1
|
Zhu H, Zhang J, Rao S, Durbin MD, Li Y, Lang R, Liu J, Xiao B, Shan H, Meng Z, Wang J, Tang X, Shi Z, Cox LL, Zhao S, Ware SM, Tan TY, de Silva M, Gallacher L, Liu T, Mi J, Zeng C, Zheng HF, Zhang Q, Antonarakis SE, Cox TC, Zhang YB. Common cis-regulatory variation modifies the penetrance of pathogenic SHROOM3 variants in craniofacial microsomia. Genome Res 2025; 35:1065-1079. [PMID: 40234029 PMCID: PMC12047249 DOI: 10.1101/gr.280047.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025]
Abstract
Pathogenic coding variants have been identified in thousands of genes, yet the mechanisms underlying the incomplete penetrance in individuals carrying these variants are poorly understood. In this study, in a cohort of 2009 craniofacial microsomia (CFM) patients of Chinese ancestry and 2625 Han Chinese controls, we identified multiple predicted pathogenic coding variants in SHROOM3 in both CFM patients and healthy individuals. We found that the penetrance of CFM correlates with specific haplotype combinations containing likely pathogenic-coding SHROOM3 variants and CFM-associated expression quantitative trait loci (eQTLs) of SHROOM3 expression. Further investigations implicate specific eQTL combinations, such as rs1001322 or rs344131, in combination with other significant CFM-associated eQTLs, which we term combined eQTL phenotype modifiers (CePMods). We additionally show that rs344131, located within a regulatory enhancer region of SHROOM3, demonstrates allele-specific effects on enhancer activity and thus impacts expression levels of the associated SHROOM3 allele harboring any rare coding variant. Our findings also suggest that CePMods may serve as pathogenic determinants, even in the absence of rare deleterious coding variants in SHROOM3 This highlights the critical role of allelic expression in determining the penetrance and severity of craniofacial abnormalities, including microtia and facial asymmetry. Additionally, using quantitative phenotyping, we demonstrate that both microtia and facial asymmetry are present in two separate Shroom3 mouse models, the severity of which is dependent on gene dosage. Our study establishes SHROOM3 as a likely pathogenic gene for CFM and demonstrates eQTLs as determinants of modified penetrance in the manifestation of the disease in individuals carrying likely pathogenic rare coding variants.
Collapse
Affiliation(s)
- Hao Zhu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jiao Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Soumya Rao
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Matthew D Durbin
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Ying Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100051, China
| | - Ruirui Lang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jiqiang Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Baichuan Xiao
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Hailin Shan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziqiu Meng
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Jinmo Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xiaokai Tang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhenni Shi
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Liza L Cox
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Shouqin Zhao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100051, China
| | - Stephanie M Ware
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Tiong Y Tan
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Michelle de Silva
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Lyndon Gallacher
- Victorian Clinical Genetics Service, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Victoria 3052, Australia
| | - Ting Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing 400000, China
| | - Jie Mi
- Center for Non-Communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Changqing Zeng
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hou-Feng Zheng
- Center for Health and Data Science (CHDS), the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Diseases & Population (DaP) Geninfo Laboratory, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Qingguo Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland;
- Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
- iGE3 Institute of Genetics and Genomes in Geneva, Geneva 1211, Switzerland
| | - Timothy C Cox
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA;
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | - Yong-Biao Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China;
- Key Laboratory of Big Data-Based Precision Medicine and Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing 100191, China
- National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Beihang University, Beijing 100083, China
| |
Collapse
|
2
|
Yoon J, Sun J, Lee M, Hwang YS, Daar IO. Wnt4 and ephrinB2 instruct apical constriction via Dishevelled and non-canonical signaling. Nat Commun 2023; 14:337. [PMID: 36670115 PMCID: PMC9860048 DOI: 10.1038/s41467-023-35991-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Apical constriction is a cell shape change critical to vertebrate neural tube closure, and the contractile force required for this process is generated by actin-myosin networks. The signaling cue that instructs this process has remained elusive. Here, we identify Wnt4 and the transmembrane ephrinB2 protein as playing an instructive role in neural tube closure as members of a signaling complex we termed WERDS (Wnt4, EphrinB2, Ror2, Dishevelled (Dsh2), and Shroom3). Disruption of function or interaction among members of the WERDS complex results in defects of apical constriction and neural tube closure. The mechanism of action involves an interaction of ephrinB2 with the Dsh2 scaffold protein that enhances the formation of the WERDS complex, which in turn, activates Rho-associated kinase to induce apical constriction. Moreover, the ephrinB2/Dsh2 interaction promotes non-canonical Wnt signaling and shows how cross-talk between two major signal transduction pathways, Eph/ephrin and Wnt, coordinate morphogenesis of the neural tube.
Collapse
Affiliation(s)
- Jaeho Yoon
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Jian Sun
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Moonsup Lee
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Yoo-Seok Hwang
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
3
|
Baldwin AT, Kim JH, Seo H, Wallingford JB. Global analysis of cell behavior and protein dynamics reveals region-specific roles for Shroom3 and N-cadherin during neural tube closure. eLife 2022; 11:e66704. [PMID: 35244026 PMCID: PMC9010020 DOI: 10.7554/elife.66704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Failures of neural tube closure are common and serious birth defects, yet we have a poor understanding of the interaction of genetics and cell biology during neural tube closure. Additionally, mutations that cause neural tube defects (NTDs) tend to affect anterior or posterior regions of the neural tube but rarely both, indicating a regional specificity to NTD genetics. To better understand the regional specificity of cell behaviors during neural tube closure, we analyzed the dynamic localization of actin and N-cadherin via high-resolution tissue-level time-lapse microscopy during Xenopus neural tube closure. To investigate the regionality of gene function, we generated mosaic mutations in shroom3, a key regulator or neural tube closure. This new analytical approach elucidates several differences between cell behaviors during cranial/anterior and spinal/posterior neural tube closure, provides mechanistic insight into the function of shroom3, and demonstrates the ability of tissue-level imaging and analysis to generate cell biological mechanistic insights into neural tube closure.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Juliana H Kim
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Hyemin Seo
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| |
Collapse
|
4
|
Abstract
Apical constriction refers to the active, actomyosin-driven process that reduces apical cell surface area in epithelial cells. Apical constriction is utilized in epithelial morphogenesis during embryonic development in multiple contexts, such as gastrulation, neural tube closure, and organogenesis. Defects in apical constriction can result in congenital birth defects, yet our understanding of the molecular control of apical constriction is relatively limited. To uncover new genetic regulators of apical constriction and gain mechanistic insight into the cell biology of this process, we need reliable assay systems that allow real-time observation and quantification of apical constriction as it occurs and permit gain- and loss-of-function analyses to explore gene function and interaction during apical constriction. In this chapter, we describe using the early Xenopus embryo as an assay system to investigate molecular mechanisms involved in apical constriction during both gastrulation and neurulation.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ivan K Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Huang W, Gu H, Yuan Z. Identifying biomarkers for prenatal diagnosis of neural tube defects based on "omics". Clin Genet 2021; 101:381-389. [PMID: 34761376 DOI: 10.1111/cge.14087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/27/2022]
Abstract
Neural tube defects (NTDs) are the most severe birth defects and the main cause of newborn death; posing a great challenge to the affected children, families, and societies. Presently, the clinical diagnosis of NTDs mainly relies on ultrasound images combined with certain indices, such as alpha-fetoprotein levels in the maternal serum and amniotic fluid. Recently, the discovery of additional biomarkers in maternal tissue has presented new possibilities for prenatal diagnosis. Over the past 20 years, "omics" techniques have provided the premise for the study of biomarkers. This review summarizes recent advances in candidate biomarkers for the prenatal diagnosis of fetal NTDs based on omics techniques using maternal biological specimens of different origins, including amniotic fluid, blood, and urine, which may provide a foundation for the early prenatal diagnosis of NTDs.
Collapse
Affiliation(s)
- Wanqi Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Wu Y, Peng S, Finnell RH, Zheng Y. Organoids as a new model system to study neural tube defects. FASEB J 2021; 35:e21545. [PMID: 33729606 PMCID: PMC9189980 DOI: 10.1096/fj.202002348r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 01/09/2023]
Abstract
The neural tube is the first critically important structure that develops in the embryo. It serves as the primordium of the central nervous system; therefore, the proper formation of the neural tube is essential to the developing organism. Neural tube defects (NTDs) are severe congenital defects caused by failed neural tube closure during early embryogenesis. The pathogenesis of NTDs is complicated and still not fully understood even after decades of research. While it is an ethically impossible proposition to investigate the in vivo formation process of the neural tube in human embryos, a newly developed technology involving the creation of neural tube organoids serves as an excellent model system with which to study human neural tube formation and the occurrence of NTDs. Herein we reviewed the recent literature on the process of neural tube formation, the progress of NTDs investigations, and particularly the exciting potential to use neural tube organoids to model the cellular and molecular mechanisms underlying the etiology of NTDs.
Collapse
Affiliation(s)
- Yu Wu
- Department of Cellular and Developmental Biology, School of life sciences, Fudan University, Shanghai, China
- Obstetrics & Gynecology Hospital, The institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Sisi Peng
- Department of Cellular and Developmental Biology, School of life sciences, Fudan University, Shanghai, China
- Obstetrics & Gynecology Hospital, The institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TA, USA
| | - Yufang Zheng
- Department of Cellular and Developmental Biology, School of life sciences, Fudan University, Shanghai, China
- Obstetrics & Gynecology Hospital, The institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Hildebrand JD, Leventry AD, Aideyman OP, Majewski JC, Haddad JA, Bisi DC, Kaufmann N. A modifier screen identifies regulators of cytoskeletal architecture as mediators of Shroom-dependent changes in tissue morphology. Biol Open 2021; 10:bio.055640. [PMID: 33504488 PMCID: PMC7875558 DOI: 10.1242/bio.055640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of cell architecture is critical in the formation of tissues during animal development. The mechanisms that control cell shape must be both dynamic and stable in order to establish and maintain the correct cellular organization. Previous work has identified Shroom family proteins as essential regulators of cell morphology during vertebrate development. Shroom proteins regulate cell architecture by directing the subcellular distribution and activation of Rho-kinase, which results in the localized activation of non-muscle myosin II. Because the Shroom-Rock-myosin II module is conserved in most animal model systems, we have utilized Drosophila melanogaster to further investigate the pathways and components that are required for Shroom to define cell shape and tissue architecture. Using a phenotype-based heterozygous F1 genetic screen for modifiers of Shroom activity, we identified several cytoskeletal and signaling protein that may cooperate with Shroom. We show that two of these proteins, Enabled and Short stop, are required for ShroomA-induced changes in tissue morphology and are apically enriched in response to Shroom expression. While the recruitment of Ena is necessary, it is not sufficient to redefine cell morphology. Additionally, this requirement for Ena appears to be context dependent, as a variant of Shroom that is apically localized, binds to Rock, but lacks the Ena binding site, is still capable of inducing changes in tissue architecture. These data point to important cellular pathways that may regulate contractility or facilitate Shroom-mediated changes in cell and tissue morphology. Summary: Using Drosophila as a model system, we identify F-actin and microtubules as important determinants of how cells and tissues respond to Shroom induced contractility.
Collapse
Affiliation(s)
- Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Adam D Leventry
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Omoregie P Aideyman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - John C Majewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James A Haddad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dawn C Bisi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nancy Kaufmann
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
8
|
Christian DL, Wu DY, Martin JR, Moore JR, Liu YR, Clemens AW, Nettles SA, Kirkland NM, Papouin T, Hill CA, Wozniak DF, Dougherty JD, Gabel HW. DNMT3A Haploinsufficiency Results in Behavioral Deficits and Global Epigenomic Dysregulation Shared across Neurodevelopmental Disorders. Cell Rep 2020; 33:108416. [PMID: 33238114 PMCID: PMC7716597 DOI: 10.1016/j.celrep.2020.108416] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/17/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Mutations in DNA methyltransferase 3A (DNMT3A) have been detected in autism and related disorders, but how these mutations disrupt nervous system function is unknown. Here, we define the effects of DNMT3A mutations associated with neurodevelopmental disease. We show that diverse mutations affect different aspects of protein activity but lead to shared deficiencies in neuronal DNA methylation. Heterozygous DNMT3A knockout mice mimicking DNMT3A disruption in disease display growth and behavioral alterations consistent with human phenotypes. Strikingly, in these mice, we detect global disruption of neuron-enriched non-CG DNA methylation, a binding site for the Rett syndrome protein MeCP2. Loss of this methylation leads to enhancer and gene dysregulation that overlaps with models of Rett syndrome and autism. These findings define the effects of DNMT3A haploinsufficiency in the brain and uncover disruption of the non-CG methylation pathway as a convergence point across neurodevelopmental disorders.
Collapse
Affiliation(s)
- Diana L Christian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Jenna R Martin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - J Russell Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Yiran R Liu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Adam W Clemens
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Sabin A Nettles
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Nicole M Kirkland
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Cheryl A Hill
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110-1093, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110-1093, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110-1093, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA.
| |
Collapse
|