1
|
Kumari S, Sinha A. Culture and transfection: Two major bottlenecks in understanding Plasmodium vivax biology. Front Microbiol 2023; 14:1144453. [PMID: 37082177 PMCID: PMC10110902 DOI: 10.3389/fmicb.2023.1144453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The long term in vitro culture of Plasmodium falciparum was successfully established by Trager and Jensen in 1976; however it largely remains unachieved for P. vivax. The major obstacle associated with Plasmodium vivax in vitro culture is its predilection for invading younger reticulocytes and the complex remodelling of invaded reticulocytes. There are many factors under exploration for this predilection and host–parasite interactions between merozoites and invaded reticulocytes. These include various factors related to parasite, host and environment such as compromised reticulocyte osmotic stability after invasion, abundance of iron in the reticulocytes which makes them favourable for P. vivax growth and propagation and role of a hypoxic environment in P. vivax in vitro growth. P. vivax blood stage transfection represents another major hurdle towards understanding this parasite’s complex biology. Efforts in making this parasite amenable for molecular investigation by genetic modification are limited. Newer approaches in sustaining a longer in vitro culture and thereby help advancing transfection technologies in P. vivax are urgently needed that can be explored to understand the unique biology of this parasite.
Collapse
|
2
|
Plasmepsin-like Aspartyl Proteases in Babesia. Pathogens 2021; 10:pathogens10101241. [PMID: 34684190 PMCID: PMC8540915 DOI: 10.3390/pathogens10101241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Apicomplexan genomes encode multiple pepsin-family aspartyl proteases (APs) that phylogenetically cluster to six independent clades (A to F). Such diversification has been powered by the function-driven evolution of the ancestral apicomplexan AP gene and is associated with the adaptation of various apicomplexan species to different strategies of host infection and transmission through various invertebrate vectors. To estimate the potential roles of Babesia APs, we performed qRT-PCR-based expressional profiling of Babesia microti APs (BmASP2, 3, 5, 6), which revealed the dynamically changing mRNA levels and indicated the specific roles of individual BmASP isoenzymes throughout the life cycle of this parasite. To expand on the current knowledge on piroplasmid APs, we searched the EuPathDB and NCBI GenBank databases to identify and phylogenetically analyse the complete sets of APs encoded by the genomes of selected Babesia and Theileria species. Our results clearly determine the potential roles of identified APs by their phylogenetic relation to their homologues of known function—Plasmodium falciparum plasmepsins (PfPM I–X) and Toxoplasma gondii aspartyl proteases (TgASP1–7). Due to the analogies with plasmodial plasmepsins, piroplasmid APs represent valuable enzymatic targets that are druggable by small molecule inhibitors—candidate molecules for the yet-missing specific therapy for babesiosis.
Collapse
|
3
|
Woods K, Perry C, Brühlmann F, Olias P. Theileria's Strategies and Effector Mechanisms for Host Cell Transformation: From Invasion to Immortalization. Front Cell Dev Biol 2021; 9:662805. [PMID: 33959614 PMCID: PMC8096294 DOI: 10.3389/fcell.2021.662805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
One of the first events that follows invasion of leukocytes by Theileria sporozoites is the destruction of the surrounding host cell membrane and the rapid association of the intracellular parasite with host microtubules. This is essential for the parasite to establish its niche within the cytoplasm of the invaded leukocyte and sets Theileria spp. apart from other members of the apicomplexan phylum such as Toxoplasma gondii and Plasmodium spp., which reside within the confines of a host-derived parasitophorous vacuole. After establishing infection, transforming Theileria species (T. annulata, T. parva) significantly rewire the signaling pathways of their bovine host cell, causing continual proliferation and resistance to ligand-induced apoptosis, and conferring invasive properties on the parasitized cell. Having transformed its target cell, Theileria hijacks the mitotic machinery to ensure its persistence in the cytoplasm of the dividing cell. Some of the parasite and bovine proteins involved in parasite-microtubule interactions have been fairly well characterized, and the schizont expresses at least two proteins on its membrane that contain conserved microtubule binding motifs. Theileria-encoded proteins have been shown to be translocated to the host cell cytoplasm and nucleus where they have the potential to directly modify signaling pathways and host gene expression. However, little is known about their mode of action, and even less about how these proteins are secreted by the parasite and trafficked to their target location. In this review we explore the strategies employed by Theileria to transform leukocytes, from sporozoite invasion until immortalization of the host cell has been established. We discuss the recent description of nuclear pore-like complexes that accumulate on membranes close to the schizont surface. Finally, we consider putative mechanisms of protein and nutrient exchange that might occur between the parasite and the host. We focus in particular on differences and similarities with recent discoveries in T. gondii and Plasmodium species.
Collapse
Affiliation(s)
- Kerry Woods
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW As human babesiosis caused by apicomplexan parasites of the Babesia genus is associated with transfusion-transmitted illness and relapsing disease in immunosuppressed populations, it is important to report novel findings relating to parasite biology that may be responsible for such pathology. Blood screening tools recently licensed by the FDA are also described to allow understanding of their impact on keeping the blood supply well tolerated. RECENT FINDINGS Reports of tick-borne cases within new geographical regions such as the Pacific Northwest of the USA, through Eastern Europe and into China are also on the rise. Novel features of the parasite lifecycle that underlie the basis of parasite persistence have recently been characterized. These merit consideration in deployment of both detection, treatment and mitigation tools such as pathogen inactivation technology. The impact of new blood donor screening tests in reducing transfusion transmitted babesiosis is discussed. SUMMARY New Babesia species have been identified globally, suggesting that the epidemiology of this disease is rapidly changing, making it clear that human babesiosis is a serious public health concern that requires close monitoring and effective intervention measures. Unlike other erythrocytic parasites, Babesia exploits unconventional lifecycle strategies that permit host cycles of different lengths to ensure survival in hostile environments. With the licensure of new blood screening tests, incidence of transfusion transmission babesiosis has decreased.
Collapse
Affiliation(s)
- Cheryl A Lobo
- Department of Blood-Borne Parasites, Lindsley Kimball Research Institute, New York Blood Center, New York, New York, USA
| | | | | |
Collapse
|
5
|
Alvarez JA, Rojas C, Figueroa JV. An Overview of Current Knowledge on in vitro Babesia Cultivation for Production of Live Attenuated Vaccines for Bovine Babesiosis in Mexico. Front Vet Sci 2020; 7:364. [PMID: 32671114 PMCID: PMC7332553 DOI: 10.3389/fvets.2020.00364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
The instrumentation of the in vitro culture system has allowed researchers to learn more about the metabolic and growth behavior of Babesia spp. The various applications for in vitro cultivation of Babesia include obtaining attenuated strains for vaccination or pre-munition, the selection of pure lines with different degrees of virulence, studies on biological cloning, ultrastructure, antigen production for diagnostics, drug sensitivity assessments, and different aspects of parasite biology. Although there are different types of vaccines that have been tested against bovine babesiosis, so far, the only procedure that has offered favorable results in terms of protection and safety has been the use of live attenuated vaccines. In countries, such as Australia, Argentina, Brazil, Uruguay and Israel, this type of vaccine has been produced and used. The alternative to live vaccines other than splenectomized calf-derived biological material, has been the in vitro cultivation of Babesia bovis and B. bigemina. The development of in vitro culture of Babesia spp. strains in a defined medium has been the basis for the initiation of a source of parasites and exoantigens for a variety of studies on the biochemistry and immunology of babesiosis. The use of live immunogens from attenuated strains derived from in vitro culture is highlighted, which has been proposed as an alternative to control bovine babesiosis. In several studies performed in Mexico, this type of immunogen applied to susceptible cattle has shown the induction of protection against the experimental heterologous strain challenge with both, Babesia-infected blood and animal exposure to confrontations on tick vector-infested farms. The combination of transfection technologies and the in vitro culture system as integrated methodologies would eventually give rise to the generation of genetically modified live vaccines. However, a greater challenge faced now by researchers is the large-scale cultivation of Babesia parasites for mass production and vaccine distribution.
Collapse
Affiliation(s)
| | | | - Julio V. Figueroa
- Laboratory of Bovine Babesiosis, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), National Disciplinary Research Center on Animal Health and Safety (CENID-SAI), Jiutepec, Mexico
| |
Collapse
|
6
|
Goldberg DE, Zimmerberg J. Hardly Vacuous: The Parasitophorous Vacuolar Membrane of Malaria Parasites. Trends Parasitol 2020; 36:138-146. [PMID: 31866184 PMCID: PMC6937376 DOI: 10.1016/j.pt.2019.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/30/2022]
Abstract
When a malaria parasite invades a host erythrocyte it pushes itself in and invaginates a portion of the host membrane, thereby sealing itself inside and establishing itself in the resulting vacuole. The parasitophorous vacuolar membrane (PVM) that surrounds the parasite is modified by the parasite, using its secretory organelles. To survive within this enveloping membrane, the organism must take in nutrients, secrete wastes, export proteins into the host cell, and eventually egress. Here, we review current understanding of the unique solutions Plasmodium has evolved to these challenges and discuss the remaining questions.
Collapse
Affiliation(s)
- Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
González LM, Estrada K, Grande R, Jiménez-Jacinto V, Vega-Alvarado L, Sevilla E, de la Barrera J, Cuesta I, Zaballos Á, Bautista JM, Lobo CA, Sánchez-Flores A, Montero E. Comparative and functional genomics of the protozoan parasite Babesia divergens highlighting the invasion and egress processes. PLoS Negl Trop Dis 2019; 13:e0007680. [PMID: 31425518 PMCID: PMC6715253 DOI: 10.1371/journal.pntd.0007680] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/29/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
Babesiosis is considered an emerging disease because its incidence has significantly increased in the last 30 years, providing evidence of the expanding range of this rare but potentially life-threatening zoonotic disease. Babesia divergens is a causative agent of babesiosis in humans and cattle in Europe. The recently sequenced genome of B. divergens revealed over 3,741 protein coding-genes and the 10.7-Mb high-quality draft become the first reference tool to study the genome structure of B. divergens. Now, by exploiting this sequence data and using new computational tools and assembly strategies, we have significantly improved the quality of the B. divergens genome. The new assembly shows better continuity and has a higher correspondence to B. bovis chromosomes. Moreover, we present a differential expression analysis using RNA sequencing of the two different stages of the asexual lifecycle of B. divergens: the free merozoite capable of invading erythrocytes and the intraerythrocytic parasite stage that remains within the erythrocyte until egress. Comparison of mRNA levels of both stages identified 1,441 differentially expressed genes. From these, around half were upregulated and the other half downregulated in the intraerythrocytic stage. Orthogonal validation by real-time quantitative reverse transcription PCR confirmed the differential expression. A moderately increased expression level of genes, putatively involved in the invasion and egress processes, were revealed in the intraerythrocytic stage compared with the free merozoite. On the basis of these results and in the absence of molecular models of invasion and egress for B. divergens, we have proposed the identified genes as putative molecular players in the invasion and egress processes. Our results contribute to an understanding of key parasitic strategies and pathogenesis and could be a valuable genomic resource to exploit for the design of diagnostic methods, drugs and vaccines to improve the control of babesiosis. Babesiosis has long been recognized as an economically important disease of cattle, but only in the last 40 years has Babesia been recognized as an important pathogen in humans. Babesiosis in humans is caused by one of several species (B. microti, B. divergens, B. duncani and B. venatorum). The complete Babesia lifecycle requires two hosts, the ixodid ticks and a vertebrate host. It is the parasite's ability to first recognize and then invade host erythrocytes that is central to the pathogenesis of babesiosis. Once inside the cell, the parasite begins a cycle of maturation and growth, resulting in merozoites that egress from the red blood cells (RBCs) and seek new, uninfected RBCs to invade, perpetuating the infection. To better understand this asexual lifecycle, the authors focused on the parasite genome and transcriptome of the asexual erythrocytic forms of B. divergens. Through this functional and comparative genomic approach, the authors have identified genes putatively involved in invasion, gliding motility, moving junction formation and egress, providing new insights into the molecular mechanisms of these processes necessary for B. divergens to survive and propagate during its life cycle.
Collapse
Affiliation(s)
- Luis Miguel González
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain
| | - Karel Estrada
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
| | - Ricardo Grande
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
| | - Verónica Jiménez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
| | | | - Elena Sevilla
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain
| | - Jorge de la Barrera
- Unidad de Bioinformática, Área de Unidades Centrales Científico-Técnicas, ISCIII, Majadahonda, Madrid, Spain
| | - Isabel Cuesta
- Unidad de Bioinformática, Área de Unidades Centrales Científico-Técnicas, ISCIII, Majadahonda, Madrid, Spain
| | - Ángel Zaballos
- Unidad de Genómica, Área de Unidades Centrales Científico-Técnicas, ISCIII, Majadahonda, Madrid, Spain
| | - José Manuel Bautista
- Department of Biochemistry and Molecular Biology & Research Institute Hospital 12 de Octubre, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Cheryl A. Lobo
- Blood Borne Parasites, LFKRI, New York Blood Center, New York, New York, United States of America
| | - Alejandro Sánchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
- * E-mail: (ASF); (EM)
| | - Estrella Montero
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain
- * E-mail: (ASF); (EM)
| |
Collapse
|
8
|
Babesia divergens: A Drive to Survive. Pathogens 2019; 8:pathogens8030095. [PMID: 31269710 PMCID: PMC6789513 DOI: 10.3390/pathogens8030095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
Babesia divergens is an obligate intracellular protozoan parasite that causes zoonotic disease. Central to its pathogenesis is the ability of the parasite to invade host red blood cells of diverse species, and, once in the host blood stream, to manipulate the composition of its population to allow it to endure unfavorable conditions. Here we will review key in vitro studies relating to the survival strategies that B. divergens adopts during its intraerythrocytic development to persist and how proliferation is restored in the parasite population once optimum conditions return.
Collapse
|
9
|
Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol 2019; 49:183-197. [PMID: 30690089 PMCID: PMC6988112 DOI: 10.1016/j.ijpara.2018.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022]
Abstract
The global impact of bovine babesiosis caused by the tick-borne apicomplexan parasites Babesia bovis, Babesia bigemina and Babesia divergens is vastly underappreciated. These parasites invade and multiply asexually in bovine red blood cells (RBCs), undergo sexual reproduction in their tick vectors (Rhipicephalus spp. for B. bovis and B. bigemina, and Ixodes ricinus for B. divergens) and have a trans-ovarial mode of transmission. Babesia parasites can cause acute and persistent infections to adult naïve cattle that can occur without evident clinical signs, but infections caused by B. bovis are associated with more severe disease and increased mortality, and are considered to be the most virulent agent of bovine babesiosis. In addition, babesiosis caused by B. divergens has an important zoonotic potential. The disease caused by B. bovis and B. bigemina can be controlled, at least in part, using therapeutic agents or vaccines comprising live-attenuated parasites, but these methods are limited in terms of their safety, ease of deployability and long-term efficacy, and improved control measures are urgently needed. In addition, expansion of tick habitats due to climate change and other rapidly changing environmental factors complicate efficient control of these parasites. While the ability to cause persistent infections facilitates transmission and persistence of the parasite in endemic regions, it also highlights their capacity to evade the host immune responses. Currently, the mechanisms of immune responses used by infected bovines to survive acute and chronic infections remain poorly understood, warranting further research. Similarly, molecular details on the processes leading to sexual reproduction and the development of tick-stage parasites are lacking, and such tick-specific molecules can be targets for control using alternative transmission blocking vaccines. In this review, we identify and examine key phases in the life-cycle of Babesia parasites, including dependence on a tick vector for transmission, sexual reproduction of the parasite in the midgut of the tick, parasite-dependent invasion and egression of bovine RBCs, the role of the spleen in the clearance of infected RBCs (IRBCs), and age-related disease resistance in cattle, as opportunities for developing improved control measures. The availability of integrated novel research approaches including "omics" (such as genomics, transcriptomics, and proteomics), gene modification, cytoadhesion assays, RBC invasion assays and methods for in vitro induction of sexual-stage parasites will accelerate our understanding of parasite vulnerabilities. Further, producing new knowledge on these vulnerabilities, as well as taking full advantage of existing knowledge, by filling important research gaps should result in the development of next-generation vaccines to control acute disease and parasite transmission. Creative and effective use of current and future technical and computational resources are needed, in the face of the numerous challenges imposed by these highly evolved parasites, for improving the control of this disease. Overall, bovine babesiosis is recognised as a global disease that imposes a serious burden on livestock production and human livelihood, but it largely remains a poorly controlled disease in many areas of the world. Recently, important progress has been made in our understanding of the basic biology and host-parasite interactions of Babesia parasites, yet a good deal of basic and translational research is still needed to achieve effective control of this important disease and to improve animal and human health.
Collapse
Affiliation(s)
- Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States.
| | - Heba F Alzan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Marta G Silva
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States
| | - Vignesh Rathinasamy
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - William A Poole
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Brian M Cooke
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
10
|
Kinetics of the invasion and egress processes of Babesia divergens, observed by time-lapse video microscopy. Sci Rep 2018; 8:14116. [PMID: 30237573 PMCID: PMC6148197 DOI: 10.1038/s41598-018-32349-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 11/11/2022] Open
Abstract
Based on confocal fluorescence and bright field video microscopy, we present detailed observations on the processes of invasion and egress of erythrocytes by the apicomplexan parasite Babesia divergens. Time-lapse images reveal numerous unexpected findings associated with the dynamics of B. divergens and its ability to manipulate the erythrocyte during both processes in its asexual cycle under in vitro conditions. Despite the speed at which these processes occur and the small size of the parasite, we capture infective merozoites moving vigorously and causing striking deformations in the erythrocyte’s plasma membrane during an active invasion. We also observed intraerythrocytic dynamic stages as paired pyriforms, double paired pyriforms, tetrads, unattached pyriform sister cells and multiple parasite stages resulting in the release of large numbers of merozoites over a short period. Of considerable interest is that time-lapse images reveal a novel mechanism of egress used by B. divergens to exit the human erythrocyte. The release occurs when B. divergens parasites establish contacts with the plasma membrane of the erythrocyte from within, before exiting the cell. Visualization and analysis of the images enabled us to obtain useful information and broaden our knowledge of complex and crucial events involved with parasitisation of human erythrocytes by B. divergens.
Collapse
|
11
|
Sherling ES, van Ooij C. Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes. FEMS Microbiol Rev 2017; 40:701-21. [PMID: 27587718 PMCID: PMC5007283 DOI: 10.1093/femsre/fuw016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria is caused by infection of erythrocytes by parasites of the genus Plasmodium. To survive inside erythrocytes, these parasites induce sweeping changes within the host cell, one of the most dramatic of which is the formation of multiple membranous compartments, collectively referred to as the exomembrane system. As an uninfected mammalian erythrocyte is devoid of internal membranes, the parasite must be the force and the source behind the formation of these compartments. Even though the first evidence of the presence these of internal compartments was obtained over a century ago, their functions remain mostly unclear, and in some cases completely unknown, and the mechanisms underlying their formation are still mysterious. In this review, we provide an overview of the different parts of the exomembrane system, describing the parasitophorous vacuole, the tubovesicular network, Maurer's clefts, the caveola-vesicle complex, J dots and other mobile compartments, and the small vesicles that have been observed in Plasmodium-infected cells. Finally, we combine the data into a simplified view of the exomembrane system and its relation to the alterations of the host erythrocyte. Plasmodium parasites remodel the host erythrocyte in various ways, including the formation of several membranous compartments, together referred to as the exomembrane system, within the erythrocyte cytosol that together are key to the sweeping changes in the host cell.
Collapse
Affiliation(s)
- Emma S Sherling
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
12
|
Gov N, Müllner EW, Salzer U. Cytoskeletal connectivity may guide erythrocyte membrane ex- and invagination - A discussion point how biophysical principles might be exploited by a parasite invading erythrocytes. Blood Cells Mol Dis 2017; 65:78-80. [PMID: 28499471 DOI: 10.1016/j.bcmd.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Nir Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ernst W Müllner
- Department for Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Ulrich Salzer
- Department for Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria.
| |
Collapse
|
13
|
Cursino-Santos JR, Singh M, Pham P, Lobo CA. A novel flow cytometric application discriminates among the effects of chemical inhibitors on various phases ofBabesia divergensintraerythrocytic cycle. Cytometry A 2017; 91:216-231. [DOI: 10.1002/cyto.a.23062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/09/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Manpreet Singh
- Department of Blood Borne Parasites; New York Blood Center; New York New York
| | - Petra Pham
- Flow Cytometry Core Facility; New York Blood Center; New York New York
| | - Cheryl A. Lobo
- Department of Blood Borne Parasites; New York Blood Center; New York New York
| |
Collapse
|
14
|
Løvmo SD, Speth MT, Repnik U, Koppang EO, Griffiths GW, Hildahl JP. Translocation of nanoparticles and Mycobacterium marinum across the intestinal epithelium in zebrafish and the role of the mucosal immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:508-518. [PMID: 27343826 DOI: 10.1016/j.dci.2016.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Nano- and microparticles are promising carrier systems for oral delivery of drugs or vaccines, particularly in fish aquaculture. However, the mechanisms of uptake, trans-epithelial transport and immune response to nano/micrometer sized particles, or microorganisms such as bacteria are poorly understood in fish. Here, adult zebrafish were used to study the uptake of different nano- and microparticles and the pathogenic bacteria Mycobacterium marinum in the intestine, and their interactions with epithelial cells and the mucosal immune system. Fluorescent particles or bacteria were delivered directly into the adult zebrafish intestine by oral intubation and their localization was imaged in intestine, liver and spleen sections. Zebrafish do not appear to have M-cells, but both nanoparticles and bacteria were rapidly taken up in the intestine and transported to the liver and spleen. In each tissue, both bacteria and particles largely localized to leukocytes, presumably macrophages.
Collapse
Affiliation(s)
- Signe Dille Løvmo
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Martin Tobias Speth
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Erling Olaf Koppang
- School of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Gareth Wyn Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Jon Paul Hildahl
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| |
Collapse
|
15
|
Tribensky A, Graf AW, Diehl M, Fleck W, Przyborski JM. Trafficking of PfExp1 to the parasitophorous vacuolar membrane of Plasmodium falciparum is independent of protein folding and the PTEX translocon. Cell Microbiol 2017; 19. [PMID: 27892646 DOI: 10.1111/cmi.12710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/19/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022]
Abstract
Having entered the mature human erythrocyte, the malaria parasite survives and propagates within a parasitophorous vacuole, a membrane-bound compartment separating the parasite from the host cell cytosol. The bounding membrane of this vacuole, referred to as the parasitophorous vacuolar membrane (PVM), contains parasite-encoded proteins, but how these membrane proteins are trafficked to the PVM remains unknown. Here, we have studied the trafficking of PfExp1 to the PVM. We find that trafficking of PfExp1 to the PVM is independent of the folding state of the protein and also continues unabated upon inactivation of the PVM translocon Plasmodium Translocon of Exported proteins (PTEX). Our data strongly suggest that the trafficking of membrane proteins to the PVM occurs by as yet unknown mechanism, potentially unique to Plasmodium.
Collapse
Affiliation(s)
- Anke Tribensky
- Department of Parasitology, University of Marburg, Marburg, Germany
| | - Andreas W Graf
- Department of Parasitology, University of Marburg, Marburg, Germany
| | - Mathias Diehl
- Department of Parasitology, University of Marburg, Marburg, Germany
| | - Wiebke Fleck
- Department of Parasitology, University of Marburg, Marburg, Germany
| | | |
Collapse
|
16
|
Del Carmen Terrón M, González-Camacho F, González LM, Luque D, Montero E. Ultrastructure of the Babesia divergens free merozoite. Ticks Tick Borne Dis 2016; 7:1274-1279. [PMID: 27430965 DOI: 10.1016/j.ttbdis.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 11/30/2022]
Abstract
The invasive form of the apicomplexan parasite Babesia divergens, the free merozoite, invades the erythrocytes of host vertebrates, leading to significant pathology. Although invasion is an active process critical for parasite survival, it is not yet entirely understood. Using techniques to isolate the viable free merozoite, as well as electron microscopy, we undertook a detailed morphological study and explored the sub-cellular structure of the invasive B. divergens free merozoite after it had left the host cell. We examined characteristic apicomplexan features such as the apicoplast, the inner and discontinuous double membrane complex, and the apical complex; some aspects of erythrocyte entry by B. divergens were also defined by electron microscopy. This study adds to our understanding of B. divergens free merozoites and their invasion of human erythrocytes.
Collapse
Affiliation(s)
- María Del Carmen Terrón
- Servicio de Microscopia Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km 2.2, 28220 Majadahonda, Madrid, Spain.
| | - Fernando González-Camacho
- Servicio de Microscopia Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km 2.2, 28220 Majadahonda, Madrid, Spain.
| | - Luis Miguel González
- Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahoda-Pozuelo Km 2.2, 28220 Majadahonda, Madrid, Spain.
| | - Daniel Luque
- Servicio de Microscopia Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo Km 2.2, 28220 Majadahonda, Madrid, Spain.
| | - Estrella Montero
- Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahoda-Pozuelo Km 2.2, 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
17
|
Cursino-Santos JR, Singh M, Pham P, Rodriguez M, Lobo CA. Babesia divergensbuilds a complex population structure composed of specific ratios of infected cells to ensure a prompt response to changing environmental conditions. Cell Microbiol 2016; 18:859-74. [DOI: 10.1111/cmi.12555] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Jeny R. Cursino-Santos
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Manpreet Singh
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Petra Pham
- Flow Cytometry Core Facility, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Marilis Rodriguez
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| | - Cheryl A. Lobo
- Department of Blood Borne Parasites, Lindsley F. Kimball Research Institute; New York Blood Center; New York NY USA
| |
Collapse
|
18
|
Ord RL, Lobo CA. Human Babesiosis: Pathogens, Prevalence, Diagnosis and Treatment. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015; 2:173-181. [PMID: 26594611 DOI: 10.1007/s40588-015-0025-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human babesiosis is a zoonotic disease caused by protozoan parasites of the Babesia genus, primarily in the Northeastern and Midwest United States due to B. microti, and Western Europe due to B. divergens. Parasites are transmitted by the bite of the ixodid tick when the vector takes a blood meal from the vertebrate host, and the economic importance of bovine babesiosis is well understood. The pathology of human disease is a direct result of the parasite's ability to invade host's red blood cells. The current understanding of human babesiosis epidemiology is that many infections remain asymptomatic, especially in younger or immune competent individuals, and the burden of severe pathology resides within older or immunocompromised individuals. However, transfusion-transmitted babesiosis is an emerging threat to public health as asymptomatic carriers donate blood and there are as yet no licensed or regulated tests to screen blood products for this pathogen. Reports of tick-borne cases within new geographical regions such as the Pacific Northwest of the US, through Eastern Europe, and into China are also on the rise. Further, new Babesia spp. have been identified globally as agents of severe human babesiosis, suggesting that the epidemiology of this disease is rapidly changing, and it is clear that human babesiosis is a serious public health concern that requires close monitoring and effective intervention measure.
Collapse
Affiliation(s)
- Rosalynn Louise Ord
- Department of Blood-Borne Parasites, Lindsley Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Cheryl A Lobo
- Department of Blood-Borne Parasites, Lindsley Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| |
Collapse
|
19
|
Baumeister S, Gangopadhyay P, Repnik U, Lingelbach K. Novel insights into red blood cell physiology using parasites as tools. Eur J Cell Biol 2015; 94:332-9. [DOI: 10.1016/j.ejcb.2015.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|