1
|
A Novel Role of Secretory Cytosolic Tryparedoxin Peroxidase in Delaying Apoptosis of Leishmania-Infected Macrophages. Mol Cell Biol 2022; 42:e0008122. [PMID: 36073913 PMCID: PMC9583715 DOI: 10.1128/mcb.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cytosolic tryparedoxin peroxidase (cTXNPx) of Leishmania donovani is a defensive enzyme. Apart from the nonsecretory form, the cTXNPx is released in the spent media of Leishmania cultures and also in the host cell cytosol. The secretory form of the enzyme from the parasite interacts with multiple proteins in the host cell cytosol, the apoptosis-inducing factor (AIF) being one of them. Immunoprecipitation with anti-cTXNPx and anti-AIF antibodies suggests a strong interaction between AIF and cTXNPx. Consequent to parasite invasion, the migration of AIF to the nucleus to precipitate apoptosis is inhibited in the presence of recombinant cTXNPx expressed in the host cell. This inhibition of AIF movement results in lesser host cell death, giving an advantage to the parasite for continued survival. Staurosporine-induced AIF migration to the nucleus was also inhibited in the presence of recombinant cTXNPx in the host cell. Therefore, this study demonstrates the ability of a Leishmania parasite enzyme, cTXNPx, to interfere with the migration of the host AIF protein, providing a survival advantage to the Leishmania parasite.
Collapse
|
2
|
TonB-dependent receptor epitopes expressed in M. bovis BCG induced significant protection in the hamster model of leptospirosis. Appl Microbiol Biotechnol 2021; 106:173-184. [PMID: 34893930 PMCID: PMC8664668 DOI: 10.1007/s00253-021-11726-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022]
Abstract
Abstract
Leptospirosis is an emerging infectious disease caused by pathogenic Leptospira spp. A universal vaccine against leptospirosis is likely to require highly conserved epitopes from pathogenic leptospires that are exposed on the bacterial surface and that generate a protective and sterilizing immune response. Our group recently identified several genes predicted to encode TonB-dependent receptors (TBDR) in Leptospira interrogans using a reverse vaccinology approach. Three leptospiral TBDRs were previously described and partially characterized as ferric-citrate, hemin, and cobalamin transporters. In the current study, we designed a fusion protein composed of predicted surface-exposed epitopes from three conserved leptospiral TBDRs. Based on their three-dimensional structural models and the prediction of immunogenic regions, nine putative surface-exposed fragments were selected to compose a recombinant chimeric protein. A Mycobacterium bovis BCG strain expressing this chimeric antigen encoded in the pUP500/PpAN mycobacterial expression vector was used to immunize Syrian hamsters. All animals (20/20) vaccinated with recombinant BCG survived infection with an endpoint dose of L. interrogans (p < 0.001). No animal survived in the negative control group. Immunization with our recombinant BCG elicited a humoral immune response against leptospiral TBDRs, as demonstrated by ELISA and immunoblot. No leptospiral DNA was detected by lipL32 qPCR in the kidneys of vaccinated hamsters. Similarly, no growth was observed in macerated kidney cultures from the same animals, suggesting the induction of a sterilizing immune response. Design of new vaccine antigens based on the structure of outer membrane proteins is a promising approach to overcome the impact of leptospirosis by vaccination. Key points • Predicted surface-exposed epitopes were identified in three leptospiral TBDRs. • An M. bovis BCG strain expressing a chimeric protein (rTBDRchi) was constructed. • Hamsters vaccinated with rBCG:TBDRchi were protected from lethal leptospirosis. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11726-9.
Collapse
|
3
|
Gonçalves Pereira RC, Gontijo Evangelista FC, Dos Santos Júnior VS, de Paula Sabino A, Gonçalves Maltarollo V, de Freitas RP, Pains Duarte L. Cytotoxic Activity of Triterpenoids from Cheiloclinium cognatum Branches against Chronic and Acute Leukemia Cell Lines. Chem Biodivers 2020; 17:e2000773. [PMID: 33108694 DOI: 10.1002/cbdv.202000773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Cheiloclinium cognatum (Miers) A.C.Sm. is an endemic species of Brazilian Cerrado that belongs to Celastraceae family. The phytochemical study of C. cognatum branches led to the identification of ten triterpenoids (TPs), 3β-acyloxyurs-12-ene (1), friedelin (2), β-friedelinol (3), glut-5-en-3β-ol (4), α-amyrin (5), β-amyrin (6), β-sitosterol (7), canophyllol (8), 29-hydroxyfriedelan-3-one (9) and friedelane-3β,29-diol (10). TPs 4, 5 and 6 are described for the first Cheiloclinium genus and TPs 8 and 9 were isolated in expressive amounts. Their cytotoxic activities were evaluated against THP-1 and K562 leukemia cell lines. TPs 3 and 5 were the most active, exhibiting lower or similar IC50 against both cell lines when compared to the controls. Their mechanisms of action were investigated suggesting an intrinsic mitochondrial pathway of apoptosis evidenced by up-regulation of BAK mRNA expression. Chemometric studies indicated that their activities may be related to their molecular size and shape as well as electronic interactions of C-3 hydroxy group with molecular targets.
Collapse
Affiliation(s)
- Rafael César Gonçalves Pereira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brasil
| | - Fernanda Cristina Gontijo Evangelista
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 31270-901, Belo Horizonte-MG, Brasil
| | - Valtair Severino Dos Santos Júnior
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 31270-901, Belo Horizonte-MG, Brasil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 31270-901, Belo Horizonte-MG, Brasil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 31270-901, Belo Horizonte-MG, Brasil
| | - Rossimiriam Pereira de Freitas
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brasil
| | - Lucienir Pains Duarte
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte-MG, Brasil
| |
Collapse
|
4
|
Corrigendum. Cell Microbiol 2020; 22:e13265. [PMID: 33155393 DOI: 10.1111/cmi.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Santecchia I, Ferrer MF, Vieira ML, Gómez RM, Werts C. Phagocyte Escape of Leptospira: The Role of TLRs and NLRs. Front Immunol 2020; 11:571816. [PMID: 33123147 PMCID: PMC7573490 DOI: 10.3389/fimmu.2020.571816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
The spirochetal bacteria Leptospira spp. are causative agents of leptospirosis, a globally neglected and reemerging zoonotic disease. Infection with these pathogens may lead to an acute and potentially fatal disease but also to chronic asymptomatic renal colonization. Both forms of disease demonstrate the ability of leptospires to evade the immune response of their hosts. In this review, we aim first to recapitulate the knowledge and explore the controversial data about the opsonization, recognition, intracellular survival, and killing of leptospires by scavenger cells, including platelets, neutrophils, macrophages, and dendritic cells. Second, we will summarize the known specificities of the recognition or escape of leptospire components (the so-called microbial-associated molecular patterns; MAMPs) by the pattern recognition receptors (PRRs) of the Toll-like and NOD-like families. These PRRs are expressed by phagocytes, and their stimulation by MAMPs triggers pro-inflammatory cytokine and chemokine production and bactericidal responses, such as antimicrobial peptide secretion and reactive oxygen species production. Finally, we will highlight recent studies suggesting that boosting or restoring phagocytic functions by treatments using agonists of the Toll-like or NOD receptors represents a novel prophylactic strategy and describe other potential therapeutic or vaccine strategies to combat leptospirosis.
Collapse
Affiliation(s)
- Ignacio Santecchia
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
- INSERM, Equipe Avenir, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - María Florencia Ferrer
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Monica Larucci Vieira
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Martín Gómez
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Catherine Werts
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
| |
Collapse
|
6
|
Sun AH, Liu XX, Yan J. Leptospirosis is an invasive infectious and systemic inflammatory disease. Biomed J 2020; 43:24-31. [PMID: 32200953 PMCID: PMC7090314 DOI: 10.1016/j.bj.2019.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Pathogenic Leptospira species are the causative agents of leptospirosis, a world-spreading zoonotic infectious disease. The pathogens possess a powerful invasiveness by invading human body through mucosal/skin barriers, rapid entry into bloodstream to cause septicemia, diffusion from bloodstream into internal organs and tissues to cause aggravation of disease, and discharge from urine through renal tubules to form natural infectious sources. Leptospirosis patients present severe inflammatory symptoms such as high fever, myalgia and lymphadenectasis. Hemorrhage and jaundice are the pathological features of this disease. Previous studies revealed that some outer membrane proteins of Leptospira interrogans, the most important pathogenic Leptospira species, acted as adherence factors to binding to receptor molecules (fibronectin, laminin and collagens) in extracellular matrix of host cells. Collagenase, metallopeptidases and endoflagellum contributed to the invasiveness of L. interrogans. Except for lipopolysaccharide, multiple hemolysins of L. interrogans displayed a powerful ability to induce pro-inflammatory cytokines and hepatocyte apoptosis. vWA and platelet activating factor acetylhydrolase-like proteins from L. interrogans could induce severe pulmonary hemorrhage in mice. L. interrogans utilized cellular endocytic recycling and vesicular transport systems for intracellular migration and transcellular transport. All the research achievements are helpful for further understanding the virulence of pathogenic Leptospira species and pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Xiao-Xiang Liu
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
7
|
de Araújo Junior EC, Garcia LE, Araújo MJ, Oliveira-Junior IS, Arnold DR, Lopes FL, Marinho M. Gene expression is associated with virulence in murine macrophages infected with Leptospira spp. PLoS One 2019; 14:e0225272. [PMID: 31800570 PMCID: PMC6892507 DOI: 10.1371/journal.pone.0225272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022] Open
Abstract
Leptospira genus contains species that affect human health with varying degrees of pathogenicity. In this context, we aimed to evaluate the differences in the modulation of host gene expression by strains of Leptospira varying in virulence. Our data showed a high number of differentially expressed transcripts in murine macrophages following 6h of infection. Leptospira infection modulated a set of genes independently of their degree of virulence. However, pathway analysis indicated that Apoptosis, ATM Signaling, and Cell Cycle: G2/M DNA Damage Checkpoint Regulation were exclusively regulated following infection with the virulent strain. Taken together, results demonstrated that species and virulence play a role during host response to Leptospira spp in murine macrophages, which could contribute to understanding the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Erivelto Corrêa de Araújo Junior
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Leandro Encarnação Garcia
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Matheus Janeck Araújo
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Itamar Souza Oliveira-Junior
- Department of Surgery, Discipline of Anesthesia, Pain and Intensive Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Daniel Robert Arnold
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Flavia Lombardi Lopes
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
| | - Márcia Marinho
- Department of Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, SP, Brazil
- * E-mail:
| |
Collapse
|
8
|
Synthetic 3-alkylpyridine alkaloid analogues as a new scaffold against leukemic cell lines: cytotoxic evaluation and mode of action. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02395-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Li Y, Li KX, Hu WL, Ojcius DM, Fang JQ, Li SJ, Lin X, Yan J. Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer. eLife 2019; 8:44594. [PMID: 31012847 PMCID: PMC6513555 DOI: 10.7554/elife.44594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
Many bacterial pathogens can cause septicemia and spread from the bloodstream into internal organs. During leptospirosis, individuals are infected by contact with Leptospira-containing animal urine-contaminated water. The spirochetes invade internal organs after septicemia to cause disease aggravation, but the mechanism of leptospiral excretion and spreading remains unknown. Here, we demonstrated that Leptospira interrogans entered human/mouse endothelial and epithelial cells and fibroblasts by caveolae/integrin-β1-PI3K/FAK-mediated microfilament-dependent endocytosis to form Leptospira (Lep)-vesicles that did not fuse with lysosomes. Lep-vesicles recruited Rab5/Rab11 and Sec/Exo-SNARE proteins in endocytic recycling and vesicular transport systems for intracellular transport and release by SNARE-complex/FAK-mediated microfilament/microtubule-dependent exocytosis. Both intracellular leptospires and infected cells maintained their viability. Leptospiral propagation was only observed in mouse fibroblasts. Our study revealed that L. interrogans utilizes endocytic recycling and vesicular transport systems for transcytosis across endothelial or epithelial barrier in blood vessels or renal tubules, which contributes to spreading in vivo and transmission of leptospirosis.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai-Xuan Li
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, United States
| | - Jia-Qi Fang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi-Jun Li
- Institute of Communicable Disease Prevention and Control, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Xu'ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Che R, Ding S, Zhang Q, Yang W, Yan J, Lin X. Haemolysin Sph2 of Leptospira interrogans induces cell apoptosis via intracellular reactive oxygen species elevation and mitochondrial membrane injury. Cell Microbiol 2018; 21:e12959. [PMID: 30278102 DOI: 10.1111/cmi.12959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Leptospira interrogans causes widespread leptospirosis in humans and animals, with major symptoms of jaundice and haemorrhage. Sph2, a member of the sphingomyelinase haemolysins, is an important virulence factor for leptospire. In this study, the function and mechanism of Sph2 in the pathogenesis of leptospirosis were investigated to further understand the pathogenesis of leptospire. Real-time PCR analysis of expression levels during cell invasion showed that sph2 gene expression was transiently induced in human umbilical vein endothelial cells (HUVECs), human embryo liver cells (L02), and human epithelial lung cells (L132), with expression levels reaching a peak after 45 min of infection. Further functional analysis of recombinant Sph2 (rSph2) by LDH assays and confocal microscopy showed that rSph2 can be internalised by cells both by causing cell membrane damage and by a damage-independent clathrin-mediated endocytosis pathway. Subsequently, rSph2 is able to translocate to mitochondria, which led to an increase in the levels of reactive oxygen species (ROS) and a decrease of the mitochondrial membrane potential (ΔΨm ). Further flowcytometry analyses after rSph2 exposure showed that 28.7%, 31%, and 27.3% of the HUVEC, L02, and L132 cells, respectively, became apoptotic. Because apoptosis could be decreased with the ROS inhibitor N-acetyl cysteine, these experiments suggested that rSph2 triggers apoptosis through mitochondrial membrane damage and ROS elevation. The ability of leptospiral haemolysin rSph2 to cause apoptosis likely contributes to the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Rongbo Che
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shibiao Ding
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Laboratory, Hospital of integrated traditional Chinese and Western, Hangzhou, China
| | - Qinchao Zhang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqun Yang
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Basic Medical Microbiology Division, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
vWA proteins of Leptospira interrogans induce hemorrhage in leptospirosis by competitive inhibition of vWF/GPIb-mediated platelet aggregation. EBioMedicine 2018; 37:428-441. [PMID: 30337247 PMCID: PMC6284457 DOI: 10.1016/j.ebiom.2018.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUD Leptospira interrogans is the major causative agent of leptospirosis, a worldwide zoonotic disease. Hemorrhage is a typical pathological feature of leptospirosis. Binding of von Willebrand factor (vWF) to platelet glycoprotein-Ibα (GPIbα) is a crucial step in initiation of platelet aggregation. The products of L. interrogans vwa-I and vwa-II genes contain vWF-A domains, but their ability to induce hemorrhage has not been determined. METHODS Human (Hu)-platelet- and Hu-GPIbα-binding abilities of the recombinant proteins expressed by L. interrogans strain Lai vwa-I and vwa-II genes (rLep-vWA-I and rLep-vWA-II) were detected by flowcytometry, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Hu-platelet aggregation and its signaling kinases and active components were detected by lumiaggregometry, Western analysis, spectrophotometry and confocal microscopy. Hu-GPIbα-binding sites in rLep-vWA-I and rLep-vWA-II were identified by SPR/ITC measurements. FINDINGS Both rLep-vWA-I and rLep-vWA-II were able to bind to Hu-platelets and inhibit rHu-vWF/ristocetin-induced Hu-platelet aggregation, but Hu-GPIbα-IgG, rLep-vWA-I-IgG and rLep-vWA-II-IgG blocked this binding or inhibition. SPR and ITC revealed a tight interaction between Hu-GPIbα and rLep-vWA-I/rLep-vWA-II with KD values of 3.87 × 10-7-8.65 × 10-8 M. Hu-GPIbα-binding of rL-vWA-I/rL-vWA-II neither activated the PI3K/AKT-ERK and PLC/PKC kinases nor affected the NO, cGMP, ADP, Ca2+ and TXA2 levels in Hu-platelets. G13/R36/G47 in Lep-vWA-I and G76/Q126 in Lep-vWA-II were confirmed as the Hu-GPIbα-binding sites. Injection of rLep-vWA-I or rLep-vWA-II in mice resulted in diffuse pulmonary and focal renal hemorrhage but this hemorrhage was blocked by rLep-vWA-I-IgG or rLep-vWA-II-IgG. INTERPRETATION The products of L. interrogans vwa-I and vwa-II genes induce hemorrhage by competitive inhibition of vWF-mediated Hu-platelet aggregation.
Collapse
|
12
|
A novel Fas-binding outer membrane protein and lipopolysaccharide of Leptospira interrogans induce macrophage apoptosis through the Fas/FasL-caspase-8/-3 pathway. Emerg Microbes Infect 2018; 7:135. [PMID: 30061622 PMCID: PMC6066479 DOI: 10.1038/s41426-018-0135-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 02/08/2023]
Abstract
Leptospira interrogans is the major causative agent of leptospirosis, an emerging, globally spreading zoonotic infectious disease. The pathogen induces macrophage apoptosis, but the molecular basis and mechanism remain unknown. In the present study, we found that L. interrogans caused apoptosis of phagocytosis-inhibited macrophages, and the product of the L. interrogans LB047 gene (Lep-OMP047) was the unique protein captured by mouse and human Fas proteins. The recombinant expressed Lep-OMP047 (rLep-OMP047) strongly bound mouse and human Fas proteins with equilibrium association constant (KD) values of 5.20 × 10−6 to 2.84 × 10−9 M according to surface plasmon resonance measurement and isothermal titration calorimetry. Flow-cytometric examination showed that 5 μg rLep-OMP047 or 1 μg lipopolysaccharide of L. interrogans (Lep-LPS) caused 43.70% or 21.90% early apoptosis in mouse J774A.1 macrophages and 28.41% or 15.80% for PMA-differentiated human THP-1 macrophages, respectively, but the apoptosis was blocked by Fas-antagonizing IgGs, Fas siRNAs, and caspase-8/-3 inhibitors. Moreover, Lep-OMP047 was significantly upregulated during infection of macrophages. Lep-LPS promoted the expression and cytomembrane translocation of Fas and FasL in macrophages. The JNK and p38 MAPK but not ERK signaling pathways, as well as the transcription factors c-Jun and ATF2 but not CHOP, mediated Lep-LPS-induced Fas/FasL expression and translocation. TLR2 but not TLR4 mediated Lep-LPS-induced JNK/p38 MAPK activation. Therefore, we demonstrated that a novel Fas-binding OMP and LPS of L. interrogans induce macrophage apoptosis through the Fas/FasL-caspase-8/-3 pathway.
Collapse
|
13
|
Benítez-Guzmán A, Arriaga-Pizano L, Morán J, Gutiérrez-Pabello JA. Endonuclease G takes part in AIF-mediated caspase-independent apoptosis in Mycobacterium bovis-infected bovine macrophages. Vet Res 2018; 49:69. [PMID: 30021619 PMCID: PMC6052627 DOI: 10.1186/s13567-018-0567-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/11/2018] [Indexed: 01/12/2023] Open
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis encodes different virulence mechanisms to survive inside of host cells. One of the possible outcomes in this host-pathogen interaction is cell death. Previous results from our group showed that M. bovis induces a caspase-independent apoptosis in bovine macrophages with the possible participation of apoptosis inducing factor mitochondria associated 1 (AIFM1/AIF), a flavoprotein that functions as a cell-death regulator. However, contribution of other caspase-independent cell death mediators in M. bovis-infected macrophages is not known. In this study, we aimed to further characterize M. bovis-induced apoptosis, addressing Endonuclease G (Endo G) and Poly (ADP-ribose) polymerase 1 (PARP-1). In order to accomplish our objective, we infected bovine macrophages with M. bovis AN5 (MOI 10:1). Analysis of M. bovis-infected nuclear protein extracts by immunoblot, identified a 15- and 43-fold increase in concentration of mitochondrial proteins AIF and Endo G respectively. Interestingly, pretreatment of M. bovis-infected macrophages with cyclosporine A, a mitochondrial permeability transition pore inhibitor, abolished AIF and Endo G nuclear translocation. In addition, it also decreased macrophage DNA fragmentation to baseline and caused a 26.2% increase in bacterial viability. We also demonstrated that PARP-1 protein expression in macrophages did not change during M. bovis infection. Furthermore, pretreatment of M. bovis-infected bovine macrophages with 3-aminobenzamide, a PARP-1 inhibitor, did not change the proportion of macrophage DNA fragmentation. Our results suggest participation of Endo G, but not PARP-1, in M. bovis-induced macrophage apoptosis. To the best of our knowledge this is the first report associating Endo G with caspase-independent apoptosis induced by a member of the Mycobacterium tuberculosis complex.
Collapse
Affiliation(s)
- Alejandro Benítez-Guzmán
- Laboratorio de Investigación en Tuberculosis Bovina, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Arriaga-Pizano
- Unidad Médica de Investigación en Inmunoquímica, Hospital Siglo XXI, IMSS, Mexico City, Mexico
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
| | - José A Gutiérrez-Pabello
- Laboratorio de Investigación en Tuberculosis Bovina, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
14
|
Characterization of the microtranscriptome of macrophages infected with virulent, attenuated and saprophyte strains of Leptospira spp. PLoS Negl Trop Dis 2018; 12:e0006621. [PMID: 29979677 PMCID: PMC6051669 DOI: 10.1371/journal.pntd.0006621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/18/2018] [Accepted: 06/19/2018] [Indexed: 01/18/2023] Open
Abstract
Leptospirosis is a bacterial zoonosis, caused by Leptospira spp., that leads to significant morbidity and mortality worldwide. Despite considerable advances, much is yet to be discovered about disease pathogenicity. The influence of epigenetic mechanisms, particularly RNA-mediated post-transcriptional regulation of host immune response has been described following a variety of bacterial infections. The current study examined the microtranscriptome of macrophages J774A.1 following an 8h infection with virulent, attenuated and saprophyte strains of Leptospira. Microarray analysis revealed that 29 miRNAs were misregulated following leptospiral infection compared to control macrophages in a strain and virulence-specific manner. Pathway analysis for targets of these differentially expressed miRNAs suggests that several processes involved in immune response could be regulated by miRNAs. Our data provides the first evidence that host miRNAs are regulated by Leptospira infection in macrophages. A number of the identified miRNA targets participate in key immune response processes. We suggest that post-transcriptional regulation by miRNAs may play a role in host response to infection in leptospirosis. Leptospirosis is a zoonotic disease, distributed worldwide, affecting millions of people each year, and leading to sixty thousand deaths per year. These bacteria are found in soil and water and are eliminated by the urine of rodents, their natural reservoir. Through skin contact, bacteria can be acquired, infecting the host. Infection process in leptospirosis is not completely understood and here we add another layer of disease regulation. Recent studies have shown that pathogens can modulate host response. Our current study examined the expression of microRNAs in murine macrophages following an 8h infection with virulent, attenuated and saprophyte strains of Leptospira. This study provides the first evidence that these post-transcriptional regulatory molecules, microRNAs, are modulated in macrophages in a species and virulence-specific manner, following infection with different strains of Leptospira spp. These microRNAs are involved in the regulation of inflammatory and antimicrobial responses in the host and could lead to the identification of biomarkers or therapeutic targets for this disease.
Collapse
|
15
|
de Castro ÍA, Bavia L, Fraga TR, Amano MT, Breda LCD, Granados-Martinez AP, da Silva AMG, Vasconcellos SA, Isaac L. Role of Murine Complement Component C5 in Acute in Vivo Infection by Pathogenic Leptospira interrogans. Front Cell Infect Microbiol 2018; 8:63. [PMID: 29568732 PMCID: PMC5852101 DOI: 10.3389/fcimb.2018.00063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/13/2018] [Indexed: 01/07/2023] Open
Abstract
Leptospirosis is considered one of the most important zoonosis worldwide. The activation of the Complement System is important to control dissemination of several pathogens in the host. Only a few studies have employed murine models to investigate leptospiral infection and our aim in this work was to investigate the role of murine C5 during in vivo infection, comparing wild type C57BL/6 (B6 C5+/+) and congenic C57BL/6 (B6 C5−/−, C5 deficient) mice during the first days of infection. All animals from both groups survived for at least 8 days post-infection with pathogenic Leptospira interrogans serovar Kennewicki strain Fromm (LPF). At the third day of infection, we observed greater numbers of LPF in the liver of B6 C5−/− mice when compared to B6 C5+/+ mice. Later, on the sixth day of infection, the LPF population fell to undetectable levels in the livers of both groups of mice. On the third day, the inflammatory score was higher in the liver of B6 C5+/+ mice than in B6 C5−/− mice, and returned to normal on the sixth day of infection in both groups. No significant histopathological differences were observed in the lung, kidney and spleen from both infected B6 C5+/+ than B6 C5−/− mice. Likewise, the total number of circulating leukocytes was not affected by the absence of C5. The liver levels of IL-10 on the sixth day of infection was lower in the absence of C5 when compared to wild type mice. No significant differences were observed in the levels of several inflammatory cytokines when B6 C5+/+ and B6 C5−/− were compared. In conclusion, C5 may contribute to the direct killing of LPF in the first days of infection in C57BL/6 mice. On the other hand, other effector immune mechanisms probably compensate Complement impairment since the mice survival was not affected by the absence of C5 and its activated fragments, at least in the early stage of this infection.
Collapse
Affiliation(s)
- Íris A de Castro
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lorena Bavia
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Tatiana R Fraga
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Mariane T Amano
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Leandro C D Breda
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | | | - Ana M G da Silva
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Lourdes Isaac
- Laboratory of Complement, Department of Immunology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Bando SY, Iamashita P, Guth BE, dos Santos LF, Fujita A, Abe CM, Ferreira LR, Moreira-Filho CA. A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells. PLoS One 2017; 12:e0189613. [PMID: 29253906 PMCID: PMC5734773 DOI: 10.1371/journal.pone.0189613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS). The molecular mechanism underlying this capacity and the differential host cell response to HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here we conducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC strains: EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, isolated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell conditioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not significantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global gene expression comparison of both strains cultured in conditioned medium revealed a gene set exclusively expressed in EH41, which includes the dicA putative virulence factor regulator. Network analysis showed that this set of genes constitutes an EH41 specific transcriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to EH41 or to Ec472/01 presented a major transcriptional module containing many hubs related to inflammatory response that was not found in the GCN of control cells. Moreover, EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large number of genes with high positive and negative covariance interactions. EH41 grows slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its capacity for dysregulating enterocyte genome functioning and its enhanced enteric survival due to slow growth.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Beatriz E. Guth
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Luis F. dos Santos
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - André Fujita
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cecilia M. Abe
- Laboratory of Bacteriology, Butantan Institute, São Paulo, SP, Brazil
| | - Leandro R. Ferreira
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
17
|
Dong SL, Hu WL, Ge YM, Ojcius DM, Lin X, Yan J. A leptospiral AAA+ chaperone-Ntn peptidase complex, HslUV, contributes to the intracellular survival of Leptospira interrogans in hosts and the transmission of leptospirosis. Emerg Microbes Infect 2017; 6:e105. [PMID: 29184154 PMCID: PMC5717094 DOI: 10.1038/emi.2017.93] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/17/2017] [Accepted: 09/24/2017] [Indexed: 12/13/2022]
Abstract
Leptospirosis caused by Leptospira is a zoonotic disease of global importance but it is considered as an emerging or re-emerging infectious disease in many areas in the world. Until now, the mechanisms about pathogenesis and transmission of Leptospira remains poorly understood. As eukaryotic and prokaryotic proteins can be denatured in adverse environments and chaperone-protease/peptidase complexes degrade these harmful proteins, we speculate that infection may also cause leptospiral protein denaturation, and the HslU and HslV proteins of L. interrogans may compose a complex to degrade denatured proteins that enhances leptospiral survival in hosts. Here we show that leptospiral HslUV is an ATP-dependent chaperone-peptidase complex containing ATPase associated with various cellular activity (AAA+) and N-terminal nucleophile (Ntn) hydrolase superfamily domains, respectively, which hydrolyzed casein and chymotrypsin-like substrates, and this hydrolysis was blocked by threonine protease inhibitors. The infection of J774A.1 macrophages caused the increase of leptospiral denatured protein aggresomes, but more aggresomes accumulated in hslUV gene-deleted mutant. The abundant denatured leptospiral proteins are involved in ribosomal structure, flagellar assembly, two-component signaling systems and transmembrane transport. Compared to the wild-type strain, infection of cells in vitro with the mutant resulted in a higher number of dead leptospires, less leptospiral colony-forming units and lower growth ability, but also displayed a lower half lethal dose, attenuated histopathological injury and decreased leptospiral loading in lungs, liver, kidneys, peripheral blood and urine in hamsters. Therefore, our findings confirmed that HslUV AAA+ chaperone-Ntn peptidase complex of L. interrogans contributes to leptospiral survival in hosts and transmission of leptospirosis.
Collapse
Affiliation(s)
- Shi-Lei Dong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yu-Mei Ge
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94103, USA
| | - Xu'ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
18
|
Hu WL, Dong HY, Li Y, Ojcius DM, Li SJ, Yan J. Bid-Induced Release of AIF/EndoG from Mitochondria Causes Apoptosis of Macrophages during Infection with Leptospira interrogans. Front Cell Infect Microbiol 2017; 7:471. [PMID: 29184851 PMCID: PMC5694448 DOI: 10.3389/fcimb.2017.00471] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis is a global zoonotic infectious disease caused by pathogenic Leptospira species. Leptospire-induced macrophage apoptosis through the Fas/FasL-caspase-8/3 pathway plays an important role in the survival and proliferation of the pathogen in hosts. Although, the release of mitochondrial apoptosis-inducing factor (AIF) and endonuclease G (EndoG) in leptospire-infected macrophages has been described, the mechanisms linking caspase and mitochondrion-related host-cell apoptosis has not been determined. Here, we demonstrated that leptospire-infection induced apoptosis through mitochondrial damages in macrophages. Apoptosis was caused by the mitochondrial release and nuclear translocation of AIF and/or EndoG, leading to nuclear DNA fragmentation. However, the mitochondrion-related CytC-caspase-9/3 pathway was not activated. Next, we found that the release and translocation of AIF and/or EndoG was preceded by the activation of the BH3-interacting domain death agonist (Bid). Furthermore, our data demonstrated that caspase-8 was activated during the infection and caused the activation of Bid. Meanwhile, high reactive oxygen species (ROS) trigged by the infection caused the dephosphorylation of Akt, which also activated Bid. In conclusion, Bid-mediated mitochondrial release of AIF and/or EndoG followed by nuclear translocation is a major mechanism of leptospire- induced apoptosis in macrophages, and this process is modulated by both caspase-8 and ROS-Akt signal pathways.
Collapse
Affiliation(s)
- Wei-Lin Hu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Yan Dong
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Yang Li
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Shi-Jun Li
- Institute of Communicable Disease Control and Prevention, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Chen X, Li SJ, Ojcius DM, Sun AH, Hu WL, Lin X, Yan J. Mononuclear-macrophages but not neutrophils act as major infiltrating anti-leptospiral phagocytes during leptospirosis. PLoS One 2017; 12:e0181014. [PMID: 28700741 PMCID: PMC5507415 DOI: 10.1371/journal.pone.0181014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To identify the major infiltrating phagocytes during leptospirosis and examine the killing mechanism used by the host to eliminate Leptospira interrogans. METHODS Major infiltrating phagocytes in Leptospira-infected C3H/HeJ mice were detected by immunohistochemistry. Chemokines and vascular endothelial cell adhesion molecules (VECAMs) of Leptospira-infected mice and leptospirosis patients were detected by microarray and immunohistochemistry. Leptospira-phagocytosing and -killing abilities of human or mouse macrophages and neutrophils, and the roles of intracellular ROS, NO and [Ca2+]i in Leptospira-killing process were evaluated by confocal microscopy and spectrofluorimetry. RESULTS Peripheral blood mononuclear-macrophages rather than neutrophils were the main infiltrating phagocytes in the lungs, liver and kidneys of infected mice. Levels of macrophage- but not neutrophil-specific chemokines and VECAMs were significantly increased in the samples from infected mice and patients. All macrophages tested had a higher ability than neutrophils to phagocytose and kill leptospires. Higher ROS and NO levels and [Ca2+]i in the macrophages were involved in killing leptospires. Human macrophages displayed more phagolysosome formation and a stronger leptospire-killing ability to than mouse macrophages. CONCLUSIONS Mononuclear-macrophages but not neutrophils represent the main infiltrating and anti-leptospiral phagocytes during leptospirosis. A lower level of phagosome-lysosome fusion may be responsible for the lower Leptospira-killing ability of human macrophages.
Collapse
Affiliation(s)
- Xu Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Shi-Jun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - David M. Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, California, United States of America
| | - Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xu’ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
20
|
Li S, Li P, Zhang L, Hu W, Wang M, Liu Y, Tang G, Wang D, Zhou B, Yan J. The role of reactive oxygen intermediates in the intracellular fate of Leptospira interrogans in the macrophages of different hosts. PLoS One 2017; 12:e0178618. [PMID: 28575082 PMCID: PMC5456347 DOI: 10.1371/journal.pone.0178618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Background Pathogenic species of Leptospira cause leptospirosis, a global zoonotic disease. Our previous work showed that leptospires survive and replicate in human macrophages but are killed in murine macrophages. However, the mechanism responsible for the different intracellular fates of leptospires within the macrophages of different hosts remains unclear. Results The present study demonstrates that infection with Leptospira interrogans caused significant up-regulation of reactive oxygen species (ROS) and superoxide in J774A.1 cells but did so to a lesser extent in THP-1 cells. The up-regulation of ROS and superoxide was significantly inhibited by the NADPH oxidase inhibitor apocynin. The damaged leptospires and remnants of leptospires within membrane-bound vacuoles were significantly inhibited by apocynin in J774A.1 cells but were less inhibited in THP-1 cells. In addition, apocynin significantly prevented damage to leptospires and the co-localization of L. interrogans with lysosomes in J774A.1 cells but did so to a lesser extent in THP-1 cells. Furthermore, the relative fluorescence intensity levels of intracellular leptospires and the viability of the intracellular leptospires increased in apocynin pretreated J774A.1 and THP-1 cells after 2 h of infection. Conclusions The present study, based on our previous findings, further demonstrated that ROS contributed substantially to the bactericidal ability of mouse macrophages to kill intracellular leptospires. However, ROS did not contribute as much in human macrophages, which partially explains the different intracellular fates of L. interrogans in human and mouse macrophages.
Collapse
Affiliation(s)
- Shijun Li
- Institute of Communicable Disease Control and Prevention, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Peili Li
- College of Animal Science, Guizhou University, Huaxi District, Guiyang, Guizhou, P.R. China
| | - Lei Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, P.R. China
| | - Weilin Hu
- Department of Medical Microbiology and Parasitology, College of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Ming Wang
- College of Animal Science, Guizhou University, Huaxi District, Guiyang, Guizhou, P.R. China
| | - Ying Liu
- Institute of Communicable Disease Control and Prevention, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Guangpeng Tang
- Institute of Communicable Disease Control and Prevention, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Dingming Wang
- Institute of Communicable Disease Control and Prevention, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Huaxi District, Guiyang, Guizhou, P.R. China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, College of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
21
|
Subhash VV, Tan SH, Tan WL, Yeo MS, Xie C, Wong FY, Kiat ZY, Lim R, Yong WP. GTSE1 expression represses apoptotic signaling and confers cisplatin resistance in gastric cancer cells. BMC Cancer 2015. [PMID: 26209226 PMCID: PMC4514980 DOI: 10.1186/s12885-015-1550-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Platinum based therapy is commonly used in the treatment of advanced gastric cancer. However, resistance to chemotherapy is a major challenge that causes marked variation in individual response rate and survival rate. In this study, we aimed to identify the expression of GTSE1 and its correlation with cisplatin resistance in gastric cancer cells. Methods Methylation profiling was carried out in tissue samples from gastric cancer patients before undergoing neoadjuvent therapy using docetaxel, cisplatin and 5FU (DCX) and in gastric cancer cell lines. The correlation between GTSE1 expression and methylation in gastric cancer cells was determined by RT-PCR and MSP respectively. GTSE1 expression was knocked-down using shRNA’s and its effects on cisplatin cytotoxicity and cell survival were detected by MTS, proliferation and clonogenic survival assays. Additionally, the effect of GTSE1 knock down in drug induced apoptosis was determined by western blotting and apoptosis assays. Results GTSE1 exhibited a differential methylation index in gastric cancer patients and in cell lines that correlated with DCX treatment response and cisplatin sensitivity, respectively. In-vitro, GTSE1 expression showed a direct correlation with hypomethylation. Interestingly, Cisplatin treatment induced a dose dependent up regulation as well as nuclear translocation of GTSE1 expression in gastric cancer cells. Knock down of GTSE1 enhanced cisplatin cytotoxity and led to a significant reduction in cell proliferation and clonogenic survival. Also, loss of GTSE1 expression caused a significant increase in P53 mediated apoptosis in cisplatin treated cells. Conclusion Our study identifies GTSE1 as a biomarker for cisplatin resistance in gastric cancer cells. This study also suggests the repressive role of GTSE1 in cisplatin induced apoptosis and signifies its potential utility as a therapeutic target for better clinical management of gastric cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1550-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinod Vijay Subhash
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Shi Hui Tan
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Woei Loon Tan
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Mei Shi Yeo
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Chen Xie
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Foong Ying Wong
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Zee Ying Kiat
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Robert Lim
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Hospital of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Wu C, Huang W, Guo Y, Xia P, Sun X, Pan X, Hu W. Oxymatrine inhibits the proliferation of prostate cancer cells in vitro and in vivo. Mol Med Rep 2015; 11:4129-34. [PMID: 25672672 PMCID: PMC4394963 DOI: 10.3892/mmr.2015.3338] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
Oxymatrine is an alkaloid, which is derived from the traditional Chinese herb, Sophora flavescens Aiton. Oxymatrine has been shown to exhibit anti-inflammatory, antiviral, and anticancer properties. The present study aimed to investigate the anticancer effects of oxymatrine in human prostate cancer cells, and the underlying molecular mechanisms of these effects. An MTT assay demonstrated that oxymatrine significantly inhibited the proliferation of prostate cancer cells in a time- and dose-dependent manner. In addition, flow cytometry and a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay suggested that oxymatrine treatment may induce prostate cancer cell apoptosis in a dose-dependent manner. Furthermore, western blot analysis demonstrated a significant increase in the expression of p53 and bax, and a significant decrease in that of Bcl-2, in prostrate cancer cells in a dose-dependent manner. In vivo analysis demonstrated that oxymatrine inhibited tumor growth following subcutaneous inoculation of prostate cancer cells into nude mice. The results of the present study suggested that the antitumor properties of oxymatrine, may be associated with the inhibition of cell proliferation, and induction of apoptosis, via the regulation of apoptosis-associated gene expression. Therefore, the results may provide a novel approach for the development of prostate cancer therapy using oxymatrine, which is derived from the traditional Chinese herb, Sophora flavescens.
Collapse
Affiliation(s)
- Cunzao Wu
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weiping Huang
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Guo
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Peng Xia
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Xianbin Sun
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Xiaodong Pan
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Weilie Hu
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
23
|
Fan J, Lou B, Chen W, Zhang J, Lin S, Lv FF, Chen Y. Down-regulation of HDAC5 inhibits growth of human hepatocellular carcinoma by induction of apoptosis and cell cycle arrest. Tumour Biol 2014; 35:11523-11532. [PMID: 25129440 DOI: 10.1007/s13277-014-2358-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022] Open
Abstract
Histone deacetylases (HDACs) play a critical role in the proliferation, differentiation, and apoptosis of cancer cells. An obstacle for the application of HDAC inhibitors as effective anti-cancer therapeutics is that our current knowledge on the contributions of different HDACs in various cancer types remains scarce. The present study reported that the mRNA and protein levels of HDAC5 were up-regulated in human hepatocellular carcinoma (HCC) tissues and cells as shown by quantitative real-time PCR and Western blot. MTT assay and BrdU incorporation assay showed that the down-regulation of HDAC5 inhibited cell proliferation in HepG2, Hep3B, and Huh7 cell lines. Data from in vivo xenograft tumorigenesis model also demonstrated the anti-proliferative effect of HDAC5 depletion on tumor cell growth. Furthermore, the suppression of HDAC5 promoted cell apoptosis and induced G1-phase cell cycle arrest in HCC cells. On the molecular level, we observed altered expression of apoptosis-related proteins such as p53, bax, bcl-2, cyto C, and caspase 3 in HDAC5-shRNA-transfected cells. Knockdown of HDAC5 led to a significant up-regulation of p21 and down-regulation of cyclin D1 and CDK2/4/6. We also found that the down-regulation of HDAC5 substantially increased p53 stability and promoted its nuclear localization and transcriptional activity. Our study suggested that knockdown of HDAC5 could inhibit cancer cell proliferation by the induction of cell cycle arrest and apoptosis; thus, suppression of HDAC5 may be a viable option for treating HCC patients.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Cycle
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Histone Deacetylases/chemistry
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Luciferases/metabolism
- Male
- Mice
- Mice, Nude
- Middle Aged
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jian Fan
- Department of Laboratory Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Xie XH, Zhao H, Hu YY, Gu XD. Germacrone reverses Adriamycin resistance through cell apoptosis in multidrug-resistant breast cancer cells. Exp Ther Med 2014; 8:1611-1615. [PMID: 25289068 PMCID: PMC4186325 DOI: 10.3892/etm.2014.1932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/06/2014] [Indexed: 12/29/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to the chemotherapeutic treatment of breast cancer. Germacrone, the main component of Rhizoma Curcuma, has been shown to possess antitumor, anti-inflammatory and immunomodulatory properties. The aim of the present study was to investigate the effect of germacrone on MCF-7/Adriamycin (ADR) multidrug-resistant human breast cancer cells. The treatment of MCF-7/ADR cells with a combination of germacrone and ADR resulted in an increase in cytotoxicity compared with that of ADR alone, as determined using an MTT assay. Flow cytometric analysis revealed that germacrone promoted cell apoptosis in a dose-dependent manner, whilst treatment with germacrone plus ADR enhanced the apoptotic effect synergistically. Furthermore, the results from the western blot analysis demonstrated that augmenting ADR treatment with germacrone resulted in a reduction of anti-apoptotic protein expression levels (bcl-2) and enhancement of pro-apoptotic protein expression levels (p53 and bax) in MCF-7/ADR cells compared with the levels achieved by treatment with ADR alone. In addition, germacrone significantly reduced the expression of P-glycoprotein via the inhibition of the multidrug resistance 1 (MDR1) gene promoter. These findings demonstrate that germacrone has a critical role against MDR and may be a novel MDR reversal agent for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Xiao-Hong Xie
- Department of Breast Surgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Hong Zhao
- Department of Breast Surgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuan-Yuan Hu
- Department of Breast Surgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Xi-Dong Gu
- Department of Breast Surgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
25
|
Marangoni A, Bergamini C, Fato R, Cavallini C, Donati M, Nardini P, Foschi C, Cevenini R. Infection of human monocytes by Chlamydia pneumoniae and Chlamydia trachomatis: an in vitro comparative study. BMC Res Notes 2014; 7:230. [PMID: 24721461 PMCID: PMC3984436 DOI: 10.1186/1756-0500-7-230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
Background An increasing number of studies suggest that chlamydiae can infect immune cells. The altered immune cell function could contribute to the progression of several chronic inflammatory diseases. The aim of this study was to comparatively evaluate Chlamydia pneumoniae (CP) and Chlamydia trachomatis (CT) interactions with in vitro infected human blood monocytes. Results Fresh isolated monocytes were infected with viable CP and CT elementary bodies and infectivity was evaluated by recultivating disrupted monocytes in permissive epithelial cells. The production of reactive oxygen and nitrogen species was studied in the presence of specific fluorescent probes. Moreover, TNF-α, INF-α, INF-β and INF-γ gene expression was determined. CT clearance from monocytes was complete at any time points after infection, while CP was able to survive up to 48 hours after infection. When NADPH oxydase or nitric oxide synthase inhibitors were used, CT infectivity in monocytes was restored, even if at low level, and CT recovery’s rate was comparable to CP one. CT-infected monocytes produced significantly higher levels of reactive species compared with CP-infected monocytes, at very early time points after infection. In the same meanwhile, TNF-α and INF-γ gene expression was significantly increased in CT-infected monocytes. Conclusions Our data confirm that CP, but not CT, is able to survive in infected monocytes up to 48 hours post-infection. The delay in reactive species and cytokines production by CP-infected monocytes seems to be crucial for CP survival.
Collapse
Affiliation(s)
- Antonella Marangoni
- Microbiology, DIMES, University of Bologna, S,Orsola Hospital, via Massarenti 9, 40138 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhao JF, Chen HH, Ojcius DM, Zhao X, Sun D, Ge YM, Zheng LL, Lin X, Li LJ, Yan J. Identification of Leptospira interrogans phospholipase C as a novel virulence factor responsible for intracellular free calcium ion elevation during macrophage death. PLoS One 2013; 8:e75652. [PMID: 24124502 PMCID: PMC3790881 DOI: 10.1371/journal.pone.0075652] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/17/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leptospira-induced macrophage death has been confirmed to play a crucial role in pathogenesis of leptospirosis, a worldwide zoonotic infectious disease. Intracellular free Ca(2+) concentration ([Ca(2+)]i) elevation induced by infection can cause cell death, but [Ca(2+)]i changes and high [Ca(2+)]i-induced death of macrophages due to infection of Leptospira have not been previously reported. METHODOLOGY/PRINCIPAL FINDINGS We first used a Ca(2+)-specific fluorescence probe to confirm that the infection of L. interrogans strain Lai triggered a significant increase of [Ca(2+)]i in mouse J774A.1 or human THP-1 macrophages. Laser confocal microscopic examination showed that the [Ca(2+)]i elevation was caused by both extracellular Ca(2+) influx through the purinergic receptor, P2X7, and Ca(2+) release from the endoplasmic reticulum, as seen by suppression of [Ca(2+)]i elevation when receptor-gated calcium channels were blocked or P2X7 was depleted. The LB361 gene product of the spirochete exhibited phosphatidylinositol phospholipase C (L-PI-PLC) activity to hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2) into inositol-1,4,5-trisphosphate (IP3), which in turn induces intracellular Ca(2+) release from endoplasmic reticulum, with the Km of 199 µM and Kcat of 8.566E-5 S(-1). Secretion of L-PI-PLC from the spirochete into supernatants of leptospire-macrophage co-cultures and cytosol of infected macrophages was also observed by Western Blot assay. Lower [Ca(2+)]i elevation was induced by infection with a LB361-deficient leptospiral mutant, whereas transfection of the LB361 gene caused a mild increase in [Ca(2+)]i. Moreover, PI-PLCs (PI-PLC-β3 and PI-PLC-γ1) of the two macrophages were activated by phosphorylation during infection. Flow cytometric detection demonstrated that high [Ca(2+)]i increases induced apoptosis and necrosis of macrophages, while mild [Ca(2+)]i elevation only caused apoptosis. CONCLUSIONS/SIGNIFICANCE This study demonstrated that L. interrogans infection induced [Ca(2+)]i elevation through extracellular Ca(2+) influx and intracellular Ca(2+) release cause macrophage apoptosis and necrosis, and the LB361 gene product was shown to be a novel PI-PLC of L. interrogans responsible for the [Ca(2+)]i elevation.
Collapse
Affiliation(s)
- Jing-Fang Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Depatment of Clinical Laboratory, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, P.R. China
| | - Hong-Hu Chen
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - David M. Ojcius
- Health Sciences Research Institute and Department Molecular Cell Biology, University of California Merced, Merced, California, United States of America
| | - Xin Zhao
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Dexter Sun
- Department of Neurology and Neuroscience, New York Presbyterian Hospital and Hospital for Special Surgery, Cornell University Weill Medical College, New York, New York, United States of America
| | - Yu-Mei Ge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Lin-Li Zheng
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xu’ai Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jie Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|