,Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
33
|
Henriksson I, Henriksson K, Ehrencrona H, Gebre-Medhin S. Hereditary colorectal cancer diagnostics in southern Sweden: retrospective evaluation and future considerations with emphasis on Lynch syndrome. J Community Genet 2018; 10:259-266. [PMID: 30251116 PMCID: PMC6435770 DOI: 10.1007/s12687-018-0385-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/31/2018] [Indexed: 01/16/2023] Open
Abstract
Overlapping phenotypes between different hereditary colorectal cancer (CRC) syndromes together with a growing demand for cancer genetic testing and improved sequencing technology call for adjusted patient selection and adapted diagnostic routines. Here we present a retrospective evaluation of family history of cancer, laboratory diagnostic procedure, and outcome for 372 patients tested for Lynch syndrome (LS), i.e., the single most common hereditary cause of CRC. Based on number of affected family members and age at cancer diagnosis in families with genetically confirmed LS, we developed local patient selection criteria for a simplified one-step gene panel mutation screening strategy targeting also less common Mendelian CRC syndromes. Pros and cons of this strategy are discussed.
Collapse
Affiliation(s)
- Isabelle Henriksson
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Karin Henriksson
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Hans Ehrencrona
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Samuel Gebre-Medhin
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden. .,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden. .,Department of Clinical Genetics and Pathology, University Hospital, SE-221 85, Lund, Sweden.
| |
Collapse
|
34
|
Kidambi TD, Pedley C, Blanco A, Bergsland EK, Terdiman JP. Lower gastrointestinal neuroendocrine neoplasms associated with hereditary cancer syndromes: a case series. Fam Cancer 2018; 16:537-543. [PMID: 28283864 DOI: 10.1007/s10689-017-9979-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lower gastrointestinal (GI) neuroendocrine neoplasms (NENs) of the colon and rectum are uncommon and not traditionally associated with hereditary GI cancer syndromes. However, with widespread implementation of colorectal cancer screening programs, lower GI NENs are being identified with increasing frequency. We report the first case series of six patients with lower GI NENs who were diagnosed with hereditary GI cancer syndromes by germline testing. Two patients presented with poorly differentiated rectal neuroendocrine carcinoma (NECs) with colonic polyposis and were found to have Familial Adenomatous Polyposis and MYH-Associated Polyposis, respectively. Three patients with colorectal NENs (one well differentiated neuroendocrine tumor, NET, and two NECs), all of which displayed abnormal immunohistochemistry for mismatch repair proteins, were diagnosed with Lynch syndrome. One patient with a goblet cell carcinoid was diagnosed with CHEK2 mutations. All patients met genetic testing guidelines and the diagnosis was made utilizing next generation sequencing gene panel tests. Lower GI NETs should therefore be considered a potential hereditary GI cancer syndrome-associated malignancy in patients who otherwise meet criteria for genetic evaluation.
Collapse
Affiliation(s)
- Trilokesh D Kidambi
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, USA
| | - Christina Pedley
- Hereditary GI Cancer Prevention Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Amie Blanco
- Hereditary GI Cancer Prevention Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Emily K Bergsland
- Hereditary GI Cancer Prevention Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Division of Medical Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan P Terdiman
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, USA. .,Hereditary GI Cancer Prevention Program, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA. .,Clinical Medicine and Surgery, University of California, San Francisco, 1701 Divisadero, San Francisco, CA, 94115, USA.
| |
Collapse
|
35
|
Optimization of the diagnosis of inherited colorectal cancer using NGS and capture of exonic and intronic sequences of panel genes. Eur J Hum Genet 2018; 26:1597-1602. [PMID: 29967336 DOI: 10.1038/s41431-018-0207-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 11/08/2022] Open
Abstract
We have developed and validated for the diagnosis of inherited colorectal cancer (CRC) a massive parallel sequencing strategy based on: (i) fast capture of exonic and intronic sequences from ten genes involved in Mendelian forms of CRC (MLH1, MSH2, MSH6, PMS2, APC, MUTYH, STK11, SMAD4, BMPR1A and PTEN); (ii) sequencing on MiSeq and NextSeq 500 Illumina platforms; (iii) a bioinformatic pipeline that includes BWA-Picard-GATK (Broad Institute) and CASAVA (Illumina) in parallel for mapping and variant calling, Alamut Batch (Interactive BioSoftware) for annotation, CANOES for CNV detection and finally, chimeric reads analysis for the detection of other types of structural variants (SVs). Analysis of 1644 new index cases allowed the identification of 323 patients with class 4 or 5 variants, corresponding to a 20% disease-causing variant detection rate. This rate reached 37% in patients with Lynch syndrome, suspected on the basis of tumour analyses. Thanks to this strategy, we detected overlapping phenotypes (e.g., MUTYH biallelic mutations mimicking Lynch syndrome), mosaic alterations and complex SVs such as a genomic deletion involving the last BMPR1A exons and PTEN, an Alu insertion within MSH2 exon 8 and a mosaic deletion of STK11 exons 3-10. This strategy allows, in a single step, detection of all types of CRC gene alterations including SVs and provides a high disease-causing variant detection rate, thus optimizing the diagnosis of inherited CRC.
Collapse
|
36
|
Boland PM, Yurgelun MB, Boland CR. Recent progress in Lynch syndrome and other familial colorectal cancer syndromes. CA Cancer J Clin 2018; 68:217-231. [PMID: 29485237 PMCID: PMC5980692 DOI: 10.3322/caac.21448] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
The current understanding of familial colorectal cancer was limited to descriptions of affected pedigrees until the early 1990s. A series of landscape-altering discoveries revealed that there were distinct forms of familial cancer, and most were related to genes previously not known to be involved in human disease. This review largely focuses on advances in our understanding of Lynch syndrome because of the unique relationship of this disease to defective DNA mismatch repair and the clinical implications this has for diagnostics, prevention, and therapy. Recent advances have occurred in our understanding of the epidemiology of this disease, and the advent of broad genetic panels has altered the approach to germline and somatic diagnoses for all of the familial colorectal cancer syndromes. Important advances have been made toward a more complete mechanistic understanding of the pathogenesis of neoplasia in the setting of Lynch syndrome, and these advances have important implications for prevention. Finally, paradigm-shifting approaches to treatment of Lynch-syndrome and related tumors have occurred through the development of immune checkpoint therapies for hypermutated cancers. CA Cancer J Clin 2018;68:217-231. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Patrick M Boland
- Assistant Professor, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY
| | - Matthew B Yurgelun
- Assistant Professor of Medicine, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - C Richard Boland
- Professor, Department of Medicine, University of California at San Diego School of Medicine, San Diego, CA
| |
Collapse
|
37
|
Abstract
Background Identification of BRCA mutations in breast cancer (BC) patients influences treatment and survival and may be of importance for their relatives. Testing is often restricted to women fulfilling high-risk criteria. However, there is limited knowledge of the sensitivity of such a strategy, and of the clinical aspects of BC caused by BRCA mutations in less selected BC cohorts. The aim of this report was to address these issues by evaluating the results of BRCA testing of BC patients in South-Eastern Norway. Methods 1371 newly diagnosed BC patients were tested with sequencing and Multi Ligation Probe Amplification (MLPA). Prevalence of mutations was calculated, and BC characteristics among carriers and non-carriers compared. Sensitivity and specificity of common guidelines for BRCA testing to identify carriers was analyzed. Number of identified female mutation positive relatives was evaluated. Results A pathogenic BRCA mutation was identified in 3.1%. Carriers differed from non-carriers in terms of age at diagnosis, family history, grade, ER/PR-status, triple negativity (TNBC) and Ki67, but not in HER2 and TNM status. One mutation positive female relative was identified per mutation positive BC patient. Using age of onset below 40 or TNBC as criteria for testing identified 32-34% of carriers. Common guidelines for testing identified 45-90%, and testing all below 60 years identified 90%. Thirty-seven percent of carriers had a family history of cancer that would have qualified for predictive BRCA testing. A Variant of Uncertain Significance (VUS) was identified in 4.9%. Conclusions Mutation positive BC patients differed as a group from mutation negative. However, the commonly used guidelines for testing were insufficient to detect all mutation carriers in the BC cohort. Thirty-seven percent had a family history of cancer that would have qualified for predictive testing before they were diagnosed with BC. Based on our combined observations, we suggest it is time to discuss whether all BC patients should be offered BRCA testing, both to optimize treatment and improve survival for these women, but also to enable identification of healthy mutation carriers within their families. Health services need to be aware of referral possibility for healthy women with cancer in their family. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3422-2) contains supplementary material, which is available to authorized users.
Collapse
|