1
|
Kim Y, Ko JY, Yang WH. Remodeling of host glycoproteins during bacterial infection. BMB Rep 2021. [PMID: 34674797 PMCID: PMC8633524 DOI: 10.5483/bmbrep.2021.54.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Protein glycosylation is a common post-translational modification found in all living organisms. This modification in bacterial pathogens plays a pivotal role in their infectious processes including pathogenicity, immune evasion, and host-pathogen interactions. Importantly, many key proteins of host immune systems are also glycosylated and bacterial pathogens can notably modulate glycosylation of these host proteins to facilitate pathogenesis through the induction of abnormal host protein activity and abundance. In recent years, interest in studying the regulation of host protein glycosylation caused by bacterial pathogens is increasing to fully understand bacterial pathogenesis. In this review, we focus on how bacterial pathogens regulate remodeling of host glycoproteins during infections to promote the pathogenesis.
Collapse
Affiliation(s)
- Yeolhoe Kim
- Department of Systems Biology, BK21 Plus Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Glycosylation Network Research Center, Yonsei University, Seoul 03722, Korea
| | - Jeong Yeon Ko
- Department of Systems Biology, BK21 Plus Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Glycosylation Network Research Center, Yonsei University, Seoul 03722, Korea
| | - Won Ho Yang
- Department of Systems Biology, BK21 Plus Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Glycosylation Network Research Center, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
2
|
Morro B, Broughton R, Balseiro P, Handeland SO, Mackenzie S, Doherty MK, Whitfield PD, Shimizu M, Gorissen M, Sveier H, Albalat A. Endoplasmic reticulum stress as a key mechanism in stunted growth of seawater rainbow trout (Oncorhynchus mykiss). BMC Genomics 2021; 22:824. [PMID: 34781893 PMCID: PMC8594166 DOI: 10.1186/s12864-021-08153-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Rainbow trout (Oncorhynchus mykiss) is a salmonid species with a complex life-history. Wild populations are naturally divided into freshwater residents and sea-run migrants. Migrants undergo an energy-demanding adaptation for life in seawater, known as smoltification, while freshwater residents display these changes in an attenuated magnitude and rate. Despite this, in seawater rainbow trout farming all fish are transferred to seawater. Under these circumstances, weeks after seawater transfer, a significant portion of the fish die (around 10%) or experience growth stunting (GS; around 10%), which represents an important profitability and welfare issue. The underlying causes leading to GS in seawater-transferred rainbow trout remain unknown. In this study, we aimed at characterising the GS phenotype in seawater-transferred rainbow trout using untargeted and targeted approaches. To this end, the liver proteome (LC-MS/MS) and lipidome (LC-MS) of GS and fast-growing phenotypes were profiled to identify molecules and processes that are characteristic of the GS phenotype. Moreover, the transcription, abundance or activity of key proteins and hormones related to osmoregulation (Gill Na+, K + -ATPase activity), growth (plasma IGF-I, and liver igf1, igfbp1b, ghr1 and ctsl) and stress (plasma cortisol) were measured using targeted approaches. RESULTS No differences in Gill Na+, K + -ATPase activity and plasma cortisol were detected between the two groups. However, a significant downregulation in plasma IGF-I and liver igf1 transcription pointed at this growth factor as an important pathomechanism for GS. Changes in the liver proteome revealed reactive-oxygen-species-mediated endoplasmic reticulum stress as a key mechanism underlying the GS phenotype. From the lipidomic analysis, key observations include a reduction in triacylglycerols and elevated amounts of cardiolipins, a characteristic lipid class associated with oxidative stress, in GS phenotype. CONCLUSION While the triggers to the activation of endoplasmic reticulum stress are still unknown, data from this study point towards a nutritional deficiency as an underlying driver of this phenotype.
Collapse
Affiliation(s)
- Bernat Morro
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | | | - Pablo Balseiro
- NORCE AS, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sigurd O Handeland
- NORCE AS, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Simon Mackenzie
- Institute of Aquaculture, University of Stirling, Stirling, UK.,NORCE AS, Bergen, Norway
| | - Mary K Doherty
- Institute of Health Research and Innovation, Centre for Health Science, University of the Highlands and Islands, Scotland, UK
| | - Phillip D Whitfield
- Institute of Health Research and Innovation, Centre for Health Science, University of the Highlands and Islands, Scotland, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Scotland, UK
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Sapporo, Japan
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Radboud University, Institute of Water and Wetland Research, Nijmegen, The Netherlands
| | | | - Amaya Albalat
- Institute of Aquaculture, University of Stirling, Stirling, UK.
| |
Collapse
|
3
|
Li Z, Tang X, Li J, He Y. Comparative proteomic and transcriptomic analysis reveals high pH-induced expression signatures of Chinese shrimp Fenneropenaeus chinensis. Funct Integr Genomics 2021; 21:299-311. [PMID: 33629199 DOI: 10.1007/s10142-021-00779-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 01/01/2023]
Abstract
pH has a great impact on the distribution, growth, behavior, and physiology in many aquatic animals. The comparison of proteomics between normal and high pH stress samples was successfully achieved using iTRAQ proteomic analysis to screen key response proteins and pathways. After high pH stress, 124 upregulated and 41 downregulated proteins were identified. The higher expression levels of proteins like citrate synthase, glutathione S-transferase, glutathione peroxidase, and cytochrome c oxidase are associated with oxidative stress and mitochondrial dysfunction. The upregulation of glucose-regulated protein 78 indicated that the endoplasmic reticulum stress is induced by high pH stress. There were significant upregulation expressions of V-type H+-ATPase, Na+, K+-ATPase, 14-3-3 protein, as well as ATP-binding cassette transmembrane transporters after high pH exposure, which indicating their important roles in response to high pH stress. The abundance of proteins involved in protein glycosylation, oxidative pentose phosphate pathway, protein export, and glutathione metabolism were found enriched in high pH group than in control group. Quantitative proteomic profiling and integrated analysis with transcriptomic data provide new insights into the mechanisms underlying the molecular response to high pH stress in Fenneropenaeus chinensis.
Collapse
Affiliation(s)
- Zhaoxia Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Xiaoqi Tang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Yuying He
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
4
|
Rosche KL, Sidak-Loftis LC, Hurtado J, Fisk EA, Shaw DK. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Front Immunol 2021; 11:629777. [PMID: 33659000 PMCID: PMC7917218 DOI: 10.3389/fimmu.2020.629777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding what influences the ability of some arthropods to harbor and transmit pathogens may be key for controlling the spread of vector-borne diseases. Arthropod immunity has a central role in dictating vector competence for pathogen acquisition and transmission. Microbial infection elicits immune responses and imparts stress on the host by causing physical damage and nutrient deprivation, which triggers evolutionarily conserved stress response pathways aimed at restoring cellular homeostasis. Recent studies increasingly recognize that eukaryotic stress responses and innate immunity are closely intertwined. Herein, we describe two well-characterized and evolutionarily conserved mechanisms, the Unfolded Protein Response (UPR) and the Integrated Stress Response (ISR), and examine evidence that these stress responses impact immune signaling. We then describe how multiple pathogens, including vector-borne microbes, interface with stress responses in mammals. Owing to the well-conserved nature of the UPR and ISR, we speculate that similar mechanisms may be occurring in arthropod vectors and ultimately impacting vector competence. We conclude this Perspective by positing that novel insights into vector competence will emerge when considering that stress-signaling pathways may be influencing the arthropod immune network.
Collapse
Affiliation(s)
- Kristin L Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Lindsay C Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Elizabeth A Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Dana K Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Delannoy C, Huang C, Coddeville B, Chen JY, Mouajjah D, Groux-Degroote S, Harduin-Lepers A, Khoo KH, Guerardel Y, Elass-Rochard E. Mycobacterium bovis BCG infection alters the macrophage N-glycome. Mol Omics 2020; 16:345-354. [PMID: 32270793 DOI: 10.1039/c9mo00173e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Macrophage glycosylation is essential to initiate the host-immune defense but may also be targeted by pathogens to promote infection. Indeed, the alteration of the cell-surface glycosylation status may affect the binding of lectins involved in cell activation and adhesion. Herein, we demonstrate that infection by M. bovis BCG induces the remodeling of the N-glycomes of both human primary blood monocyte-derived macrophages (MDM) and macrophage-cell line THP1. MALDI-MS based N-glycomic analysis established that mycobacterial infection induced increased synthesis of biantennary and multifucosylated complex type N-glycans. In contrast, infection of macrophages by M. bovis BCG did not modify the glycosphingolipids composition of macrophages. Further nano-LC-MSn glycotope-centric analysis of total N-glycans demonstrated that the increased fucosylation was due to an increased expression of the Lex (Galβ1-4[Fucα1-3]GlcNAc) epitope, also known as stage-specific embryonic antigen-1. Modification of the surface expression of Lex was further confirmed in both MDM and THP-1 cells by FACS analysis using an α1,3-linked fucose specific lectin. Activation with the mycobacterial lipopeptide Pam3Lp19, an agonist of toll-like receptor 2, did not modify the overall fucosylation pattern, which suggests that the infection process is required to modify surface glycosylation. These results pave the way toward the understanding of infection-triggered cell-surface remodeling of macrophages.
Collapse
Affiliation(s)
- Clément Delannoy
- Univ. Lille, CNRS UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59 000 Lille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Marakasova E, Ii A, Nelson KT, van Hoek ML. Proteome Wide Profiling of N-ε-Lysine Acetylation Reveals a Novel Mechanism of Regulation of the Chitinase Activity in Francisella novicida. J Proteome Res 2020; 19:1409-1422. [PMID: 32056440 DOI: 10.1021/acs.jproteome.9b00512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Francisella tularensis is a Gram-negative bacterium that causes the zoonotic disease tularemia. The historical development of tularemia as a biological weapon has led to it being characterized by the CDC as a category A biothreat agent. Neither posttranslational modification (PTM) of proteins, in particular lysine acetylation, in Francisella nor its subsequent regulation of the protein activity has been well studied. In this work, we analyze N-ε-lysine acetylation of the F. tularensis ssp. novicida proteome by mass spectrometry for the first time. To create a comprehensive acetylation profile, we enriched protein acetylation using two approaches: (1) the addition of glucose or acetate into the culture medium and (2) direct chemical acetylation of N-ε-lysines with acetyl phosphate. We discovered 280 acetylated proteins with 1178 acetylation sites in the F. tularensis ssp. novicida strain U112. Lysine acetylation is an important PTM that regulates multiple cellular processes in bacteria, including metabolism, transcription, translation, stress response, and protein folding. We discovered that Francisella chitinases A and B are acetylated naturally and when chemically induced by acetyl phosphate. Moreover, chemical overacetylation of chitinases results in silencing of the enzymatic activity. Our findings suggest a novel mechanism of posttranslational regulation of the chitinase activity and that acetylation may play a role in Francisella's regulation of the protein activity.
Collapse
Affiliation(s)
- Ekaterina Marakasova
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, Virginia 20110, United States
| | - Alexandra Ii
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, Virginia 20110, United States
| | - Kristina T Nelson
- Chemical and Proteomic Mass Spectrometry Core Facility, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Monique L van Hoek
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, Virginia 20110, United States
| |
Collapse
|
7
|
Ouephanit C, Boonvitthya N, Bozonnet S, Chulalaksananukul W. High-Level Heterologous Expression of Endo-1,4-β-Xylanase from Penicillium citrinum in Pichia pastoris X-33 Directed through Codon Optimization and Optimized Expression. Molecules 2019; 24:molecules24193515. [PMID: 31569777 PMCID: PMC6804294 DOI: 10.3390/molecules24193515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022] Open
Abstract
Most common industrial xylanases are produced from filamentous fungi. In this study, the codon-optimized xynA gene encoding xylanase A from the fungus Penicilium citrinum was successfully synthesized and expressed in the yeast Pichia pastoris. The levels of secreted enzyme activity under the control of glyceraldehyde-3-phosphate dehydrogenase (PGAP) and alcohol oxidase 1 (PAOX1) promoters were compared. The Pc Xyn11A was produced as a soluble protein and the total xylanase activity under the control of PGAP and PAOX1 was 34- and 193-fold, respectively, higher than that produced by the native strain of P. citrinum. The Pc Xyn11A produced under the control of the PAOX1 reached a maximum activity of 676 U/mL when induced with 1% (v/v) methanol every 24 h for 5 days. The xylanase was purified by ion exchange chromatography and then characterized. The enzyme was optimally active at 55 °C and pH 5.0 but stable over a broad pH range (3.0–9.0), retaining more than 80% of the original activity after 24 h or after pre-incubation at 40 °C for 1 h. With birchwood xylan as a substrate, Pc Xyn11A showed a Km(app) of 2.8 mg/mL, and a kcat of 243 s−1. The high level of secretion of Pc Xyn11A and its stability over a wide range of pH and moderate temperatures could make it useful for a variety of biotechnological applications.
Collapse
Affiliation(s)
- Chanika Ouephanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France.
| | - Warawut Chulalaksananukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Kubelkova K, Macela A. Innate Immune Recognition: An Issue More Complex Than Expected. Front Cell Infect Microbiol 2019; 9:241. [PMID: 31334134 PMCID: PMC6616152 DOI: 10.3389/fcimb.2019.00241] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022] Open
Abstract
Primary interaction of an intracellular bacterium with its host cell is initiated by activation of multiple signaling pathways in response to bacterium recognition itself or as cellular responses to stress induced by the bacterium. The leading molecules in these processes are cell surface membrane receptors as well as cytosolic pattern recognition receptors recognizing pathogen-associated molecular patterns or damage-associated molecular patterns induced by the invading bacterium. In this review, we demonstrate possible sequences of events leading to recognition of Francisella tularensis, present findings on known mechanisms for manipulating cell responses to protect Francisella from being killed, and discuss newly published data from the perspective of early stages of host-pathogen interaction.
Collapse
Affiliation(s)
- Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | | |
Collapse
|
9
|
Min A, Lee YA, Kim KA, Shin MH. BLT1-mediated O-GlcNAcylation is required for NOX2-dependent migration, exocytotic degranulation and IL-8 release of human mast cell induced by Trichomonas vaginalis-secreted LTB 4. Microbes Infect 2018; 20:376-384. [PMID: 29859938 DOI: 10.1016/j.micinf.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Trichomonas vaginalis is a sexually-transmitted protozoan parasite that causes vaginitis and cervicitis. Although mast cell activation is important for provoking tissue inflammation during infection with parasites, information regarding the signaling mechanisms in mast cell activation and T. vaginalis infection is limited. O-linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of serine and threonine residues that functions as a critical regulator of intracellular signaling, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). We investigated if O-GlcNAcylation was associated with mast cell activation induced by T. vaginalis-derived secretory products (TvSP). Modified TvSP collected from live trichomonads treated with the 5-lipooxygenase inhibitor AA861 inhibited migration of mast cells. This result suggested that mast cell migration was caused by stimulation of T. vaginalis-secreted leukotrienes. Using the BLT1 antagonist U75302 or BLT1 siRNA, we found that migration of mast cells was evoked via LTB4 receptor (BLT1). Furthermore, TvSP induced protein O-GlcNAcylation and OGT expression in HMC-1 cells, which was prevented by transfection with BLT1 siRNA. TvSP-induced migration, ROS generation, CD63 expression and IL-8 release were significantly suppressed by pretreatment with OGT inhibitor ST045849 or OGT siRNA. These results suggested that BLT1-mediated OGlcNAcylation was important for mast cell activation during trichomoniasis.
Collapse
Affiliation(s)
- Arim Min
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea; Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea; Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, South Korea; Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
10
|
Selection and identification of specific glycoproteins and glycan biomarkers of macrophages involved in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2017; 104:95-106. [DOI: 10.1016/j.tube.2017.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/18/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023]
|
11
|
Barel M, Charbit A. Role of Glycosylation/Deglycolysation Processes in Francisella tularensis Pathogenesis. Front Cell Infect Microbiol 2017; 7:71. [PMID: 28377902 PMCID: PMC5359314 DOI: 10.3389/fcimb.2017.00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Francisella tularensis is able to invade, survive and replicate inside a variety of cell types. However, in vivo F. tularensis preferentially enters host macrophages where it rapidly escapes to the cytosol to avoid phagosomal stresses and to multiply to high numbers. We previously showed that human monocyte infection by F. tularensis LVS triggered deglycosylation of the glutamine transporter SLC1A5. However, this deglycosylation, specifically induced by Francisella infection, was not restricted to SLC1A5, suggesting that host protein deglycosylation processes in general might contribute to intracellular bacterial adaptation. Indeed, we later found that Francisella infection modulated the transcription of numerous glycosidase and glycosyltransferase genes in human macrophages and analysis of cell extracts revealed an important increase of N and O-protein glycosylation. In eukaryotic cells, glycosylation has significant effects on protein folding, conformation, distribution, stability, and activity and dysfunction of protein glycosylation may lead to development of diseases like cancer and pathogenesis of infectious diseases. Pathogenic bacteria have also evolved dedicated glycosylation machineries and have notably been shown to use these glycoconjugates as ligands to specifically interact with the host. In this review, we will focus on Francisella and summarize our current understanding of the importance of these post-translational modifications on its intracellular niche adaptation.
Collapse
Affiliation(s)
- Monique Barel
- Sorbonne Paris Cité, Bâtiment Leriche, Université Paris DescartesParis, France; Institut National de la Santé et de la Recherche Médicale, Institut Necker-Enfants Malades, INSERM U1151 -Team 11, Pathogenesis of Systemic InfectionsParis, France; Centre National de la Recherche Scientifique, UMR8253Paris, France
| | - Alain Charbit
- Sorbonne Paris Cité, Bâtiment Leriche, Université Paris DescartesParis, France; Institut National de la Santé et de la Recherche Médicale, Institut Necker-Enfants Malades, INSERM U1151 -Team 11, Pathogenesis of Systemic InfectionsParis, France; Centre National de la Recherche Scientifique, UMR8253Paris, France
| |
Collapse
|
12
|
Friedrich A, Pechstein J, Berens C, Lührmann A. Modulation of host cell apoptotic pathways by intracellular pathogens. Curr Opin Microbiol 2017; 35:88-99. [DOI: 10.1016/j.mib.2017.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/03/2016] [Accepted: 03/01/2017] [Indexed: 12/13/2022]
|