1
|
Ortiz-Morales G, Ruiz-Lozano RE, Morales-Mancillas NR, Homar Paez-Garza J, Rodriguez-Garcia A. Pediatric blepharokeratoconjunctivitis: A challenging ocular surface disease. Surv Ophthalmol 2025; 70:516-535. [PMID: 39828005 DOI: 10.1016/j.survophthal.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Pediatric blepharokeratoconjunctivitis (PBKC) is a chronic and recurrent ocular surface inflammatory disorder affecting children in early life. It is frequently under- or late- diagnosed, representing a potential cause of severe visual morbidity worldwide. An expert panel consensus recently agreed on its definition and proposed diagnostic criteria for suspected and definitive PBKC to reduce confusion and avoid varied terminology previously used in the literature, improving early and precise diagnosis. Previous evidence has pointed to the role of the adaptive immune system in recognizing and handling antigenic eyelid bacterial products, particularly from the cell wall, and the direct toxic and inflammatory effects of their cytolytic exotoxins on the ocular surface. PBKC is a frequent referral in pediatric and cornea clinics characterized by a history of recurrent chalazia, blepharitis, meibomian gland dysfunction, conjunctival hyperemia, phlyctenules formation, and corneal infiltrates with vascularization and scarring. The latter is a major cause of significant visual loss and amblyopia. Current treatment strategies aim to control inflammation on the ocular surface, halt disease progression, and avoid corneal involvement. Further research on pathogenic mechanisms will shed light on novel potential therapeutic strategies. Awareness of PBKC should enhance early diagnosis, prompt adequate treatment, and improve outcomes. We compile current evidence on epidemiology, pathophysiology, clinical spectrum of disease, diagnostic criteria, and management strategies for PBKC.
Collapse
Affiliation(s)
- Gustavo Ortiz-Morales
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Monterrey, Mexico
| | - Raul E Ruiz-Lozano
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Monterrey, Mexico
| | - Nallely R Morales-Mancillas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Monterrey, Mexico
| | - J Homar Paez-Garza
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Monterrey, Mexico
| | - Alejandro Rodriguez-Garcia
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Institute of Ophthalmology and Visual Sciences, Monterrey, Mexico.
| |
Collapse
|
2
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
3
|
Mishra N, Pal I, Herrera AI, Dubey A, Arthanari H, Geisbrecht BV, Prakash O. Complete non-proline backbone resonance assignments of the S. aureus neutrophil serine protease inhibitor, EapH1. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:129-134. [PMID: 37160842 PMCID: PMC10823442 DOI: 10.1007/s12104-023-10131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
The S. aureus extracellular adherence protein (Eap) and its homologs, EapH1 and EapH2, serve roles in evasion of the human innate immune system. EapH1 binds with high-affinity and inhibits the neutrophil azurophilic granule proteases neutrophil elastase, cathepsin-G and proteinase-3. Previous structural studies using X-ray crystallography have shown that EapH1 binds to neutrophil elastase and cathepsin-G using a globally similar binding mode. However, whether the same holds true in solution is unknown and whether the inhibitor experiences dynamic changes following binding remains uncertain. To facilitate solution-phase structural and biochemical studies of EapH1 and its complexes with neutrophil granule proteases, we have characterized EapH1 by multidimensional NMR spectroscopy. Here we report a total of 100% of the non-proline backbone resonance assignments of EapH1 with BMRB accession number 50,304.
Collapse
Affiliation(s)
- Nitin Mishra
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Indrani Pal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Alvaro I Herrera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Om Prakash
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
4
|
Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, Lee JYH, Hachani A, Monk IR, Stinear TP. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol 2023; 21:380-395. [PMID: 36707725 PMCID: PMC9882747 DOI: 10.1038/s41579-023-00852-y] [Citation(s) in RCA: 276] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Invasive Staphylococcus aureus infections are common, causing high mortality, compounded by the propensity of the bacterium to develop drug resistance. S. aureus is an excellent case study of the potential for a bacterium to be commensal, colonizing, latent or disease-causing; these states defined by the interplay between S. aureus and host. This interplay is multidimensional and evolving, exemplified by the spread of S. aureus between humans and other animal reservoirs and the lack of success in vaccine development. In this Review, we examine recent advances in understanding the S. aureus-host interactions that lead to infections. We revisit the primary role of neutrophils in controlling infection, summarizing the discovery of new immune evasion molecules and the discovery of new functions ascribed to well-known virulence factors. We explore the intriguing intersection of bacterial and host metabolism, where crosstalk in both directions can influence immune responses and infection outcomes. This Review also assesses the surprising genomic plasticity of S. aureus, its dualism as a multi-mammalian species commensal and opportunistic pathogen and our developing understanding of the roles of other bacteria in shaping S. aureus colonization.
Collapse
Affiliation(s)
- Benjamin P. Howden
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.410678.c0000 0000 9374 3516Department of Infectious Diseases, Austin Health, Heidelberg, Victoria Australia ,grid.416153.40000 0004 0624 1200Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria Australia
| | - Stefano G. Giulieri
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.416153.40000 0004 0624 1200Victorian Infectious Diseases Service, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Tania Wong Fok Lung
- grid.21729.3f0000000419368729Department of Paediatrics, Columbia University, New York, NY USA
| | - Sarah L. Baines
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Liam K. Sharkey
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Jean Y. H. Lee
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.419789.a0000 0000 9295 3933Department of Infectious Diseases, Monash Health, Clayton, Victoria Australia
| | - Abderrahman Hachani
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Ian R. Monk
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Timothy P. Stinear
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| |
Collapse
|
5
|
Hampton MB, Dickerhof N. Inside the phagosome: A bacterial perspective. Immunol Rev 2023; 314:197-209. [PMID: 36625601 DOI: 10.1111/imr.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The neutrophil phagosome is one of the most hostile environments that bacteria must face and overcome if they are to succeed as pathogens. Targeting bacterial defense mechanisms should lead to new therapies that assist neutrophils to kill pathogens, but this has not yet come to fruition. One of the limiting factors in this effort has been our incomplete knowledge of the complex biochemistry that occurs within the rapidly changing environment of the phagosome. The same compartmentalization that protects host tissue also limits our ability to measure events within the phagosome. In this review, we highlight the limitations in our knowledge, and how the contribution of bacteria to the phagosomal environment is often ignored. There appears to be significant heterogeneity among phagosomes, and it is important to determine whether survivors have more efficient defenses or whether they are ingested into less threatening environments than other bacteria. As part of these efforts, we discuss how monitoring or recovering bacteria from phagosomes can provide insight into the conditions they have faced. We also encourage the use of unbiased screening approaches to identify bacterial genes that are essential for survival inside neutrophil phagosomes.
Collapse
Affiliation(s)
- Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
6
|
Yan M, Song Z, Kou H, Shang G, Shang C, Chen X, Ji Y, Bao D, Cheng T, Li J, Lv X, Liu H, Chen S. New Progress in Basic Research of Macrophages in the Pathogenesis and Treatment of Low Back Pain. Front Cell Dev Biol 2022; 10:866857. [PMID: 35669508 PMCID: PMC9163565 DOI: 10.3389/fcell.2022.866857] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain (LBP) is quite common in clinical practice, which can lead to long-term bed rest or even disability. It is a worldwide health problem remains to be solved. LBP can be induced or exacerbated by abnormal structure and function of spinal tissue such as intervertebral disc (IVD), dorsal root ganglion (DRG) and muscle; IVD degeneration (IVDD) is considered as the most important among all the pathogenic factors. Inflammation, immune response, mechanical load, and hypoxia etc., can induce LBP by affecting the spinal tissue, among which inflammation and immune response are the key link. Inflammation and immune response play a double-edged sword role in LBP. As the main phagocytic cells in the body, macrophages are closely related to body homeostasis and various diseases. Recent studies have shown that macrophages are the only inflammatory cells that can penetrate the closed nucleus pulposus, expressed in various structures of the IVD, and the number is positively correlated with the degree of IVDD. Moreover, macrophages play a phagocytosis role or regulate the metabolism of DRG and muscle tissues through neuro-immune mechanism, while the imbalance of macrophages polarization will lead to more inflammatory factors to chemotaxis and aggregation, forming an "inflammatory waterfall" effect similar to "positive feedback," which greatly aggravates LBP. Regulation of macrophages migration and polarization, inhibition of inflammation and continuous activation of immune response by molecular biological technology can markedly improve the inflammatory microenvironment, and thus effectively prevent and treat LBP. Studies on macrophages and LBP were mainly focused in the last 3-5 years, attracting more and more scholars' attention. This paper summarizes the new research progress of macrophages in the pathogenesis and treatment of LBP, aiming to provide an important clinical prevention and treatment strategy for LBP.
Collapse
Affiliation(s)
- Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Xiangrong Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Ji
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Deming Bao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian Cheng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Kretschmer D, Breitmeyer R, Gekeler C, Lebtig M, Schlatterer K, Nega M, Stahl M, Stapels D, Rooijakkers S, Peschel A. Staphylococcus aureus Depends on Eap Proteins for Preventing Degradation of Its Phenol-Soluble Modulin Toxins by Neutrophil Serine Proteases. Front Immunol 2021; 12:701093. [PMID: 34552584 PMCID: PMC8451722 DOI: 10.3389/fimmu.2021.701093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophil granulocytes act as a first line of defense against pathogenic staphylococci. However, Staphylococcus aureus has a remarkable capacity to survive neutrophil killing, which distinguishes it from the less-pathogenic Staphylococcus epidermidis. Both species release phenol-soluble modulin (PSM) toxins, which activate the neutrophil formyl-peptide receptor 2 (FPR2) to promote neutrophil influx and phagocytosis, and which disrupt neutrophils or their phagosomal membranes at high concentrations. We show here that the neutrophil serine proteases (NSPs) neutrophil elastase, cathepsin G and proteinase 3, which are released into the extracellular space or the phagosome upon neutrophil FPR2 stimulation, effectively degrade PSMs thereby preventing their capacity to activate and destroy neutrophils. Notably, S. aureus, but not S. epidermidis, secretes potent NSP-inhibitory proteins, Eap, EapH1, EapH2, which prevented the degradation of PSMs by NSPs. Accordingly, a S. aureus mutant lacking all three NSP inhibitory proteins was less effective in activating and destroying neutrophils and it survived less well in the presence of neutrophils than the parental strain. We show that Eap proteins promote pathology via PSM-mediated FPR2 activation since murine intraperitoneal infection with the S. aureus parental but not with the NSP inhibitors mutant strain, led to a significantly higher bacterial load in the peritoneum and kidneys of mFpr2-/- compared to wild-type mice. These data demonstrate that NSPs can very effectively detoxify some of the most potent staphylococcal toxins and that the prominent human pathogen S. aureus has developed efficient inhibitors to preserve PSM functions. Preventing PSM degradation during infection represents an important survival strategy to ensure FPR2 activation.
Collapse
Affiliation(s)
- Dorothee Kretschmer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Ricarda Breitmeyer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Cordula Gekeler
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Marco Lebtig
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Katja Schlatterer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Mulugeta Nega
- Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany.,Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Mark Stahl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Daphne Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Suzan Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Andreas Peschel
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| |
Collapse
|
8
|
Live S. aureus and heat-killed S. aureus induce different inflammation-associated factors in bovine endometrial tissue in vitro. Mol Immunol 2021; 139:123-130. [PMID: 34481270 DOI: 10.1016/j.molimm.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/27/2021] [Accepted: 07/17/2021] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is majorly involved in bovine mastitis; however, it weakly induces pro-inflammatory factors in mammary gland epithelial cells. We aimed to clarify the involvement of S. aureus in other inflammation types and its relationship with inflammatory factor secretion in bovine endometritis. We used live S. aureus (LSA)- and heat-killed S. aureus (HK-SA)-treated bovine endometrial tissue in vitro. The HK-SA-treated group showed significantly higher IL-6, IL-1β, TNF-α, CXCL1/2 and TLR2 expression than the LSA-infected group. Contrastingly, the LSA-infected group showed significantly higher PTGS2, mPGES-1, and EP4 expression than the HK-SA treated group. There was no significant between-group difference in hyaluronan-binding protein 1 expression, which suggested similar inflammatory responses. H&E results indicated that LSA and HK-SA induced shedding of endometrial gland epithelial cells. The LSA-infected group showed higher high-mobility group box 1 protein expression than the HK-SA treated groups, which indicated differences in signaling pathway activation. Further, the LSA-treated group had higher JNK and p38 MAPK levels while the HK-SA-treated group had higher IκB-α levels. There was no significant between-group difference in the ERK signaling pathway. Our findings indicate that the pathogen-associated molecular patterns (PAMPs) of S. aureus activate pro-inflammatory factor expression via the TLR2-ERK-NF-κB signaling pathway. Contrastingly, LSA induced PGE2 accumulation via the TLR2/MAPKs signaling pathway. This is the first report that S. aureus and the PAMPs of S. aureus activate different signaling pathways and that LSA mainly induce PGE2 accumulation rather than cytokine secretion.
Collapse
|
9
|
Comprehensive Virulence Gene Profiling of Bovine Non- aureus Staphylococci Based on Whole-Genome Sequencing Data. mSystems 2019; 4:mSystems00098-18. [PMID: 30863792 PMCID: PMC6401416 DOI: 10.1128/msystems.00098-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Non-aureus staphylococci (NAS) are the most frequently isolated pathogens from milk in dairy cattle worldwide. The virulence factors (VFs) and mechanisms by which these bacteria cause udder infection are not fully known. We determined the distribution and associations of 191 VFs in 25 NAS species and investigated the relationship between VFs and disease. Although the overall number of VFs was not associated with disease severity, increasing numbers of toxin and host immune evasion genes specifically were associated with more severe disease outcomes. These findings suggest that the development of disease and the interactions of VFs with the host are complex and determined by the interplay of genes rather than just the presence of virulence genes. Together, our results provide foundational genetic knowledge to other researchers to design and conduct further experiments, focusing on understanding the synergy between VFs and roles of individual NAS species in IMI and characterizing species-specific effects on udder health. Non-aureus staphylococci (NAS) are the most frequently isolated pathogens from intramammary infection (IMI) in dairy cattle. Virulence factors (VFs) and mechanisms by which NAS cause IMI are not fully known. Herein, we analyzed the distribution of 191 VFs in 441 genomes of 25 NAS species, after classifying VFs into functional categories: adherence (n = 28), exoenzymes (n = 21), immune evasion (n = 20), iron metabolism (n = 29), and toxins (n = 93). In addition to establishing VF gene profiles, associations of VF genes between and among functional categories were computed, revealing distinctive patterns of association among VFs for various NAS species. Associations were also computed for low, medium, and high somatic cell count (SCC) and clinical mastitis (CM) isolates, demonstrating distinctive patterns of associations for low SCC and CM isolates, but no differences between high SCC and CM isolates. To determine whether VF distributions had any association with SCC or CM, various clustering approaches, including complete linkages, Ward clustering, and t-distributed stochastic neighbor embedding, were applied. However, no clustering of isolates representing low SCC, medium SCC, or high SCC or CM was identified. Regression analysis to test for associations with individual VF functional categories demonstrated that each additional toxin and host immune evasion gene increased the odds of having high SCC or CM, although an overall increase in the number of VFs was not associated with increased SCC or occurrence of CM. In conclusion, we established comprehensive VF gene profiling, determined VF gene distributions and associations, calculated pathogenic potentials of all NAS species, and detected no clear link between VF genes and mastitis. IMPORTANCE Non-aureus staphylococci (NAS) are the most frequently isolated pathogens from milk in dairy cattle worldwide. The virulence factors (VFs) and mechanisms by which these bacteria cause udder infection are not fully known. We determined the distribution and associations of 191 VFs in 25 NAS species and investigated the relationship between VFs and disease. Although the overall number of VFs was not associated with disease severity, increasing numbers of toxin and host immune evasion genes specifically were associated with more severe disease outcomes. These findings suggest that the development of disease and the interactions of VFs with the host are complex and determined by the interplay of genes rather than just the presence of virulence genes. Together, our results provide foundational genetic knowledge to other researchers to design and conduct further experiments, focusing on understanding the synergy between VFs and roles of individual NAS species in IMI and characterizing species-specific effects on udder health.
Collapse
|
10
|
de Jong NWM, van Kessel KPM, van Strijp JAG. Immune Evasion by Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0061-2019. [PMID: 30927347 PMCID: PMC11590434 DOI: 10.1128/microbiolspec.gpp3-0061-2019] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing S. aureus infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that S. aureus has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of S. aureus, such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how S. aureus evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of S. aureus are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins S. aureus is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.
Collapse
Affiliation(s)
- Nienke W M de Jong
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Flaxman A, Yamaguchi Y, van Diemen PM, Rollier C, Allen E, Elshina E, Wyllie DH. Heterogeneous early immune responses to the S. aureus EapH2 antigen induced by gastrointestinal tract colonisation impact the response to subsequent vaccination. Vaccine 2019; 37:494-501. [PMID: 30503080 DOI: 10.1016/j.vaccine.2018.11.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION S. aureus is a pathogen to which individuals are exposed shortly after birth, with immune responses to S. aureus increasing during childhood. There is marked heterogeneity between the anti- S. aureus immune responses of different humans, the basis of which is not fully understood. METHODS To investigate development of anti-S. aureus immune responses, we studied S. aureus colonised mice under controlled conditions. Mice were either acquired colonised from breeding colonies, or experimentally colonised by exposure to a cage environment which had been sprayed with a S. aureus suspension. Colonisation was monitored by sequential stool sampling, and immunoglobulin levels against both whole fixed S. aureus and individual S. aureus antigens quantified. The immunological impact of colonisation on subsequent vaccination was investigated. RESULTS Colonised BALB/c and BL/6 mice develop serum anti- S. aureus cell surface IgG1 antibodies. Responses were proportional to the cumulative S. aureus bioburden in the mice, and were higher in BALB/c mice, which have higher colonisation levels, than in C57BL/6 animals. We observed marked variation in the induction of anti-cell surface antibodies, even in genetically identical mice experimentally colonised with the same S. aureus clone. Heterogeneity was also evident when monitoring immune responses to the secreted S. aureus protein EapH2. Approximately 50% of colonised mice developed anti-EapH2 responses (responders); in other mice, responses were not significantly different to those in uncolonised mice (non-responders). Following vaccination with a replication deficient adenovirus expressing EapH2, less anti-EapH2 antibody was generated in non-responder than responder animals. CONCLUSIONS In genetically identical mice, S. aureus colonisation results in all-or-nothing antibody responses against some antigens, including EapH2. For antigens involved in colonisation success by microbes, apparently stochastic early immune responses may impact both vaccine responses and the establishment of an animal-specific microbiome.
Collapse
Affiliation(s)
- Amy Flaxman
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK
| | - Yuko Yamaguchi
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK
| | - Pauline M van Diemen
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK
| | - Christine Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Biomedical Research Centre, CCVTM, Churchill Drive, UK
| | - Elizabeth Allen
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK
| | - Elizaveta Elshina
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK
| | - David H Wyllie
- Jenner Institute, University of Oxford, Centre for Cellular and Molecular Physiology, Oxford, UK.
| |
Collapse
|
12
|
Elshina E, Allen ER, Flaxman A, van Diemen PM, Milicic A, Rollier CS, Yamaguchi Y, Wyllie DH. Vaccination with the Staphylococcus aureus secreted proteins EapH1 and EapH2 impacts both S. aureus carriage and invasive disease. Vaccine 2018; 37:502-509. [PMID: 30502067 DOI: 10.1016/j.vaccine.2018.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION There is a need for an efficacious vaccine reducing infections due to Staphylococcus aureus, a common cause of community and hospital infection. Infecting organisms originate from S. aureus populations colonising the nares and bowel. Antimicrobials are widely used to transiently reduce S. aureus colonisation prior to surgery, a practice which is selecting for resistant S. aureus isolates. S. aureus secretes multiple proteins, including the protease inhibitors extracellular adhesion protein homologue 1 and 2 (EapH1 and EapH2). METHODS Mice were vaccinated intramuscularly or intranasally with Adenovirus serotype 5 and Modified Vaccinia Ankara viral vectors expressing EapH1 and EapH2 proteins, or with control viruses. Using murine S. aureus colonisation models, we monitored S. aureus colonisation by sequential stool sampling. Monitoring of S. aureus invasive disease after intravenous challenge was performed using bacterial load and abscess numbers in the kidney. RESULTS Intramuscular vaccination with Adenovirus serotype 5 and Modified Vaccinia Ankara viral vectors expressing EapH1 and EapH2 proteins significantly reduces bacterial recovery in the murine renal abscess model of infection, but the magnitude of the effect is small. A single intranasal vaccination with an adenoviral vaccine expressing these proteins reduced S. aureus gastrointestinal (GI) tract colonisation. CONCLUSION Vaccination against EapH1 / EapH2 proteins may offer an antibiotic independent way to reduce S. aureus colonisation, as well as contributing to protection against S. aureus invasive disease.
Collapse
Affiliation(s)
- Elizaveta Elshina
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Elizabeth R Allen
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Amy Flaxman
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Pauline M van Diemen
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Anita Milicic
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, United Kingdom
| | - Yuko Yamaguchi
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - David H Wyllie
- Jenner Institute, Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom.
| |
Collapse
|
13
|
de Jong NWM, Ploscariu NT, Ramyar KX, Garcia BL, Herrera AI, Prakash O, Katz BB, Leidal KG, Nauseef WM, van Kessel KPM, van Strijp JAG, Geisbrecht BV. A structurally dynamic N-terminal region drives function of the staphylococcal peroxidase inhibitor (SPIN). J Biol Chem 2018; 293:2260-2271. [PMID: 29306874 PMCID: PMC5818189 DOI: 10.1074/jbc.ra117.000134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/21/2017] [Indexed: 01/07/2023] Open
Abstract
The heme-containing enzyme myeloperoxidase (MPO) is critical for optimal antimicrobial activity of human neutrophils. We recently discovered that the bacterium Staphylococcus aureus expresses a novel immune evasion protein, called SPIN, that binds tightly to MPO, inhibits MPO activity, and contributes to bacterial survival following phagocytosis. A co-crystal structure of SPIN bound to MPO suggested that SPIN blocks substrate access to the catalytic heme by inserting an N-terminal β-hairpin into the MPO active-site channel. Here, we describe a series of experiments that more completely define the structure/function relationships of SPIN. Whereas the SPIN N terminus adopts a β-hairpin confirmation upon binding to MPO, the solution NMR studies presented here are consistent with this region of SPIN being dynamically structured in the unbound state. Curiously, whereas the N-terminal β-hairpin of SPIN accounts for ∼55% of the buried surface area in the SPIN-MPO complex, its deletion did not significantly change the affinity of SPIN for MPO but did eliminate the ability of SPIN to inhibit MPO. The flexible nature of the SPIN N terminus rendered it susceptible to proteolytic degradation by a series of chymotrypsin-like proteases found within neutrophil granules, thereby abrogating SPIN activity. Degradation of SPIN was prevented by the S. aureus immune evasion protein Eap, which acts as a selective inhibitor of neutrophil serine proteases. Together, these studies provide insight into MPO inhibition by SPIN and suggest possible functional synergy between two distinct classes of S. aureus immune evasion proteins.
Collapse
Affiliation(s)
- Nienke W. M. de Jong
- From Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nicoleta T. Ploscariu
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Kasra X. Ramyar
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Brandon L. Garcia
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Alvaro I. Herrera
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Om Prakash
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Benjamin B. Katz
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Kevin G. Leidal
- the Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52240, and
| | - William M. Nauseef
- the Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52240, and ,the Iowa City Veterans Affairs Health Care System, Iowa City, Iowa 52246
| | - Kok P. M. van Kessel
- From Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jos A. G. van Strijp
- From Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Brian V. Geisbrecht
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, , To whom correspondence should be addressed:
Dept. of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, 1711 Claflin Rd., Manhattan, KS 66506. Tel.:
785-532-3154; Fax:
785-532-7278; E-mail:
| |
Collapse
|
14
|
Rose WE, Shukla SK, Berti AD, Hayney MS, Henriquez KM, Ranzoni A, Cooper MA, Proctor RA, Nizet V, Sakoulas G. Increased Endovascular Staphylococcus aureus Inoculum Is the Link Between Elevated Serum Interleukin 10 Concentrations and Mortality in Patients With Bacteremia. Clin Infect Dis 2018; 64:1406-1412. [PMID: 28205673 DOI: 10.1093/cid/cix157] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
Background Cell wall peptidoglycan stimulates interleukin 10 (IL-10) production in Staphylococcus aureus bacteremia (SaB) animal models, but clinical data are not available. This study evaluates the impact of intravascular bacterial cell numbers (ie, the level of bacteremia), in patients at the time of clinical presentation on IL-10 production and its association with S. aureus bacteremia (SaB) mortality. Methods Blood and isolates were collected in 133 consecutive SaB patients. Serum IL-10 was quantified by an electrochemoluminescence assay. Bacterial inoculum was measured in patient sera with elevated (n = 8) or low (n = 8) IL-10 using a magnetic bacterial capture assay. Staphylococcus aureus from these 2 groups were introduced into whole blood ex vivo to determine IL-10 production with variable inocula. Results IL-10 serum concentration was higher in SaB patient mortality (n = 27) vs survival (n = 106) (median, 36.0 pg/mL vs 10.4 pg/mL, respectively, P < .001). Patients with elevated IL-10 more often had endovascular SaB sources. The inoculum level of SaB was higher in patients with elevated serum IL-10 vs patients with low IL-10 (35.5 vs 0.5 median CFU/mL; P = .044). Ex vivo studies showed that 108 CFU/mL yielded greater IL-10 than did 103 CFU/mL (4.4 ± 1.8 vs 1.0 ± 0.6 pg/mL; P < .01). Conclusions Elevated IL-10 serum concentrations at clinical presentation of SaB were highly associated with mortality. High intravascular peptidoglycan concentration, driven by a higher level of bacteremia, is a key mediator of IL-10 anti-inflammatory response that portends poor clinical outcome. Using IL-10 as an initial biomarker, clinicians may consider more aggressive antimicrobials for rapid bacterial load reduction in high-risk SaB patients.
Collapse
Affiliation(s)
- Warren E Rose
- School of Pharmacy, University of Wisconsin-Madison, and
| | | | - Andrew D Berti
- School of Pharmacy, University of Wisconsin-Madison, and
| | - Mary S Hayney
- School of Pharmacy, University of Wisconsin-Madison, and
| | | | - Andrea Ranzoni
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Richard A Proctor
- Departments of Medicine and Medical Microbiology/Immunology, University of Wisconsin School of Medicine and Public Health, Madison, and
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla
| | - George Sakoulas
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla
| |
Collapse
|
15
|
Stapels DAC, Woehl JL, Milder FJ, Tromp AT, van Batenburg AA, de Graaf WC, Broll SC, White NM, Rooijakkers SHM, Geisbrecht BV. Evidence for multiple modes of neutrophil serine protease recognition by the EAP family of Staphylococcal innate immune evasion proteins. Protein Sci 2017; 27:509-522. [PMID: 29114958 DOI: 10.1002/pro.3342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022]
Abstract
Neutrophils contain high levels of chymotrypsin-like serine proteases (NSPs) within their azurophilic granules that have a multitude of functions within the immune system. In response, the pathogen Staphylococcus aureus has evolved three potent inhibitors (Eap, EapH1, and EapH2) that protect the bacterium as well as several of its secreted virulence factors from the degradative action of NSPs. We previously showed that these so-called EAP domain proteins represent a novel class of NSP inhibitors characterized by a non-covalent inhibitory mechanism and a distinct target specificity profile. Based upon high levels of structural homology amongst the EAP proteins and the NSPs, as well as supporting biochemical data, we predicted that the inhibited complex would be similar for all EAP/NSP pairs. However, we present here evidence that EapH1 and EapH2 bind the canonical NSP, Neutrophil Elastase (NE), in distinct orientations. We discovered that alteration of EapH1 residues at the EapH1/NE interface caused a dramatic loss of affinity and inhibition of NE, while mutation of equivalent positions in EapH2 had no effect on NE binding or inhibition. Surprisingly, mutation of residues in an altogether different region of EapH2 severely impacted both the NE binding and inhibitory properties of EapH2. Even though EapH1 and EapH2 bind and inhibit NE and a second NSP, Cathepsin G, equally well, neither of these proteins interacts with the structurally related, but non-proteolytic granule protein, azurocidin. These studies expand our understanding of EAP/NSP interactions and suggest that members of this immune evasion protein family are capable of diverse target recognition modes.
Collapse
Affiliation(s)
- Daphne A C Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Jordan L Woehl
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Fin J Milder
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Aernoud A van Batenburg
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Wilco C de Graaf
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Samuel C Broll
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Natalie M White
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| |
Collapse
|
16
|
Khan S, Cole N, Hume EB, Garthwaite LL, Nguyen-Khuong T, Walsh BJ, Willcox MD. Identification of pathogenic factors potentially involved in Staphylococcus aureus keratitis using proteomics. Exp Eye Res 2016; 151:171-8. [DOI: 10.1016/j.exer.2016.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 01/11/2023]
|
17
|
Ko YP, Flick MJ. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection. Semin Thromb Hemost 2016; 42:408-21. [PMID: 27056151 PMCID: PMC5514417 DOI: 10.1055/s-0036-1579635] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment.
Collapse
Affiliation(s)
- Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Matthew J. Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
18
|
McGuinness WA, Kobayashi SD, DeLeo FR. Evasion of Neutrophil Killing by Staphylococcus aureus. Pathogens 2016; 5:E32. [PMID: 26999220 PMCID: PMC4810153 DOI: 10.3390/pathogens5010032] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus causes many types of infections, ranging from self-resolving skin infections to severe or fatal pneumonia. Human innate immune cells, called polymorphonuclear leukocytes (PMNs or neutrophils), are essential for defense against S. aureus infections. Neutrophils are the most prominent cell type of the innate immune system and are capable of producing non-specific antimicrobial molecules that are effective at eliminating bacteria. Although significant progress has been made over the past few decades, our knowledge of S. aureus-host innate immune system interactions is incomplete. Most notably, S. aureus has the capacity to produce numerous molecules that are directed to protect the bacterium from neutrophils. Here we review in brief the role played by neutrophils in defense against S. aureus infection, and correspondingly, highlight selected S. aureus molecules that target key neutrophil functions.
Collapse
Affiliation(s)
- Will A McGuinness
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA.
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA.
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA.
| |
Collapse
|
19
|
Koymans KJ, Vrieling M, Gorham RD, van Strijp JAG. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. Curr Top Microbiol Immunol 2015; 409:441-489. [PMID: 26919864 DOI: 10.1007/82_2015_5017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Manouk Vrieling
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|