1
|
Govindan A, Fiest C, Chou DW, Saade M, Gray M, Cosetti M. Genetics of Nonsyndromic Microtia and Congenital Aural Atresia: A Scoping Review. Otolaryngol Head Neck Surg 2025; 172:811-820. [PMID: 39624921 DOI: 10.1002/ohn.1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 02/22/2025]
Abstract
OBJECTIVE To review the literature on genetics of nonsyndromic microtia and congenital aural atresia (CAA). DATA SOURCES Embase, Ovid (Medline), and Web of Science. REVIEW METHODS The search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for scoping reviews. Included studies were original research studies discussing the genetics or pattern of inheritance of non-syndromic microtia and/or CAA, defined as microtia and/or CAA that was completely isolated except for the presence of hearing loss. RESULTS Thirty studies met inclusion criteria, describing 40 unique genes and one susceptibility gene locus (4p15.32-4p16.2) associated with nonsyndromic microtia, CAA, or microtia and CAA. The 3 most cited genes describing microtia genetics alone were HOXA2, MUC6, and GSC. A single article describing nonsyndromic CAA alone identified the TSHZ1 as a candidate gene. Among 194 subjects from 18 manuscripts describing mendelian inheritance for non-syndromic microtia or microtia and CAA, 49% of the individuals were found to have autosomal dominant transmission, 4% had autosomal recessive, 5% had X-linked recessive, and 42% had no reported pattern of inheritance. CONCLUSION Current literature on the genetics of microtia and CAA is largely derived from genetic analysis of syndromic patients. Despite comprising over half of the clinical population, available data on non-syndromic patients remains limited. Understanding genetic polymorphisms and their correlation to phenotypic data more readily available to otolaryngologists offers the prospect of categorizing severity of anatomic malformation and hearing loss to guide future intervention, and improve ability to provide patient- and family-centered counseling.
Collapse
Affiliation(s)
- Aparna Govindan
- Department of Otolaryngology-Head and Neck Surgery, University of Miami, Miami, Florida, USA
| | - Carly Fiest
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David W Chou
- Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mia Saade
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Mingyang Gray
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maura Cosetti
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Petrin AL, Machado-Paula LA, Hinkle A, Hovey L, Awotoye W, Chimenti M, Darbro B, Ribeiro-Bicudo LA, Dabdoub SM, Peter T, Breheny P, Murray JC, Van Otterloo E, Rengasamy Venugopalan S, Moreno-Uribe LM. Familial Oculoauriculovertebral Spectrum: A Genomic Investigation of Autosomal Dominant Inheritance. Cleft Palate Craniofac J 2025:10556656241306202. [PMID: 39819101 DOI: 10.1177/10556656241306202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
OBJECTIVE Oculoauriculovertebral spectrum (OAVS) encompasses abnormalities on derivatives from the first and second pharyngeal arches including macrostomia, hemifacial microsomia, micrognathia, preauricular tags, ocular, and vertebral anomalies. We present genetic findings on a 3-generation family affected with macrostomia, preauricular tags and ptosis following an autosomal dominant pattern. DESIGN We generated whole-genome sequencing data for the proband, affected father, and unaffected paternal grandmother followed by Sanger sequencing on 23 family members for the top candidate gene mutations. We performed parent and sibling-based transmission disequilibrium tests (TDTs) and burden analysis via a penalized linear mixed model, for segregation and mutation burden, respectively. Next, via bioinformatic tools we predicted protein function, mutation pathogenicity, and pathway enrichment to investigate the biological relevance of mutations identified. RESULTS Rare missense mutations in SIX1, KDR/VEGFR2, and PDGFRA showed the best segregation with the OAVS phenotypes in this family. When considering any of the 3 OAVS phenotypes as an outcome, SIX1 had the strongest associations in parent-TDTs and sib-TDTs (P = 0.025, P = 0.052) (unadjusted P-values). Burden analysis identified SIX1 (RC = 0.87) and PDGFRA (RC = 0.98) strongly associated with OAVS severity. Using phenotype-specific outcomes, sib-TDTs identified SIX1 with uni- or bilateral ptosis (P = 0.049) and ear tags (P = 0.01), and PDGFRA and KDR/VEGFR2 with ear tags (both P < 0.01). CONCLUSION SIX1, PDGFRA, and KDR/VEGFR2 are strongly associated to OAVS phenotypes. SIX1 has been previously associated with OAVS ear malformations and is co-expressed with EYA1 during ear development. Efforts to strengthen the genotype-phenotype co-relation underlying the OAVS are key to discover etiology, family counseling, and prevention.
Collapse
Affiliation(s)
- Aline L Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - Austin Hinkle
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Luke Hovey
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Waheed Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Michael Chimenti
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Benjamin Darbro
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Shareef M Dabdoub
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Tabitha Peter
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Patrick Breheny
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Jeffrey C Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric Van Otterloo
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - Lina M Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Wells JR, Padua MB, Haaning AM, Smith AM, Morris SA, Tariq M, Ware SM. Non-coding cause of congenital heart defects: Abnormal RNA splicing with multiple isoforms as a mechanism for heterotaxy. HGG ADVANCES 2024; 5:100353. [PMID: 39275801 PMCID: PMC11470249 DOI: 10.1016/j.xhgg.2024.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/16/2024] Open
Abstract
Heterotaxy is a disorder characterized by severe congenital heart defects (CHDs) and abnormal left-right patterning in other thoracic or abdominal organs. Clinical and research-based genetic testing has previously focused on evaluation of coding variants to identify causes of CHDs, leaving non-coding causes of CHDs largely unknown. Variants in the transcription factor zinc finger of the cerebellum 3 (ZIC3) cause X-linked heterotaxy. We identified an X-linked heterotaxy pedigree without a coding variant in ZIC3. Whole-genome sequencing revealed a deep intronic variant (ZIC3 c.1224+3286A>G) predicted to alter RNA splicing. An in vitro minigene splicing assay confirmed the variant acts as a cryptic splice acceptor. CRISPR-Cas9 served to introduce the ZIC3 c.1224+3286A>G variant into human embryonic stem cells demonstrating pseudoexon inclusion caused by the variant. Surprisingly, Sanger sequencing of the resulting ZIC3 c.1224+3286A>G amplicons revealed several isoforms, many of which bypass the normal coding sequence of the third exon of ZIC3, causing a disruption of a DNA-binding domain and a nuclear localization signal. Short- and long-read mRNA sequencing confirmed these initial results and identified additional splicing patterns. Assessment of four isoforms determined abnormal functions in vitro and in vivo while treatment with a splice-blocking morpholino partially rescued ZIC3. These results demonstrate that pseudoexon inclusion in ZIC3 can cause heterotaxy and provide functional validation of non-coding disease causation. Our results suggest the importance of non-coding variants in heterotaxy and the need for improved methods to identify and classify non-coding variation that may contribute to CHDs.
Collapse
Affiliation(s)
- John R Wells
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maria B Padua
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Allison M Haaning
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amanda M Smith
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shaine A Morris
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
| | - Muhammad Tariq
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie M Ware
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
4
|
Petrin AL, Machado-Paula LA, Hinkle A, Hovey L, Awotoye W, Chimenti M, Darbro B, Ribeiro-Bicudo LA, Dabdoub SM, Peter T, Breheny P, Murray J, Van Otterloo E, Rengasamy Venugopalan S, Moreno-Uribe LM. Whole genome sequencing of a family with autosomal dominant features within the oculoauriculovertebral spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24301824. [PMID: 38370836 PMCID: PMC10871465 DOI: 10.1101/2024.02.07.24301824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background Oculoauriculovertebral Spectrum (OAVS) encompasses abnormalities on derivatives from the first and second pharyngeal arches including macrostomia, hemifacial microsomia, micrognathia, preauricular tags, ocular and vertebral anomalies. We present genetic findings on a three-generation family affected with macrostomia, preauricular tags and uni- or bilateral ptosis following an autosomal dominant pattern. Methods We generated whole genome sequencing data for the proband, affected parent and unaffected paternal grandparent followed by Sanger sequencing on 23 family members for the top 10 candidate genes: KCND2, PDGFRA, CASP9, NCOA3, WNT10A, SIX1, MTF1, KDR/VEGFR2, LRRK1, and TRIM2 We performed parent and sibling-based transmission disequilibrium tests and burden analysis via a penalized linear mixed model, for segregation and mutation burden respectively. Next, via bioinformatic tools we predicted protein function, mutation pathogenicity and pathway enrichment to investigate the biological relevance of mutations identified. Results Rare missense mutations in SIX1, KDR/VEGFR2, and PDGFRA showed the best segregation with the OAV phenotypes in this family. When considering any of the 3 OAVS phenotypes as an outcome, SIX1 had the strongest associations in parent-TDTs and sib-TDTs (p=0.025, p=0.052) (unadjusted p-values). Burden analysis identified SIX1 (RC=0.87) and PDGFRA (RC=0.98) strongly associated with OAVS severity. Using phenotype-specific outcomes, sib-TDTs identified SIX1 with uni- or bilateral ptosis (p=0.049) and ear tags (p=0.01), and PDGFRA and KDR/VEGFR2 with ear tags (both p<0.01). Conclusion SIX1, PDGFRA, and KDR/VEGFR2 are strongly associated to OAVS phenotypes. SIX1 has been previously associated with OAVS ear malformations and is co-expressed with EYA1 during ear development. Efforts to strengthen the genotype-phenotype co-relation underlying the OAVS are key to discover etiology, family counseling and prevention.
Collapse
Affiliation(s)
- A L Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - L A Machado-Paula
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - A Hinkle
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - L Hovey
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - W Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - M Chimenti
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - B Darbro
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - S M Dabdoub
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - T Peter
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - P Breheny
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | - J Murray
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - E Van Otterloo
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - L M Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Niu X, Zhang F, Gu W, Zhang B, Chen X. FBLN2 is associated with Goldenhar syndrome and is essential for cranial neural crest cell development. Ann N Y Acad Sci 2024; 1537:113-128. [PMID: 38970771 DOI: 10.1111/nyas.15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 07/08/2024]
Abstract
Goldenhar syndrome, a rare craniofacial malformation, is characterized by developmental anomalies in the first and second pharyngeal arches. Its etiology is considered to be heterogenous, including both genetic and environmental factors that remain largely unknown. To further elucidate the genetic cause in a five-generation Goldenhar syndrome pedigree and exploit the whole-exome sequencing (WES) data of this pedigree, we generated collapsed haplotype pattern markers based on WES and employed rare variant nonparametric linkage analysis. FBLN2 was identified as a candidate gene via analysis of WES data across the significant linkage region. A fbln2 knockout zebrafish line was established by CRISPR/Cas9 to examine the gene's role in craniofacial cartilage development. fbln2 was expressed specifically in the mandible during the zebrafish early development, while fbln2 knockout zebrafish exhibited craniofacial malformations with abnormal chondrocyte morphologies. Functional studies revealed that fbln2 knockout caused abnormal chondrogenic differentiation, apoptosis, and proliferation of cranial neural crest cells (CNCCs), and downregulated the bone morphogenic protein (BMP) signaling pathway in the zebrafish model. This study demonstrates the role of FBLN2 in CNCC development and BMP pathway regulation, and highlights FBLN2 as a candidate gene for Goldenhar syndrome, which may have implications for the selection of potential screening targets and the development of treatments for conditions like microtia-atresia.
Collapse
Affiliation(s)
- Xiaomin Niu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fuyu Zhang
- 8-Year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Gu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
6
|
Celse T, Tingaud-Sequeira A, Dieterich K, Siegfried G, Lecaignec C, Bouneau L, Fannemel M, Salaun G, Laffargue F, Martinez G, Satre V, Vieville G, Bidart M, Soussi Zander C, Turesson AC, Splitt M, Reboul D, Chiesa J, Khau Van Kien P, Godin M, Gruchy N, Goel H, Palmer E, Demetriou K, Shalhoub C, Rooryck-Thambo C, Coutton C. OTX2 duplications: a recurrent cause of oculo-auriculo-vertebral spectrum. J Med Genet 2022; 60:620-626. [DOI: 10.1136/jmg-2022-108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022]
Abstract
BackgroundOculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive.MethodsWe described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects ofOTX2overexpression in a zebrafish model.ResultsWe defined a 272 kb minimal common region that only overlaps with theOTX2gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression ofOTX2in zebrafish embryos showed significant effects on early development with alterations in craniofacial development.ConclusionsOur results indicate that properOTX2dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated thatOTX2genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity.
Collapse
|
7
|
The Enigmatic Etiology of Oculo-Auriculo-Vertebral Spectrum (OAVS): An Exploratory Gene Variant Interaction Approach in Candidate Genes. Life (Basel) 2022; 12:life12111723. [PMID: 36362878 PMCID: PMC9693117 DOI: 10.3390/life12111723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The clinical diagnosis of oculo-auriculo-vertebral spectrum (OAVS) is established when microtia is present in association with hemifacial hypoplasia (HH) and/or ocular, vertebral, and/or renal malformations. Genetic and non-genetic factors have been associated with microtia/OAVS. Although the etiology remains unknown in most patients, some cases may have an autosomal dominant, autosomal recessive, or multifactorial inheritance. Among the possible genetic factors, gene−gene interactions may play important roles in the etiology of complex diseases, but the literature lacks related reports in OAVS patients. Therefore, we performed a gene−variant interaction analysis within five microtia/OAVS candidate genes (HOXA2, TCOF1, SALL1, EYA1 and TBX1) in 49 unrelated OAVS Mexican patients (25 familial and 24 sporadic cases). A statistically significant intergenic interaction (p-value < 0.001) was identified between variants p.(Pro1099Arg) TCOF1 (rs1136103) and p.(Leu858=) SALL1 (rs1965024). This intergenic interaction may suggest that the products of these genes could participate in pathways related to craniofacial alterations, such as the retinoic acid (RA) pathway. The absence of clearly pathogenic variants in any of the analyzed genes does not support a monogenic etiology for microtia/OAVS involving these genes in our patients. Our findings could suggest that in addition to high-throughput genomic approaches, future gene−gene interaction analyses could contribute to improving our understanding of the etiology of microtia/OAVS.
Collapse
|
8
|
Carter S, Fellows BJ, Gibson K, Bicknell LS. Extending the PAX1 spectrum: a dominantly inherited variant causes oculo-auriculo-vertebral syndrome. Eur J Hum Genet 2022; 30:1178-1181. [PMID: 35879406 PMCID: PMC9553880 DOI: 10.1038/s41431-022-01154-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
Oculo-auriculo-vertebral syndrome (OAVS) is a clinically heterogeneous disorder, with both genetic and environmental contributors. Multiple genes have been associated with OAVS and common molecular pathways, such as retinoic acid and the PAX-SIX-EYA-DACH (PSED) network, are being implicated in the disease pathophysiology. Biallelic homozygous nonsense or hypomorphic missense mutations in PAX1 cause otofaciocervical syndrome type 2 (OTFCS2), a similar but more severe multi-system disorder that can be accompanied by severe combined immunodeficiency due to thymic aplasia. Here we have identified a multi-generational family with mild features of OAVS segregating a heterozygous frameshift in PAX1. The four base duplication is expected to result in nonsense-mediated decay, and therefore cause a null allele. While there was full penetrance of the variant, expressivity of facial and ear features were variable. Our findings indicate there can be monoallelic and biallelic disorders associated with PAX1, and further implicate the PSED network in OAVS.
Collapse
Affiliation(s)
- Shannon Carter
- grid.414299.30000 0004 0614 1349Genetic Health Service New Zealand, Christchurch Hospital, Christchurch, New Zealand
| | - Bridget J. Fellows
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Kate Gibson
- grid.414299.30000 0004 0614 1349Genetic Health Service New Zealand, Christchurch Hospital, Christchurch, New Zealand
| | - Louise S. Bicknell
- grid.29980.3a0000 0004 1936 7830Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Tingaud-Sequeira A, Trimouille A, Sagardoy T, Lacombe D, Rooryck-Thambo C. Oculo-auriculo-vertebral spectrum: new genes and literature review on a complex disease. J Med Genet 2022; 59:417-427. [PMID: 35110414 DOI: 10.1136/jmedgenet-2021-108219] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Oculo-auriculo-vertebral spectrum (OAVS) or Goldenhar syndrome is due to an abnormal development of first and second branchial arches derivatives during embryogenesis and is characterised by hemifacial microsomia associated with auricular, ocular and vertebral malformations. The clinical and genetic heterogeneity of this spectrum with incomplete penetrance and variable expressivity, render its molecular diagnosis difficult. Only a few recurrent CNVs and genes have been identified as causatives in this complex disorder so far. Prenatal environmental causal factors have also been hypothesised. However, most of the patients remain without aetiology. In this review, we aim at updating clinical diagnostic criteria and describing genetic and non-genetic aetiologies, animal models as well as novel diagnostic tools and surgical management, in order to help and improve clinical care and genetic counselling of these patients and their families.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France
| | - Aurélien Trimouille
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France.,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| | - Thomas Sagardoy
- CHU de Bordeaux, Service d'oto-rhino-laryngologie, de chirurgie cervico-faciale et d'ORL pédiatrique, 33076 Bordeaux, France
| | - Didier Lacombe
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France.,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| | - Caroline Rooryck-Thambo
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France .,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| |
Collapse
|
10
|
Abstract
The field of craniofacial malformations is comprehensive and does not allow to discuss all craniofacial malformations which have been described as single entities. Many of the syndromes with craniofacial malformations are ultrarare. In this review we have chosen craniofacial malformation syndromes which are of relevance for the pediatrician, especially neonatologist: different types of craniosynostoses, oculo-auriculo-vertebral spectrum, Pierre Robin sequence and Treacher Collins syndrome. These syndromes will be described in detail. Diagnostic and therapeutic options will be discussed.
Collapse
Affiliation(s)
- Ariane Schmetz
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Jeanne Amiel
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Hôpital Necker, AP-HP, Paris, France
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
11
|
Güleray N, Koşukcu C, Oğuz S, Ürel Demir G, Taşkıran EZ, Kiper PÖŞ, Utine GE, Alanay Y, Boduroğlu K, Alikaşifoğlu M. Investigation of Genetic Causes in a Developmental Disorder: Oculoauriculovertebral Spectrum. Cleft Palate Craniofac J 2021; 59:1114-1124. [PMID: 34410171 DOI: 10.1177/10556656211038115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Oculoauriculovertebral spectrum (OAVS) is a genetically and clinically heterogeneous disorder that occurs due to a developmental field defect of the first and second pharyngeal arches. Even though recent whole exome sequencing studies (WES) have led to identification of several genes associated with this spectrum in a subset of individuals, complete pathogenesis of OAVS remains unsolved. In this study, molecular genetic etiology of OAVS was systematically investigated. DESIGN/SETTING/PATIENTS A cohort of 23 Turkish patients with OAVS, referred to Hacettepe University Hospital, Department of Pediatric Genetics from 2008 to 2018, was included in this study. Minimal diagnostic criteria for OAVS were considered as unilateral microtia or hemifacial microsomia with preauricular skin tag. The cohort was clinically reevaluated for craniofacial and extracranial findings. Molecular etiology was investigated using candidate gene sequencing following copy number variant (CNV) analysis. WES was also performed for 2 of the selected patients. RESULTS Patients in the study cohort presented similar demographic and phenotypic characteristics to previously described patients in the literature except for a higher frequency of bilaterality, cardiac findings, and intellectual disability/developmental delay. CNV analysis revealed a possible genetic etiology for 3 patients (13%). Additional WES in 1 of the 2 patients uncovered a novel heterozygous nonsense variant in Elongation factor Tu GTP-binding domain-containing 2 (EFTUD2) causing mandibulofacial dysostosis with microcephaly (MFDM), which clinically overlaps with OAVS. CONCLUSION Detailed clinical evaluation for any patient with OAVS is recommended due to a high rate of accompanying systemic findings. We further expand the existing genetic heterogeneity of OAVS by identifying several CNVs and a phenotypically overlapping disorder, MFDM.
Collapse
Affiliation(s)
- Naz Güleray
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Can Koşukcu
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Turkey
| | - Sümeyra Oğuz
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gizem Ürel Demir
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ekim Z Taşkıran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Gülen Eda Utine
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yasemin Alanay
- Department of Pediatric Genetics, Acıbadem University Faculty of Medicine, Istanbul, Turkey
| | - Koray Boduroğlu
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Alikaşifoğlu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
Guida V, Sparascio FP, Bernardini L, Pancheri F, Melis D, Cocciadiferro D, Pagnoni M, Puzzo M, Goldoni M, Barone C, Hozhabri H, Putotto C, Giuffrida MG, Briuglia S, Palumbo O, Bianca S, Stanzial F, Benedicenti F, Kariminejad A, Forzano F, Baghernajad Salehi L, Mattina T, Brancati F, Castori M, Carella M, Fadda MT, Iannetti G, Dallapiccola B, Digilio MC, Marino B, Tartaglia M, De Luca A. Copy number variation analysis implicates novel pathways in patients with oculo-auriculo-vertebral-spectrum and congenital heart defects. Clin Genet 2021; 100:268-279. [PMID: 33988253 DOI: 10.1111/cge.13994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 12/19/2022]
Abstract
Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder of craniofacial morphogenesis. Its etiology is unclear, but assumed to be complex and heterogeneous, with contribution of both genetic and environmental factors. We assessed the occurrence of copy number variants (CNVs) in a cohort of 19 unrelated OAVS individuals with congenital heart defect. Chromosomal microarray analysis identified pathogenic CNVs in 2/19 (10.5%) individuals, and CNVs classified as variants of uncertain significance in 7/19 (36.9%) individuals. Remarkably, two subjects had small intragenic CNVs involving DACH1 and DACH2, two paralogs coding for key components of the PAX-SIX-EYA-DACH network, a transcriptional regulatory pathway controlling developmental processes relevant to OAVS and causally associated with syndromes characterized by craniofacial involvement. Moreover, a third patient showed a large duplication encompassing DMBX1/OTX3, encoding a transcriptional repressor of OTX2, another transcription factor functionally connected to the DACH-EYA-PAX network. Among the other relevant CNVs, a deletion encompassing HSD17B6, a gene connected with the retinoic acid signaling pathway, whose dysregulation has been implicated in craniofacial malformations, was also identified. Our findings suggest that CNVs affecting gene dosage likely contribute to the genetic heterogeneity of OAVS, and implicate the PAX-SIX-EYA-DACH network as novel pathway involved in the etiology of this developmental trait.
Collapse
Affiliation(s)
- Valentina Guida
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesca Piceci Sparascio
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Laura Bernardini
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesco Pancheri
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Daniela Melis
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples "Federico II", Naples, Italy.,Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Dario Cocciadiferro
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mario Pagnoni
- Department of Maxillo-Facial Surgery, Policlinico Umberto I, Rome, Italy
| | - Marianna Puzzo
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marina Goldoni
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Chiara Barone
- Medical Genetics, Referral Center for Rare Genetic Diseases, ARNAS Garibaldi, Catania, Italy
| | - Hossein Hozhabri
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carolina Putotto
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Maria Grazia Giuffrida
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Silvana Briuglia
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", Unit of Emergency Pediatrics, University of Messina, Messina, Italy
| | - Orazio Palumbo
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Sebastiano Bianca
- Medical Genetics, Referral Center for Rare Genetic Diseases, ARNAS Garibaldi, Catania, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Francesco Benedicenti
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | | | - Francesca Forzano
- Clinical Genetics Department, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | | | - Teresa Mattina
- Unit of Medical Genetics, University of Catania, Catania, Italy
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, Unit of Medical Genetics University of L'Aquila, L'Aquila, Italy
| | - Marco Castori
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Teresa Fadda
- Department of Maxillo-Facial Surgery, Policlinico Umberto I, Rome, Italy
| | - Giorgio Iannetti
- Department of Maxillo-Facial Surgery, Policlinico Umberto I, Rome, Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
13
|
Zamariolli M, Burssed B, Moysés-Oliveira M, Colovati M, Bellucco FTDS, Dos Santos LC, Alvarez Perez AB, Bragagnolo S, Melaragno MI. Novel MYT1 variants expose the complexity of oculo-auriculo-vertebral spectrum genetic mechanisms. Am J Med Genet A 2021; 185:2056-2064. [PMID: 33880880 DOI: 10.1002/ajmg.a.62217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder characterized by anomalies mainly involving the structures derived from the first and second pharyngeal arches. The spectrum presents with heterogeneous clinical features and complex etiology with genetic factors not yet completely understood. To date, MYT1 is the most important gene unambiguously associated with the spectrum and with functional data confirmation. In this work, we aimed to identify new single nucleotide variants (SNVs) affecting MYT1 in a cohort of 73 Brazilian patients diagnosed with OAVS. In addition, we investigated copy number variations (CNVs) encompassing this gene or its cis-regulatory elements and compared the frequency of these events in patients versus a cohort of 455 Brazilian control individuals. A new SNV, predicted as likely deleterious, was identified in five unrelated patients with OAVS. All five patients presented hearing impairment and orbital asymmetry suggesting an association with the variant. CNVs near MYT1, located in its neighboring topologically associating domain (TAD), were found to be enriched in patients when compared to controls, indicating a possible involvement of this region with OAVS pathogenicity. Our findings highlight the genetic complexity of the spectrum that seems to involve more than one variant type and inheritance patterns.
Collapse
Affiliation(s)
- Malú Zamariolli
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruna Burssed
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Moysés-Oliveira
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mileny Colovati
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Leonardo Caires Dos Santos
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Beatriz Alvarez Perez
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Silvia Bragagnolo
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Tingaud-Sequeira A, Trimouille A, Salaria M, Stapleton R, Claverol S, Plaisant C, Bonneu M, Lopez E, Arveiler B, Lacombe D, Rooryck C. A recurrent missense variant in EYA3 gene is associated with oculo-auriculo-vertebral spectrum. Hum Genet 2021; 140:933-944. [PMID: 33475861 DOI: 10.1007/s00439-021-02255-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Goldenhar syndrome or oculo-auriculo-vertebral spectrum (OAVS) is a complex developmental disorder characterized by asymmetric ear anomalies, hemifacial microsomia, ocular and vertebral defects. We aimed at identifying and characterizing a new gene associated with OAVS. Two affected brothers with OAVS were analyzed by exome sequencing that revealed a missense variant (p.(Asn358Ser)) in the EYA3 gene. EYA3 screening was then performed in 122 OAVS patients that identified the same variant in one individual from an unrelated family. Segregation assessment in both families showed incomplete penetrance and variable expressivity. We investigated this variant in cellular models to determine its pathogenicity and demonstrated an increased half-life of the mutated protein without impact on its ability to dephosphorylate H2AFX following DNA repair pathway induction. Proteomics performed on this cellular model revealed four significantly predicted upstream regulators which are PPARGC1B, YAP1, NFE2L2 and MYC. Moreover, eya3 knocked-down zebrafish embryos developed specific craniofacial abnormalities corroborating previous animal models and supporting its involvement in the OAVS. Additionally, EYA3 gene expression was deregulated in vitro by retinoic acid exposure. EYA3 is the second recurrent gene identified to be associated with OAVS. Moreover, based on protein interactions and related diseases, we suggest the DNA repair as a key molecular pathway involved in craniofacial development.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Univ. Bordeaux, 33000, Bordeaux, France
| | - Aurélien Trimouille
- Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Univ. Bordeaux, 33000, Bordeaux, France.,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Pellegrin-Ecole des Sages-femmes, Place Amélie Raba-Léon, 33076, Bordeaux Cedex, France
| | - Manju Salaria
- Genetic Health Service, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia.,Wyndham Specialist Care Centre, 289 Princes Highway, Werribee, VIC, 3030, Australia
| | - Rachel Stapleton
- Genetic Health Service NZ-South Island Hub, Christchurch Hospital, Christchurch, 8140, New Zealand
| | - Stéphane Claverol
- Plateforme Protéome, Centre Génomique Fonctionnelle Bordeaux, Bordeaux, France
| | - Claudio Plaisant
- CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Pellegrin-Ecole des Sages-femmes, Place Amélie Raba-Léon, 33076, Bordeaux Cedex, France
| | - Marc Bonneu
- Plateforme Protéome, Centre Génomique Fonctionnelle Bordeaux, Bordeaux, France
| | - Estelle Lopez
- Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Univ. Bordeaux, 33000, Bordeaux, France
| | - Benoit Arveiler
- Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Univ. Bordeaux, 33000, Bordeaux, France.,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Pellegrin-Ecole des Sages-femmes, Place Amélie Raba-Léon, 33076, Bordeaux Cedex, France
| | - Didier Lacombe
- Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Univ. Bordeaux, 33000, Bordeaux, France.,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Pellegrin-Ecole des Sages-femmes, Place Amélie Raba-Léon, 33076, Bordeaux Cedex, France
| | - Caroline Rooryck
- Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, Univ. Bordeaux, 33000, Bordeaux, France. .,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Pellegrin-Ecole des Sages-femmes, Place Amélie Raba-Léon, 33076, Bordeaux Cedex, France.
| |
Collapse
|
15
|
Spineli‐Silva S, Sgardioli IC, Santos AP, Bergamini LL, Monlleó IL, Fontes MIB, Félix TM, Ribeiro EM, Xavier AC, Lustosa‐Mendes E, Gil‐da‐Silva‐Lopes VL, Vieira TP. Genomic imbalances in craniofacial microsomia. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:970-985. [DOI: 10.1002/ajmg.c.31857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Samira Spineli‐Silva
- Department of Medical Genetics and Genomic Medicine School of Medical Sciences, State University of Campinas (Unicamp) Campinas Brazil
| | - Ilária C. Sgardioli
- Department of Medical Genetics and Genomic Medicine School of Medical Sciences, State University of Campinas (Unicamp) Campinas Brazil
| | - Ana P. Santos
- Department of Medical Genetics and Genomic Medicine School of Medical Sciences, State University of Campinas (Unicamp) Campinas Brazil
| | - Luna L. Bergamini
- Faculty of Medicine Federal University of Alagoas (UFAL) Maceió Brazil
| | - Isabella L. Monlleó
- Faculty of Medicine Federal University of Alagoas (UFAL) Maceió Brazil
- Clinical Genetics Service University Hospital, Federal University of Alagoas (UFAL) Maceió Brazil
| | - Marshall I. B. Fontes
- Clinical Genetics Service University Hospital, Federal University of Alagoas (UFAL) Maceió Brazil
| | - Têmis M. Félix
- Medical Genetics Service Clinical Hospital of Porto Alegre (HCPA) Porto Alegre Brazil
| | - Erlane M. Ribeiro
- Medical Genetics Service Hospital Infantil Albert Sabin (HIAS) Fortaleza Brazil
| | - Ana C. Xavier
- Centre for Research and Rehabilitation of Lip and Palate Lesions Centrinho Prefeito Luiz Gomes Joinville Brazil
| | | | - Vera L. Gil‐da‐Silva‐Lopes
- Department of Medical Genetics and Genomic Medicine School of Medical Sciences, State University of Campinas (Unicamp) Campinas Brazil
| | - Tarsis P. Vieira
- Department of Medical Genetics and Genomic Medicine School of Medical Sciences, State University of Campinas (Unicamp) Campinas Brazil
| |
Collapse
|