1
|
Yang D, Huang H, Zeng T, Wang L, Ying C, Chen X, Zhou X, Sun F, Chen Y, Li S, Wang B, Wu S, Xie F, Cen Z, Luo W. Unveiling distinct clinical manifestations of primary familial brain calcifications in Asian and European patients: A study based on 10-year individual-level data. Parkinsonism Relat Disord 2025; 132:107290. [PMID: 39827654 DOI: 10.1016/j.parkreldis.2025.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Primary Familial Brain Calcification (PFBC) can manifest clinically with a complex and heterogeneous array of symptoms, including parkinsonism, dysarthria, and cognitive impairment. However, the distinct presentations of PFBC in Asian and European populations remain unclear. METHODS We conducted a systematic search of PubMed for studies involving genetically confirmed PFBC patients. Demographic data, genetic information, radiological examinations, and clinical characteristics were extracted for each case. RESULTS The study included 120 publications and 564 genetically confirmed PFBC patients. Asian and European PFBC populations represented 54 % and 37 % of global patients, respectively. While calcification patterns showed no significant differences between Asian and European PFBC patients, European autosomal dominant PFBC variant carriers were more likely to exhibit clinical symptoms compared to their Asian counterparts (OR = 2.90, 95 % CI 1.55-5.60) and had an earlier estimated age of onset (median age 42 vs 58). CONCLUSION The interaction between regional differences and genetically determined calcification severity may collectively influence PFBC symptom progression. Future research should further explore the potential roles of gene modifiers, ethnic background, socioeconomic and environmental exposure factors underlying regional differences in PFBC progression.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenxin Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinbo Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangyue Sun
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yilin Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Wu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhao M, Cheng X, Chen L, Zeng YH, Lin KJ, Li YL, Zheng ZH, Huang XJ, Zuo DD, Guo XX, Guo J, He D, Liu Y, Lin Y, Wang C, Lv WQ, Su HZ, Yao XP, Ye ZL, Chen XH, Lu YQ, Huang CW, Yang G, Zhang YX, Lin MT, Wang N, Xiong ZQ, Chen WJ. Antisense oligonucleotides enhance SLC20A2 expression and suppress brain calcification in a humanized mouse model. Neuron 2024; 112:3278-3294.e7. [PMID: 39121859 DOI: 10.1016/j.neuron.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Primary familial brain calcification (PFBC) is a genetic neurological disease, yet no effective treatment is currently available. Here, we identified five novel intronic variants in SLC20A2 gene from six PFBC families. Three of these variants increased aberrant SLC20A2 pre-mRNA splicing by altering the binding affinity of splicing machineries to newly characterized cryptic exons, ultimately causing premature termination of SLC20A2 translation. Inhibiting the cryptic-exon incorporation with splice-switching ASOs increased the expression levels of functional SLC20A2 in cells carrying SLC20A2 mutations. Moreover, by knocking in a humanized SLC20A2 intron 2 sequence carrying a PFBC-associated intronic variant, the SLC20A2-KI mice exhibited increased inorganic phosphate (Pi) levels in cerebrospinal fluid (CSF) and progressive brain calcification. Intracerebroventricular administration of ASOs to these SLC20A2-KI mice reduced CSF Pi levels and suppressed brain calcification. Together, our findings expand the genetic etiology of PFBC and demonstrate ASO-mediated splice modulation as a potential therapy for PFBC patients with SLC20A2 haploinsufficiency.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xuewen Cheng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Lin Gang Laboratory, Shanghai 201602, China.
| | - Lei Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Heng Zeng
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Kai-Jun Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Yun-Lu Li
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ze-Hong Zheng
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xue-Jing Huang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Dan-Dan Zuo
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xin-Xin Guo
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Ying Liu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Yu Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Chong Wang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Wen-Qi Lv
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Hui-Zhen Su
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xiang-Ping Yao
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zi-Ling Ye
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xiao-Hong Chen
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ying-Qian Lu
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Chen-Wei Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yu-Xian Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min-Ting Lin
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Ning Wang
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zhi-Qi Xiong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai 201602, China.
| | - Wan-Jin Chen
- Department of Neurology, the First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| |
Collapse
|
3
|
Chen SY, Ho CJ, Lu YT, Lin CH, Lan MY, Tsai MH. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int J Mol Sci 2023; 24:10886. [PMID: 37446066 DOI: 10.3390/ijms241310886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Primary familial brain calcification (PFBC), also known as Fahr's disease, is a rare inherited disorder characterized by bilateral calcification in the basal ganglia according to neuroimaging. Other brain regions, such as the thalamus, cerebellum, and subcortical white matter, can also be affected. Among the diverse clinical phenotypes, the most common manifestations are movement disorders, cognitive deficits, and psychiatric disturbances. Although patients with PFBC always exhibit brain calcification, nearly one-third of cases remain clinically asymptomatic. Due to advances in the genetics of PFBC, the diagnostic criteria of PFBC may need to be modified. Hitherto, seven genes have been associated with PFBC, including four dominant inherited genes (SLC20A2, PDGFRB, PDGFB, and XPR1) and three recessive inherited genes (MYORG, JAM2, and CMPK2). Nevertheless, around 50% of patients with PFBC do not have pathogenic variants in these genes, and further PFBC-associated genes are waiting to be identified. The function of currently known genes suggests that PFBC could be caused by the dysfunction of the neurovascular unit, the dysregulation of phosphate homeostasis, or mitochondrial dysfunction. An improved understanding of the underlying pathogenic mechanisms for PFBC may facilitate the development of novel therapies.
Collapse
Affiliation(s)
- Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| |
Collapse
|
4
|
Sun H, Xu X, Luo J, Ma T, Cui J, Liu M, Xiong B, Zhu S, Liu JY. Mechanisms of PiT2-loop7 Missense Mutations Induced Pi Dyshomeostasis. Neurosci Bull 2023; 39:57-68. [PMID: 35713844 PMCID: PMC9849530 DOI: 10.1007/s12264-022-00893-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/14/2022] [Indexed: 01/25/2023] Open
Abstract
PiT2 is an inorganic phosphate (Pi) transporter whose mutations are linked to primary familial brain calcification (PFBC). PiT2 mainly consists of two ProDom (PD) domains and a large intracellular loop region (loop7). The PD domains are crucial for the Pi transport, but the role of PiT2-loop7 remains unclear. In PFBC patients, mutations in PiT2-loop7 are mainly nonsense or frameshift mutations that probably cause PFBC due to C-PD1131 deletion. To date, six missense mutations have been identified in PiT2-loop7; however, the mechanisms by which these mutations cause PFBC are poorly understood. Here, we found that the p.T390A and p.S434W mutations in PiT2-loop7 decreased the Pi transport activity and cell surface levels of PiT2. Furthermore, we showed that these two mutations attenuated its membrane localization by affecting adenosine monophosphate-activated protein kinase (AMPK)- or protein kinase B (AKT)-mediated PiT2 phosphorylation. In contrast, the p.S121C and p.S601W mutations in the PD domains did not affect PiT2 phosphorylation but rather impaired its substrate-binding abilities. These results suggested that missense mutations in PiT2-loop7 can cause Pi dyshomeostasis by affecting the phosphorylation-regulated cell-surface localization of PiT2. This study helps understand the pathogenesis of PFBC caused by PiT2-loop7 missense mutations and indicates that increasing the phosphorylation levels of PiT2-loop7 could be a promising strategy for developing PFBC therapies.
Collapse
Affiliation(s)
- Hao Sun
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xuan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Junyu Luo
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Tingbin Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaming Cui
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, HUST, Wuhan, 430030, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jing-Yu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
5
|
Cao C, Wang X, Zhao X. Early-Onset Diabetes Mellitus in Chromosome 8p11.2 Deletion Syndrome Combined With Becker Muscular Dystrophy - A Case Report. Front Endocrinol (Lausanne) 2022; 13:914863. [PMID: 35957837 PMCID: PMC9359072 DOI: 10.3389/fendo.2022.914863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chromosome 8p11.2 includes several key genes in development such as the FGFR1, ANK1, KAT6A, and SLC20A2 genes. Deletion of this fragment causes a contiguous gene syndrome. Currently, few cases of interstitial deletion of whole 8p11.2 have been reported. We report a rare case of 8p11.2 deletion syndrome with the unique phenotypes, presenting with early-onset diabetes. CASE DESCRIPTION A 20-year-old man with a 1-year history of diabetes mellitus was admitted to the Endocrinology Clinic. Physical examination revealed the dysmorphic facial features, and broad and foreshortened halluces. Laboratory examination indicated spherocytosis anemia, and hypogonadotropic hypogonadism. Bone mineral density analysis showed decreased bone density in the lumbar vertebrae. Brain CT showed calcification. Whole-exome sequencing revealed a 7.05-Mb deletion in 8p11 containing 43 OMIM genes, and a large in-frame deletion of exons 48-55 in the DMD gene. Metformin was given to the patient after which his blood glucose was well controlled. HCG was injected subcutaneously and was supplemented with calcium and vitamin D, which led to an improvement in the patient's quality of life. CONCLUSION We report a rare case of 8p11.2 deletion syndrome with unique phenotypes, and early-onset diabetes. It is challenging for endocrinologists to simultaneously reconcile a combination of these diseases across multiple disciplines. We discussed the influencing factors of early-onset diabetes in this patient and speculated that it was caused by complex interactions of known and unknown genetic backgrounds and environmental factors.
Collapse
|
6
|
Balck A, Schaake S, Kuhnke NS, Domingo A, Madoev H, Margolesky J, Dobricic V, Alvarez-Fischer D, Laabs BH, Kasten M, Luo W, Nicolas G, Marras C, Lohmann K, Klein C, Westenberger A. Genotype-Phenotype Relations in Primary Familial Brain Calcification: Systematic MDSGene Review. Mov Disord 2021; 36:2468-2480. [PMID: 34432325 DOI: 10.1002/mds.28753] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
This systematic MDSGene review covers individuals with confirmed genetic forms of primary familial brain calcification (PFBC) available in the literature. Data on 516 (47% men) individuals, carrying heterozygous variants in SLC20A2 (solute carrier family 20 member 2, 61%), PDGFB (platelet-derived growth factor subunit B, 12%), XPR1 (xenotropic and polytropic retrovirus receptor, 16%), or PDGFRB (platelet-derived growth factor receptor beta, 5%) or biallelic variants in MYORG (myogenesis-regulating glycosidase, 13%) or JAM2 (junctional adhesion molecule 2, 2%), were extracted from 93 articles. Nearly one-third of the mutation carriers were clinically unaffected. Carriers of PDGFRB variants were more likely to be clinically unaffected (~54%), and the penetrance of SLC20A2 and XPR1 variants (<70%) was lower in comparison to the remaining three genes (>85%). Among the 349 clinically affected patients, 27% showed only motor and 31% only nonmotor symptoms/signs, whereas the remaining 42% had a combination thereof. While parkinsonism and speech disturbance were the most frequently reported motor manifestations, cognitive deficits, headache, and depression were the major nonmotor symptoms/signs. The basal ganglia were always calcified, and the cerebellum, thalamus, and white matter contained calcifications in 58%, 53%, and 43%, respectively, of individuals. In autosomal-dominant PFBC, mutation severity influenced the number of calcified brain areas, which in turn correlated with the clinical status, whereby the risk of developing symptoms/signs more than doubled for each additional region with calcifications. Our systematic analysis provides the most comprehensive insight into genetic, clinical, and neuroimaging features of known PFBC forms, to date. In addition, it puts forth the penetrance estimates and newly discovered genotype-phenotype relations that will improve counseling of individuals with mutations in PFBC genes. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexander Balck
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany.,Department of Neurology, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Neele Sophie Kuhnke
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Aloysius Domingo
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Harutyun Madoev
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jason Margolesky
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Valerija Dobricic
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany.,Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Daniel Alvarez-Fischer
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Björn-Hergen Laabs
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany.,Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Gael Nicolas
- Department of Genetics and CNR-MAJ, Normandie University, UNIROUEN, Inserm, Rouen, France
| | - Connie Marras
- The Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
7
|
Shen Y, Shu S, Ren Y, Xia W, Chen J, Dong L, Ge H, Fan S, Shi L, Peng B, Zhang X. Case Report: Two Novel Frameshift Mutations in SLC20A2 and One Novel Splice Donor Mutation in PDGFB Associated With Primary Familial Brain Calcification. Front Genet 2021; 12:643452. [PMID: 34025715 PMCID: PMC8138311 DOI: 10.3389/fgene.2021.643452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Primary familial brain calcification (PFBC, OMIM#213600), also known as Fahr's disease, is characterized by bilateral and symmetric brain calcification in the basal ganglia (globus pallidus, caudate nucleus, and putamen), thalamus, subcortical white matter, and cerebellum. PFBC can be caused by loss-of-function mutations in any of the six known causative genes. The most common clinical manifestations include movement disorders, cognitive impairment, and neuropsychiatric signs that gradually emerge in middle-aged patients. To broaden the PFBC mutation spectrum, we examined nine members of a family with PFBC and two sporadic cases from clinical departments, and sequenced all PFBC-causative genes in the index case. Two novel frameshift mutations in SLC20A2 [NM_001257180.2; c.806delC, p.(Pro269Glnfs*49) and c.1154delG, p.(Ser385Ilefs*70)] and one novel splice donor site mutation (NM_002608.4, c.456+1G>C, r.436_456del) in PDGFB were identified in the patient cohort. c.806delC co-segregated with brain calcification and led to SLC20A2 haploinsufficiency among the affected family members. The c.456+1G>C mutation in PDGFB resulted in aberrant mRNA splicing, thereby forming mature transcripts containing an in-frame 21 base pair (bp) deletion, which might create a stably truncated protein [p.(Val146_Gln152del)] and exert a dominant negative effect on wild-type PDGFB. All three mutations were located in highly conserved regions among multiple species and predicted to be pathogenic, as evaluated by at least eight common genetic variation scoring systems. This study identified three novel mutations in SLC20A2 and PDGFB, which broadened and enriched the PFBC mutation spectrum.
Collapse
Affiliation(s)
- Yuqi Shen
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China
| | - Shi Shu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China.,Department of Neurology, Peking Union Medical College Hospital (PUMCH), CAMS&PUMC, Beijing, China
| | - Yaqiong Ren
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, PUMCH, CAMS&PUMC, Beijing, China
| | - Jianhua Chen
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), CAMS&PUMC, Beijing, China
| | - Liling Dong
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), CAMS&PUMC, Beijing, China
| | - Haijun Ge
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China
| | - Shiqi Fan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China
| | - Lei Shi
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China.,National Health Commission (NHC) and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Bin Peng
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), CAMS&PUMC, Beijing, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing, China.,National Health Commission (NHC) and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Su H, Chang C, Hao J, Xu X, Bao M, Luo S, Zhao C, Liu Q, Wang X, Zhou Z, Zhou H. Identification of Genomic Alterations of Perineural Invasion in Patients with Stage II Colorectal Cancer. Onco Targets Ther 2020; 13:11571-11582. [PMID: 33204110 PMCID: PMC7667198 DOI: 10.2147/ott.s264616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose The molecular mechanism of perineural invasion (PNI) in stage II colorectal cancer (CRC) remains not to be defined clearly. This study aims to identify the genomic aberrations related to PNI in stage II CRC. Patients and Methods Using array-based comparative genomic hybridization (array-CGH), primary tumor tissues and paracancerous normal tissues of stage II CRC with PNI and without PNI were analyzed. We identified genomic aberrations by using Genomic Workbench and MD-SeeGH and validated the aberrations of selected genes by real-time polymerase chain reaction (PCR). Gene ontology (GO) and pathway analysis were performed to determine the most likely biological effects of these genes. Results The most frequent gains in stage II CRC were at 7q11.21-q11.22, 8p11.21, 8p12-p11.23, 8q11.1-q11.22, 13q12.13-q12.2, and 20q11.21-q11.23 and the most frequent losses were at 17p13.1-p12, 8p23.2, and 118q11.2-q23. Four high-level amplifications at 8p11.23-p11.22, 18q21.1, 19q11-q12, and 20q11.21-q13.32 and homozygous deletions at 20p12.1 were discovered in Stage II CRC. Gains at 7q11.21-q22.1, 16p11.2, 17q23.3-q25.3, 19p13.3-p12, and 20p13-p11.1, and losses at 11q11-q12.1, 11p15.5-p15.1, 18p11.21, and 18q21.1-q23 were more commonly found in patients with PNI by frequency plot comparison together with detailed genomic analysis. It is also observed that gains at 8q11.1-q24.3, 9q13-q34.3, and 13q12.3-q13.1, and losses at 8p23.3-p12, 17p13.3-p11.2, and 21q22.12 occurred more frequently in patients without PNI. Further validation showed that the expression of FLT1, FBXW7, FGFR1, SLC20A2 and SERPINI1 was significantly up-regulated in the NPNI group compared to the PNI group. GO and pathway analysis revealed some genes enriched in specific pathways. Conclusion These involved genomic changes in the PNI of stage II CRC may be useful to reveal the mechanisms underlying PNI and provide candidate biomarkers.
Collapse
Affiliation(s)
- Hao Su
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chen Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Mandula Bao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Shou Luo
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chuanduo Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhixiang Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Haitao Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
9
|
Morris M, Kwon R, Chen L. Pediatric Idiopathic Basal Ganglia Calcification and Spherocytosis With Chromosome 8p11 Deletion. J Neuropathol Exp Neurol 2020; 79:238-241. [PMID: 31913475 DOI: 10.1093/jnen/nlz133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Indexed: 01/01/2023] Open
Abstract
Idiopathic basal ganglia calcification (IBGC), also known as Fahr disease, is a rare neurodegenerative disorder characterized by the accumulation of extensive parenchymal and vascular calcifications in the basal ganglia, with variable calcifications elsewhere in the brain. Typically, IBGC presents with neurologic and psychiatric symptoms in middle-aged adults. Recent genetic studies have identified alterations in 4 genes causing IBGC, including alterations in SLC20A2 on chromosome 8p11.2. Currently, there are no clinical descriptions of patients with IBGC occurring within the context of a complex genetic syndrome. Here, we present a case of pediatric 8p11 deletion with IBGC, hereditary spherocytosis, vitreoretinopathy, and focal cortical dysplasia. We review multiple cases of IBGC with pediatric onset due to SLC20A2 deletion in the literature, and raise the consideration of IBGC in the evaluation of pediatric patients with 8p11.2 deletion syndromes.
Collapse
Affiliation(s)
- Meaghan Morris
- From the Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Regina Kwon
- From the Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Liam Chen
- From the Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Detection of copy-number variations from NGS data using read depth information: a diagnostic performance evaluation. Eur J Hum Genet 2020; 29:99-109. [PMID: 32591635 DOI: 10.1038/s41431-020-0672-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
The detection of copy-number variations (CNVs) from NGS data is underexploited as chip-based or targeted techniques are still commonly used. We assessed the performances of a workflow centered on CANOES, a bioinformatics tool based on read depth information. We applied our workflow to gene panel (GP) and whole-exome sequencing (WES) data, and compared CNV calls to quantitative multiplex PCR of short fluorescent fragments (QMSPF) or array comparative genomic hybridization (aCGH) results. From GP data of 3776 samples, we reached an overall positive predictive value (PPV) of 87.8%. This dataset included a complete comprehensive QMPSF comparison of four genes (60 exons) on which we obtained 100% sensitivity and specificity. From WES data, we first compared 137 samples with aCGH and filtered comparable events (exonic CNVs encompassing enough aCGH probes) and obtained an 87.25% sensitivity. The overall PPV was 86.4% following the targeted confirmation of candidate CNVs from 1056 additional WES. In addition, our CANOES-centered workflow on WES data allowed the detection of CNVs with a resolution of single exons, allowing the detection of CNVs that were missed by aCGH. Overall, switching to an NGS-only approach should be cost-effective as it allows a reduction in overall costs together with likely stable diagnostic yields. Our bioinformatics pipeline is available at: https://gitlab.bioinfo-diag.fr/nc4gpm/canoes-centered-workflow .
Collapse
|
11
|
Cassinari K, Rovelet-Lecrux A, Tury S, Quenez O, Richard AC, Charbonnier C, Olaso R, Boland A, Deleuze JF, Besancenot JF, Delpont B, Pouliquen D, Lecoquierre F, Chambon P, Thauvin-Robinet C, Campion D, Frebourg T, Battini JL, Nicolas G. Haploinsufficiency of the Primary Familial Brain Calcification Gene SLC20A2 Mediated by Disruption of a Regulatory Element. Mov Disord 2020; 35:1336-1345. [PMID: 32506582 DOI: 10.1002/mds.28090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with diverse neuropsychiatric expression. Five genes were reported as PFBC causative when carrying pathogenic variants. Haploinsufficiency of SLC20A2, which encodes an inorganic phosphate importer, is a major cause of autosomal-dominant PFBC. However, PFBC remains genetically unexplained in a proportion of patients, suggesting the existence of additional genes or cryptic mutations. We analyzed exome sequencing data of 71 unrelated, genetically unexplained PFBC patients with the aim to detect copy number variations that may disrupt the expression of core PFBC-causing genes. METHODS After the identification of a deletion upstream of SLC20A2, we assessed its consequences on gene function by reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR), an ex vivo inorganic phosphate uptake assay, and introduced the deletion of a putative SLC20A2 enhancer mapping to this region in human embryonic kidney 293 (HEK293) cells by clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (Cas9). RESULTS The 8p11.21 deletion, segregating with PFBC in a family, mapped 35 kb upstream of SLC20A2. The deletion carriers/normal controls ratio of relative SLC20A2 mRNA levels was 60.2% (P < 0.001). This was comparable with that of patients carrying an SLC20A2 premature stop codon (63.4%; P < 0.001). The proband exhibited a 39.3% decrease of inorganic phosphate uptake in blood (P = 0.015). In HEK293 cells, we observed a 39.8% decrease in relative SLC20A2 mRNA levels after normalization on DNA copy number (P < 0.001). DISCUSSION We identified a deletion of an enhancer of SLC20A2 expression, with carriers showing haploinsufficiency in similar ranges to loss-of-function alleles, and we observed reduced mRNA levels after deleting this element in a cellular model. We propose a 3-step strategy to identify and easily assess the effect of such events. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kévin Cassinari
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Anne Rovelet-Lecrux
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Sandrine Tury
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Anne-Claire Richard
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Camille Charbonnier
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | | | - Benoit Delpont
- Department of Internal Medicine and Systemic Diseases, Dijon University Hospital, Dijon, France
| | - Dorothée Pouliquen
- Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - François Lecoquierre
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Pascal Chambon
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Christel Thauvin-Robinet
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France
- CHU Dijon Bourgogne, Unité Fonctionnelle "Innovation diagnostique dans les maladies rares," laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, Dijon, France
- Centre de Référence Maladies Rares "Déficiences Intellectuelles de causes rares," FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Dominique Campion
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
- Department of Research, Rouvray Psychiatric Hospital, Sotteville-les-Rouen, France
| | - Thierry Frebourg
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Jean-Luc Battini
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Gaël Nicolas
- Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW In the last 7 years, changes in five genes [SLC20A2, PDGFRB, PDGFB, XPR1, and MYORG] have been implicated in the pathogenesis of primary familial brain calcification (PFBC), allowing for genetic delineation of this phenotypically complex neurodegenerative disorder. This review explores how the ensuing plethora of reported PFBC patients and their disease-causing variants improved our understanding of disease, pathogenesis, clinical manifestation, and penetrance. RECENT FINDINGS In PFBC patients, pathogenic changes have been most frequently described in SLC20A2, accounting for approximately the same number of patients as the variants in the other four PFBC genes combined. There is no appreciable relationship between any combination of the following three variables: the type of disease-causing change, the pattern or extent of calcifications, and the presence or nature of clinical manifestation in PFBC patients. Nevertheless, elucidation of underlying genetic factors provided important recent insights into the pathogenic mechanisms of PFBC, which collectively point toward a compromised neurovascular unit. SUMMARY The ongoing clinical and molecular research increases our understanding of PFBC facilitating diagnosis and identifying potential therapeutic targets for this multifaceted and likely underdiagnosed condition.
Collapse
|
13
|
Iancu D, Ashton E. Inherited Renal Tubulopathies-Challenges and Controversies. Genes (Basel) 2020; 11:genes11030277. [PMID: 32150856 PMCID: PMC7140864 DOI: 10.3390/genes11030277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 12/23/2022] Open
Abstract
Electrolyte homeostasis is maintained by the kidney through a complex transport function mostly performed by specialized proteins distributed along the renal tubules. Pathogenic variants in the genes encoding these proteins impair this function and have consequences on the whole organism. Establishing a genetic diagnosis in patients with renal tubular dysfunction is a challenging task given the genetic and phenotypic heterogeneity, functional characteristics of the genes involved and the number of yet unknown causes. Part of these difficulties can be overcome by gathering large patient cohorts and applying high-throughput sequencing techniques combined with experimental work to prove functional impact. This approach has led to the identification of a number of genes but also generated controversies about proper interpretation of variants. In this article, we will highlight these challenges and controversies.
Collapse
Affiliation(s)
- Daniela Iancu
- UCL-Centre for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK
- Correspondence: ; Tel.: +44-2381204172; Fax: +44-020-74726476
| | - Emma Ashton
- Rare & Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children National Health Service Foundation Trust, Levels 4-6 Barclay House 37, Queen Square, London WC1N 3BH, UK;
| |
Collapse
|
14
|
Giorgio E, Garelli E, Carando A, Bellora S, Rubino E, Quarello P, Sirchia F, Marrama F, Gallone S, Grosso E, Pasini B, Massa R, Brussino A, Brusco A. Design of a multiplex ligation-dependent probe amplification assay for SLC20A2: identification of two novel deletions in primary familial brain calcification. J Hum Genet 2019; 64:1083-1090. [PMID: 31501477 DOI: 10.1038/s10038-019-0668-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023]
Abstract
Primary familial brain calcification (PFBC) is a rare disease characterized by brain calcifications that mainly affect the basal ganglia, thalamus, and cerebellum. Among the four autosomal-dominant genes known to be associated with the disease, SLC20A2 pathogenic variants are the most common, accounting for up to 40% of PFBC dominant cases; variants include both point mutations, small insertions/deletions and intragenic deletions. Over the last 7 years, we have collected a group of 50 clinically diagnosed PFBC patients, who were screened for single nucleotide changes and small insertions/deletions in SLC20A2 by Sanger sequencing. We found seven pathogenic/likely pathogenic variants: four were previously described by our group, and three are reported here (c.303delG, c.21delG, and c.1795-1G>A). We developed and validated a synthetic Multiplex Ligation-dependent Probe Amplification (MLPA) assay for SLC20A2 deletions, covering all ten coding exons and the 5' UTR (SLC20A2-MLPA). Using this method, we screened a group of 43 PFBC-patients negative for point mutations and small insertions/deletions, and identified two novel intragenic deletions encompassing exon 6 NC_000008.10:g.(42297172_42302163)_(423022281_42317413)del, and exons 7-11 including the 3'UTR NC_000008.10:g.(?_42275320)_(42297172_42302163)del. Overall, SLC20A2 deletions may be highly underestimated PFBC cases, and we suggest MLPA should be included in the routine molecular test for PFBC diagnosis.
Collapse
Affiliation(s)
- Elisa Giorgio
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Emanuela Garelli
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Adriana Carando
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Stefania Bellora
- Pediatric Neuropsychiatry Unit, "SS Antonio e Biagio e Cesare Arrigo" Hospital, Alessandria, Italy
| | - Elisa Rubino
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paola Quarello
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Fabio Sirchia
- Institute for Maternal and Child Health IRCCS Burlo Garofalo, Trieste, Italy
| | - Federico Marrama
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Salvatore Gallone
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Enrico Grosso
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Torino, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Roberto Massa
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy. .,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy.
| |
Collapse
|