1
|
Narwal M, Jain S, Rathore S, Mohmmed A. Plasmodium falciparum OPA3-like protein (PfOPA3) is essential for maintenance of mitochondrial homeostasis and parasite proliferation. FASEB J 2023; 37:e23235. [PMID: 37819580 DOI: 10.1096/fj.202201386rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Metabolic pathways and proteins responsible for maintaining mitochondrial dynamics and homeostasis in the Plasmodium parasite, the causative agent of malaria, remain to be elucidated. Here, we identified and functionally characterized a novel OPA3-like domain-containing protein in P. falciparum (PfOPA3). We show that PfOPA3 is expressed in the intraerythrocytic stages of the parasite and localizes to the mitochondria. Inducible knock-down of PfOPA3 using GlmS ribozyme hindered the normal intraerythrocytic cycle of the parasites; specifically, PfOPA3-iKD disrupted parasite development as well as parasite division and segregation at schizont stages, which resulted in a drastic reduction in the number of merozoites progenies. Parasites lacking PfOPA3 show severe defects in the development of functional mitochondria; the mitochondria showed reduced activity of mtETC but not ATP synthesis, as evidenced by reduced activity of complex III of the mtETC, and increased sensitivity for drugs targeting DHODH as well as complex III, but not to the drugs targeting complex V. Further, PfOPA3 downregulation leads to reduction in the level of mitochondrial proton transport uncoupling protein (PfUCP) to compensate reduced activity of complex III and maintain proton efflux across the inner membrane. The reduced activity of DHODH, which is responsible for pyrimidine biosynthesis required for nuclear DNA synthesis, resulted in a significant reduction in parasite nuclear division and generation of progeny. In conclusion, we show that PfOPA3 is essential for the functioning of mtETC and homeostasis required for the development of functional mitochondria as well as for parasite segregation, and thus PfOPA3 is crucial for parasite survival during blood stages.
Collapse
Affiliation(s)
- Monika Narwal
- Parasite Cell Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shilpi Jain
- Parasite Cell Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Asif Mohmmed
- Parasite Cell Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Azrin NAM, Ali MSM, Rahman RNZRA, Oslan SN, Noor NDM. Versatility of subtilisin: A review on structure, characteristics, and applications. Biotechnol Appl Biochem 2022; 69:2599-2616. [PMID: 35019178 DOI: 10.1002/bab.2309] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
Abstract
Due to its thermostability and high pH compatibility, subtilisin is most known for its role as an additive for detergents in which it is categorized as a serine protease according to MEROPS database. Subtilisin is typically isolated from various bacterial species of the Bacillus genus such as Bacillus subtilis, B. amyloliquefaciens, B. licheniformis, and various other organisms. It is composed of 268-275 amino acid residues and is initially secreted in the precursor form, preprosubtilisin, which is composed of 29-residues signal peptide, 77-residues propeptide, and 275-residues active subtilisin. Subtilisin is known for the presence of high and low affinity calcium binding sites in its structure. Native subtilisin has general properties of thermostability, tolerance to neutral to high pH, broad specificity, and calcium-dependent stability, which contribute to the versatility of subtilisin applicability. Through protein engineering and immobilization technologies, many variants of subtilisin have been generated, which increase the applicability of subtilisin in various industries including detergent, food processing and packaging, synthesis of inhibitory peptides, therapeutic, and waste management applications.
Collapse
Affiliation(s)
- Nur Aliyah Mohd Azrin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
3
|
Anwar O, Islam M, Thakur V, Kaur I, Mohmmed A. Defining ER-mitochondria contact dynamics in Plasmodium falciparum by targeting component of phospholipid synthesis pathway, Phosphatidylserine synthase (PfPSS). Mitochondrion 2022; 65:124-138. [PMID: 35623558 DOI: 10.1016/j.mito.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/14/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
The malaria parasite completes the asexual cycle inside the host erythrocyte, which requires extensive membrane biogenesis for its development and multiplication. Metabolic pathways for the synthesis of membrane phospholipids (PL), including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), are crucial for parasite survival. Here, we have studied the P. falciparum enzyme responsible for PS synthesis, Phosphatidylserine synthase (PfPSS), GFP targeting approach confirmed it to be localized in the parasite ER as well as in ER-protrusions. Detailed high resolution microscopy, using these transgenic parasites expressing PfPSS-GFP, redefined the dynamics of ER during the intraerythrocytic life cycle and its association with the mitochondria. We report for the first time presence of ER-mitochondria contact (ERMC) in Plasmodium; ERMC is formed by PfPSS containing ER-protrusions, which associate with the mitochondria surface throughout the parasite growth cycle. Further, ERMC is found to be stable and refractory to ER and mitochondrial stresses, suggesting that it is formed through strong tethering complexes. PfPSS was found to interact with other major key enzyme involved in PL synthesis, choline/Etn-phosphotransferase (CEPT), which suggest that ER is the major site for PL biosynthesis. Overall, this study defines the morphological organisation of ERMC which mediates PL synthesis/transport in the Plasmodium.
Collapse
Affiliation(s)
- Omair Anwar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Muzahidul Islam
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India.
| |
Collapse
|
4
|
Asad M, Yamaryo-Botté Y, Hossain ME, Thakur V, Jain S, Datta G, Botté CY, Mohmmed A. An essential vesicular-trafficking phospholipase mediates neutral lipid synthesis and contributes to hemozoin formation in Plasmodium falciparum. BMC Biol 2021; 19:159. [PMID: 34380472 PMCID: PMC8359613 DOI: 10.1186/s12915-021-01042-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum is the pathogen responsible for the most devastating form of human malaria. As it replicates asexually in the erythrocytes of its human host, the parasite feeds on haemoglobin uptaken from these cells. Heme, a toxic by-product of haemoglobin utilization by the parasite, is neutralized into inert hemozoin in the food vacuole of the parasite. Lipid homeostasis and phospholipid metabolism are crucial for this process, as well as for the parasite’s survival and propagation within the host. P. falciparum harbours a uniquely large family of phospholipases, which are suggested to play key roles in lipid metabolism and utilization. Results Here, we show that one of the parasite phospholipase (P. falciparum lysophospholipase, PfLPL1) plays an essential role in lipid homeostasis linked with the haemoglobin degradation and heme conversion pathway. Fluorescence tagging showed that the PfLPL1 in infected blood cells localizes to dynamic vesicular structures that traffic from the host-parasite interface at the parasite periphery, through the cytosol, to get incorporated into a large vesicular lipid rich body next to the food-vacuole. PfLPL1 is shown to harbour enzymatic activity to catabolize phospholipids, and its transient downregulation in the parasite caused a significant reduction of neutral lipids in the food vacuole-associated lipid bodies. This hindered the conversion of heme, originating from host haemoglobin, into the hemozoin, and disrupted the parasite development cycle and parasite growth. Detailed lipidomic analyses of inducible knock-down parasites deciphered the functional role of PfLPL1 in generation of neutral lipid through recycling of phospholipids. Further, exogenous fatty-acids were able to complement downregulation of PfLPL1 to rescue the parasite growth as well as restore hemozoin levels. Conclusions We found that the transient downregulation of PfLPL1 in the parasite disrupted lipid homeostasis and caused a reduction in neutral lipids essentially required for heme to hemozoin conversion. Our study suggests a crucial link between phospholipid catabolism and generation of neutral lipids (TAGs) with the host haemoglobin degradation pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01042-z.
Collapse
Affiliation(s)
- Mohd Asad
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Mohammad E Hossain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Shaifali Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Gaurav Datta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Cyrille Y Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India.
| |
Collapse
|
5
|
The HslV Protease from Leishmania major and Its Activation by C-terminal HslU Peptides. Int J Mol Sci 2019; 20:ijms20051021. [PMID: 30813632 PMCID: PMC6429459 DOI: 10.3390/ijms20051021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
HslVU is an ATP-dependent proteolytic complex present in certain bacteria and in the mitochondrion of some primordial eukaryotes, including deadly parasites such as Leishmania. It is formed by the dodecameric protease HslV and the hexameric ATPase HslU, which binds via the C-terminal end of its subunits to HslV and activates it by a yet unclear allosteric mechanism. We undertook the characterization of HslV from Leishmania major (LmHslV), a trypanosomatid that expresses two isoforms for HslU, LmHslU1 and LmHslU2. Using a novel and sensitive peptide substrate, we found that LmHslV can be activated by peptides derived from the C-termini of both LmHslU1 and LmHslU2. Truncations, Ala- and D-scans of the C-terminal dodecapeptide of LmHslU2 (LmC12-U2) showed that five out of the six C-terminal residues of LmHslU2 are essential for binding to and activating HslV. Peptide cyclisation with a lactam bridge allowed shortening of the peptide without loss of potency. Finally, we found that dodecapeptides derived from HslU of other parasites and bacteria are able to activate LmHslV with similar or even higher efficiency. Importantly, using electron microscopy approaches, we observed that the activation of LmHslV was accompanied by a large conformational remodeling, which represents a yet unidentified layer of control of HslV activation.
Collapse
|
6
|
Krishnan KM, Williamson KC. The proteasome as a target to combat malaria: hits and misses. Transl Res 2018; 198:40-47. [PMID: 30009761 PMCID: PMC6422032 DOI: 10.1016/j.trsl.2018.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 01/25/2023]
Abstract
The proteasome plays a vital role throughout the life cycle as Plasmodium parasites quickly adapt to a new host and undergo a series of morphologic changes during asexual replication and sexual differentiation. Plasmodium carries 3 different types of protease complexes: typical eukaryotic proteasome (26S) that resides in the cytoplasm and the nucleus, a prokaryotic proteasome homolog ClpQ that resides in the mitochondria, and a caseinolytic protease complex ClpP that resides in the apicoplast. In silico prediction in conjunction with immunoprecipitation analysis of ubiquitin conjugates have suggested that over half of the Plasmodium falciparum proteome during asexual reproduction are potential targets for ubiquitination. The marked potency of multiple classes of proteasome inhibitors against all stages of the life cycle, synergy with the current frontline antimalarial, artemisinin, and recent advances identifying differences between Plasmodium and human proteasomes strongly support further drug development efforts.
Collapse
Affiliation(s)
| | - Kim C Williamson
- Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| |
Collapse
|
7
|
Florentin A, Cobb DW, Fishburn JD, Cipriano MJ, Kim PS, Fierro MA, Striepen B, Muralidharan V. PfClpC Is an Essential Clp Chaperone Required for Plastid Integrity and Clp Protease Stability in Plasmodium falciparum. Cell Rep 2017; 21:1746-1756. [PMID: 29141210 PMCID: PMC5726808 DOI: 10.1016/j.celrep.2017.10.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/17/2017] [Accepted: 10/21/2017] [Indexed: 01/11/2023] Open
Abstract
The deadly malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid, known as the apicoplast, that functions to produce essential metabolites, and drugs that target the apicoplast are clinically effective. Several prokaryotic caseinolytic protease (Clp) genes have been identified in the Plasmodium genome. Using phylogenetic analysis, we focused on the Clp members that may form a regulated proteolytic complex in the apicoplast. We genetically targeted members of this complex and generated conditional mutants of the apicoplast-localized PfClpC chaperone and PfClpP protease. Conditional inhibition of the PfClpC chaperone resulted in growth arrest and apicoplast loss and was rescued by addition of the essential apicoplast-derived metabolite IPP. Using a double-conditional mutant parasite line, we discovered that the chaperone activity is required to stabilize the mature protease, revealing functional interactions. These data demonstrate the essential function of PfClpC in maintaining apicoplast integrity and its role in regulating the proteolytic activity of the Clp complex.
Collapse
Affiliation(s)
- Anat Florentin
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - David W Cobb
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Jillian D Fishburn
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Michael J Cipriano
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Paul S Kim
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Manuel A Fierro
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Boris Striepen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Cao S, Du N, Chen H, Pang Y, Zhang Z, Zheng J, Jia H. Toxoplasma gondii Clp family protein: TgClpB1 plays a crucial role in thermotolerance. Oncotarget 2017; 8:86117-86129. [PMID: 29156781 PMCID: PMC5689671 DOI: 10.18632/oncotarget.20989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/27/2017] [Indexed: 01/27/2023] Open
Abstract
Caseinolytic peptidase B (ClpB) plays a pivotal role in suppressing and reversing protein aggregation. Toxoplasma gondii is an intracellular parasitic protozoan that infects a wide variety of mammals and birds and therefore is exposed to a broad range of living condition. We screened ToxoDB (http://ToxoDB.org) and identified 10 putative T. gondii genes encoding members of the Clp superfamily of caseinolytic proteases and chaperones. Of these, we focused on characterizing the Class I ATP-dependent molecular chaperones TgClpB1, TgClpB2, and TgClpB3. We found that TgClpB1, the most divergent of the five T. gondii Class I Clp ATPases, is cytoplasmic, TgClpB2 is found in the mitochondria of the parasites, and TgClpB3 is a ClpB with novel apicoplast localization. Knockout strains of TgClpB1 and TgClpB2 were established by CRISPR/Cas9 mutagenesis, and their complementing strains were constructed with FLAG-tag. Although knockout of TgClpB1 or TgClpB2 did not affect growth under normal circumstances, TgClpB1 was required for T. gondii thermotolerance. The growth, replication, and invasion capabilities of TgClpB1-deficient mutants were significantly inhibited after extracellular parasites were pretreated at 45°C. Moreover, TgClpB1 were observed at the poles of the ΔTgClpB1 FLAG-tagged strain treated at 42°C.
Collapse
Affiliation(s)
- Shinuo Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nali Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Heming Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoxia Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jun Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Deu E. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J 2017; 284:2604-2628. [PMID: 28599096 PMCID: PMC5575534 DOI: 10.1111/febs.14130] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/29/2017] [Accepted: 06/06/2017] [Indexed: 01/17/2023]
Abstract
Malaria is a devastating parasitic disease affecting half of the world's population. The rapid emergence of resistance against new antimalarial drugs, including artemisinin-based therapies, has made the development of drugs with novel mechanisms of action extremely urgent. Proteases are enzymes proven to be well suited for target-based drug development due to our knowledge of their enzymatic mechanisms and active site structures. More importantly, Plasmodium proteases have been shown to be involved in a variety of pathways that are essential for parasite survival. However, pharmacological rather than target-based approaches have dominated the field of antimalarial drug development, in part due to the challenge of robustly validating Plasmodium targets at the genetic level. Fortunately, over the last few years there has been significant progress in the development of efficient genetic methods to modify the parasite, including several conditional approaches. This progress is finally allowing us not only to validate essential genes genetically, but also to study their molecular functions. In this review, I present our current understanding of the biological role proteases play in the malaria parasite life cycle. I also discuss how the recent advances in Plasmodium genetics, the improvement of protease-oriented chemical biology approaches, and the development of malaria-focused pharmacological assays, can be combined to achieve a robust biological, chemical and therapeutic validation of Plasmodium proteases as viable drug targets.
Collapse
Affiliation(s)
- Edgar Deu
- Chemical Biology Approaches to Malaria LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
10
|
Jenkins BJ, Daly TM, Morrisey JM, Mather MW, Vaidya AB, Bergman LW. Characterization of a Plasmodium falciparum Orthologue of the Yeast Ubiquinone-Binding Protein, Coq10p. PLoS One 2016; 11:e0152197. [PMID: 27015086 PMCID: PMC4807763 DOI: 10.1371/journal.pone.0152197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
Coenzyme Q (CoQ, ubiquinone) is a central electron carrier in mitochondrial respiration. CoQ is synthesized through multiple steps involving a number of different enzymes. The prevailing view that the CoQ used in respiration exists as a free pool that diffuses throughout the mitochondrial inner membrane bilayer has recently been challenged. In the yeast Saccharomyces cerevisiae, deletion of the gene encoding Coq10p results in respiration deficiency without inhibiting the synthesis of CoQ, suggesting that the Coq10 protein is critical for the delivery of CoQ to the site(s) of respiration. The precise mechanism by which this is achieved remains unknown at present. We have identified a Plasmodium orthologue of Coq10 (PfCoq10), which is predominantly expressed in trophozoite-stage parasites, and localizes to the parasite mitochondrion. Expression of PfCoq10 in the S. cerevisiae coq10 deletion strain restored the capability of the yeast to grow on respiratory substrates, suggesting a remarkable functional conservation of this protein over a vast evolutionary distance, and despite a relatively low level of amino acid sequence identity. As the antimalarial drug atovaquone acts as a competitive inhibitor of CoQ, we assessed whether over-expression of PfCoq10 altered the atovaquone sensitivity in parasites and in yeast mitochondria, but found no alteration of its activity.
Collapse
Affiliation(s)
- Bethany J. Jenkins
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Thomas M. Daly
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Joanne M. Morrisey
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Michael W. Mather
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Lawrence W. Bergman
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|