1
|
Ahamad I, Fatma T. Investigation of antifungal and antibiofilm activities of green synthesized silver nanoparticles against Candida glabrata. Biometals 2025:10.1007/s10534-025-00680-y. [PMID: 40186085 DOI: 10.1007/s10534-025-00680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Candida glabrata is an important human fungal pathogen known to cause life-threatening infections in people with impaired immune systems. In the mouth cavities, trachea, and catheters, Candida glabrata biofilm grows unhindered and is the primary etiological factor in the pathophysiology of candidiasis, in the worst cases, this leads to systemic infections. Therefore, developing novel biofilm preventative and therapeutic agents is urgently required. Here, in the present study, an effort was made to monitor the function of silver nanoparticles (AgNPs) generated from a cyanobacterium (Anabaena variabilis) as a novel antibiofilm agent focusing on candidiasis. Anabaena variabilis cell extract was used to synthesize AgNPs, characterized by UV-visible spectroscopy. The minimum inhibitory concentration (MIC) of AgNPs was observed at 25 µg/mL in Candida glabrata. At the concentration of 2MIC of AgNPs (50 µg/mL), 67 ± 0.84% membrane permeability was noticed at the same concentration the viable cells were found at only 2.8 ± 2.0%; while in the early phase of apoptosis, were found at 15.5 ± 1.5%; and in the late phase of apoptosis, were found at 81.8 ± 4.2%, thus confirming the cell's death. Additionally, a cell-cycle study also declared the halted cycle in the S phase by increasing the number of cells. The growth inhibition assay shows that the test organism's growth steadily decreased in comparison to the control with increasing AgNPs concentrations. Additionally, in the scanning electron microscopic pictures of Candida glabrata treated with AgNPs, which exhibited deep wrinkles and deformity, confirming the cells death. At the concentrations of 2MIC of AgNPs (50 µg/mL) showed 72 ± 0.86% of biofilm inhibition and 80 ± 1.3% degradation during the biofilm study. In conclusion, all results demonstrate that AgNPs have great antifungal potential; therefore, AgNPs could be used to control biofilm produced by emerging multidrug-resistant Candida glabrata.
Collapse
Affiliation(s)
- Irshad Ahamad
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
- Brown Cancer Center, School of Medicine, University of Louisville, Kentucky, 40202, USA.
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Askari F, Kaur R. Candida glabrata: A Tale of Stealth and Endurance. ACS Infect Dis 2025; 11:4-20. [PMID: 39668745 DOI: 10.1021/acsinfecdis.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Candida (Nakaseomyces) glabrata, an opportunistic human fungal pathogen, causes mucosal and deep-seated infections in immunocompromised individuals. Recently designated as a high-priority fungal pathogen by the World Health Organization (WHO), C. glabrata exhibits low inherent susceptibility to azole antifungals. In addition, about 10% clinical isolates of C. glabrata display co-resistance to both azole and echinocandin drugs. Molecular mechanisms of antifungal resistance and virulence in C. glabrata are currently being delineated in-depth. This Review provides an overview of the epidemiology, biology, drug resistance, tools and host model systems for C. glabrata. Additionally, we discuss the immune evasion strategies that aid C. glabrata in establishing infections in the host. Overall, this Review aims to contribute to ongoing efforts to raise awareness of human pathogenic fungi, the growing threat of antifungal drug resistance and the unmet need for novel antifungal therapies, with an ultimate goal of improving clinical outcomes of affected individuals.
Collapse
Affiliation(s)
- Fizza Askari
- BRIC-Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| | - Rupinder Kaur
- BRIC-Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| |
Collapse
|
3
|
Silva ML, Carneiro MN, Cavalcante RMB, Guerrero JAP, Fontenelle ROS, Lorenzón EN, Cilli EM, Carneiro VA. K-aurein: A notable aurein 1.2-derived peptide that modulates Candida albicans filamentation and reduces biofilm biomass. Amino Acids 2023; 55:1003-1012. [PMID: 37442853 DOI: 10.1007/s00726-023-03288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/25/2023] [Indexed: 07/15/2023]
Abstract
Candida albicans is considered one of the most important opportunistic fungi due to the large arsenal of virulence factors that help throughout the progress of the infection. In this sense, antimicrobial peptides (AMPs) appear as an alternative, with great antifungal action. Among these, aurein 1.2 has been widely explored, becoming the basis for the discovery of new AMPs, such as K-aurein (K-au). Thus, this study evaluated the anti-C. albicans potential of K-au against virulence factors, planktonic growth, and biofilm formation of clinical isolates. Firstly, K-au antifungal activity was determined by the microdilution method and time-kill curve. The inhibition of hydrolytic enzyme secretion (proteinase, phospholipase, and hemolysin) and germ tube formation was tested. Then, the antibiofilm potential of K-au was verified through biomass quantification and scanning electron microscopy (SEM). All tests were compared with the classical antifungal drug, amphotericin B (AmB). The outcomes showed fungicidal action of K-au at 62.50 µg mL-1 for all isolates, with a time of action around 150-180 min, determined by the time-kill curve. K-au-treated cells decreased by around 40% of the germinative tube compared to the control. Additionally, K-au inhibited the biofilm formation by more than 90% compared to AmB and the control group. SEM images show apparent cellular disaggregation without the formation of filamentous structures. Therefore, the findings suggest a promising anti-C. albicans effect of K-au due to its fungicidal activity against planktonic cells, or its ability to inhibit important virulence factors like germ tube and biofilm formation. Thus, this peptide could be explored as a useful compound against C. albicans-related infection.
Collapse
Affiliation(s)
- Maria Laína Silva
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | - Maria Nágila Carneiro
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | - Rafaela Mesquita Bastos Cavalcante
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | - Jesús Alberto Pérez Guerrero
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | | | | | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Estadual University of São Paulo-UNESP, Araraquara, 14800-900, Brazil
| | - Victor Alves Carneiro
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil.
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA-UNINTA, Sobral, 62050-100, Brazil.
| |
Collapse
|
4
|
Zhou L, Xu P, Gong J, Huang S, Chen W, Fu B, Zhao Z, Huang X. Metagenomic profiles of the resistome in subtropical estuaries: Co-occurrence patterns, indicative genes, and driving factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152263. [PMID: 34896510 DOI: 10.1016/j.scitotenv.2021.152263] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Estuaries are resistome hotspots owing to resistome accumulation and propagation at these locations from surrounding rivers, yet the large-scale biogeographic pattern of resistome, especially biocide and metal resistance genes (BMRGs) and its driving mechanisms in estuarine waters remains to be elucidated. Here, a metagenomics-based approach was firstly used to investigate resistome and mobilome profiles in waters from 30 subtropical estuaries, South China. The Pearl River estuaries had a higher diversity and abundance of antibiotic resistance genes (ARGs), BMRGs, and mobile genetic elements (MGEs) when compared with estuaries from east and west regions. Genes resistant to multiple antibiotics, metals, and biocides were the most abundant gene types in the resistome. The abundance of MGEs (e.g., intI1, IS91, and tnpA) was highly associated with the total abundance of resistance genes, suggesting their utility as potential indicators for quantitative estimations of the resistome contamination. Further, MGEs contributed more than bacterial communities in shaping the resistome in subtropical estuaries. Physicochemical factors (e.g., pH) regulated MGE composition and stochastic assembly, which mediated the co-selection of ARGs and BMRGs via horizontal gene transfer. Our findings have important implications and provide a reference on the management of ARGs and BMRGs in subtropical estuarine ecosystems.
Collapse
Affiliation(s)
- Lei Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Peng Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Jiayi Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Shihui Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Wenjian Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Binwei Fu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
| | - Xiande Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642 Guangzhou, China.
| |
Collapse
|
5
|
FLO8 deletion leads to decreased adhesion and virulence with downregulated expression of EPA1, EPA6, and EPA7 in Candida glabrata. Braz J Microbiol 2022; 53:727-738. [PMID: 35122657 PMCID: PMC9151949 DOI: 10.1007/s42770-022-00703-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Candida glabrata does not develop into a pathogenic hiphal form; however, it has become the second most common pathogen of fungal infections in humans, partly because of its adhesion ability and virulence. OBJECTIVES The present study aimed to determine whether Flo8, a transcription factor that plays an important role in the virulence and drug resistance in Candida albicans, has a similar role in C. glabrata. METHODS We constructed FLO8 null strains of a C. glabrata standard strain and eight clinical strains from different sources, and a FLO8 complemented strain. Real-time quantitative PCR, biofilm formation assays, hydrophobicity tests, adhesion tests, Caenorhabditis elegans survival assay, and drug-susceptibility were then performed. RESULTS Compared with the wild-type strains, the biofilm formation, hydrophobicity, adhesion, and virulence of the FLO8-deficient strains decreased, accompanied by decreased expression of EPA1, EPA6, and EPA7. On the other hand, it showed no changes in antifungal drug resistance, although the expression levels of CDR1, CDR2, and SNQ2 increased after FLO8 deletion. CONCLUSIONS These results indicated that Flo8 is involved in the adhesion and virulence of C. glabrata, with FLO8 deletion leading to decreased expression of EPA1, EPA6, and EPA7 and decreased biofilm formation, hydrophobicity, adhesion, and virulence.
Collapse
|
6
|
Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, García-Coronel IH, Vázquez-Aceituno VA, Soriano-Ursúa MA, Farfán-García ED, Ocharán-Hernández E, Rodríguez-Cerdeira C, Arenas R, Robledo-Cayetano M, Ramírez-Lozada T, Meza-Meneses P, Pinto-Almazán R, Martínez-Herrera E. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021; 13:1529. [PMID: 34683822 PMCID: PMC8538829 DOI: 10.3390/pharmaceutics13101529] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, a progressive increase in the incidence of invasive fungal infections (IFIs) caused by Candida glabrata has been observed. The objective of this literature review was to study the epidemiology, drug resistance, and virulence factors associated with the C. glabrata complex. For this purpose, a systematic review (January 2001-February 2021) was conducted on the PubMed, Scielo, and Cochrane search engines with the following terms: "C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis)" associated with "pathogenicity" or "epidemiology" or "antibiotics resistance" or "virulence factors" with language restrictions of English and Spanish. One hundred and ninety-nine articles were found during the search. Various mechanisms of drug resistance to azoles, polyenes, and echinocandins were found for the C. glabrata complex, depending on the geographical region. Among the mechanisms found are the overexpression of drug transporters, gene mutations that alter thermotolerance, the generation of hypervirulence due to increased adhesion factors, and modifications in vital enzymes that produce cell wall proteins that prevent the activity of drugs designed for its inhibition. In addition, it was observed that the C. glabrata complex has virulence factors such as the production of proteases, phospholipases, and hemolysins, and the formation of biofilms that allows the complex to evade the host immune response and generate fungal resistance. Because of this, the C. glabrata complex possesses a perfect pathogenetic combination for the invasion of the immunocompromised host.
Collapse
Affiliation(s)
- María Guadalupe Frías-De-León
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Esther Conde-Cuevas
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Itzel H. García-Coronel
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Víctor Alfonso Vázquez-Aceituno
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Esther Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Dermatology Department, Hospital Vithas Ntra. Sra. de Fátima and University of Vigo, 36206 Vigo, Spain
- Campus Universitario, University of Vigo, 36310 Vigo, Spain
| | - Roberto Arenas
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
| | - Maura Robledo-Cayetano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Tito Ramírez-Lozada
- Servicio de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Patricia Meza-Meneses
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
- Servicio de Infectología, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
| |
Collapse
|
7
|
Chen X, Iwatani S, Kitamoto T, Chibana H, Kajiwara S. The Lack of SNARE Protein Homolog Syn8 Influences Biofilm Formation of Candida glabrata. Front Cell Dev Biol 2021; 9:607188. [PMID: 33644045 PMCID: PMC7907433 DOI: 10.3389/fcell.2021.607188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Biofilm formation of Candida species is considered to be a pathogenic factor of host infection. Since biofilm formation of Candida glabrata has not been as well studied as that of Candida albicans, we performed genetic screening of C. glabrata, and three candidate genes associated with biofilm formation were identified. Candida glabrata SYN8 (CAGL0H06325g) was selected as the most induced gene in biofilm cells for further research. Our results indicated that the syn8Δ mutant was defective not only in biofilm metabolic activity but also in biofilm morphological structure and biomass. Deletion of SYN8 seemed to have no effect on extracellular matrix production, but it led to a notable decrease in adhesion ability during biofilm formation, which may be linked to the repression of two adhesin genes, EPA10 and EPA22. Furthermore, hypersensitivity to hygromycin B and various ions in addition to the abnormal vacuolar morphology in the syn8Δ mutant suggested that active vacuolar function is required for biofilm formation of C. glabrata. These findings enhance our understanding of biofilm formation in this fungus and provide information for the development of future clinical treatments.
Collapse
Affiliation(s)
- Xinyue Chen
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shun Iwatani
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshitaka Kitamoto
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Susumu Kajiwara
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
8
|
Role of CgTpo4 in Polyamine and Antimicrobial Peptide Resistance: Determining Virulence in Candida glabrata. Int J Mol Sci 2021; 22:ijms22031376. [PMID: 33573089 PMCID: PMC7866538 DOI: 10.3390/ijms22031376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 01/28/2023] Open
Abstract
Candida glabrata is an emerging fungal pathogen whose success depends on its ability to resist antifungal drugs but also to thrive against host defenses. In this study, the predicted multidrug transporter CgTpo4 (encoded by ORF CAGL0L10912g) is described as a new determinant of virulence in C. glabrata, using the infection model Galleria mellonella. The CgTPO4 gene was found to be required for the C. glabrata ability to kill G. mellonella. The transporter encoded by this gene is also necessary for antimicrobial peptide (AMP) resistance, specifically against histatin-5. Interestingly, G. mellonella’s AMP expression was found to be strongly activated in response to C. glabrata infection, suggesting AMPs are a key antifungal defense. CgTpo4 was also found to be a plasma membrane exporter of polyamines, especially spermidine, suggesting that CgTpo4 is able to export polyamines and AMPs, thus conferring resistance to both stress agents. Altogether, this study presents the polyamine exporter CgTpo4 as a determinant of C. glabrata virulence, which acts by protecting the yeast cells from the overexpression of AMPs, deployed as a host defense mechanism.
Collapse
|
9
|
Fang R, Liu H, Zhang X, Dong G, Li J, Tian X, Wu Z, Zhou J, Cao J, Zhou T. Difference in biofilm formation between carbapenem-resistant and carbapenem-sensitive Klebsiella pneumoniae based on analysis of mrkH distribution. Microb Pathog 2021; 152:104743. [PMID: 33484812 DOI: 10.1016/j.micpath.2021.104743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
OBJECT To analyze the difference in biofilm formation between carbapenem-resistant and carbapenem-sensitive Klebsiella pneumoniae based on analysis of mrkH distribution and to further explore the function of mrkH for biofilm formation from the perspective of gene regulation. METHODS 40 imipenem-resistant strains and 40 imipenem-sensitive strains were selected to conduct experiments. Carbapenem (imipenem) susceptibility test was performed by the agar-dilution method. blaKPC resistance gene, type 3 fimbriae-related coding genes (mrkA and mrkD) and regulation gene (mrkH) were screened by PCR. Biofilm formation assay was performed using crystal violet staining method in MHB. The relative expression of genes that critically involved in biofilm formation (mrkA, luxS, pgaA) and carbapenem resistance (ompk35, ompk36, acrB) were measured by quantitative real-time PCR (qRT-PCR). Furthermore, the mrkH cassette was cloned into pGEM-T Easy plasmid to yield pGEM:pmrkH and expressed in Escherichia coli DH5α and K. pneumoniae FK1911, and the biofilm formation assay after transformation was further tested. RESULTS The MICs of imipenem were all more than 16 μg/mL in 40 imipenem-resistant strains and ranged from 0.125 μg/mL to 0.5 μg/mL in 40 imipenem-sensitive strains. Moreover, the blaKPC was identified in the 40 imipenem-resistant K. pneumoniae strains. All 80 K. pneumoniae strains were found to carry mrkA and mrkD genes. Interestingly, the mrkH gene was detected in 43 strains, of which 32 were carbapenem-sensitive strains. The biofilm formation capacity of strains carried mrkH cassette was significantly higher than other 37 strains in MHB media. The relative expression of mrkA in K. pneumoniae carrying mrkH gene was significantly up-regulated. Importantly, the biofilm formation ability of FK1911-pGEM:pmrkH strain was more higher than the strain of FK1911 in MHB medium. CONCLUSIONS Our data demonstrated that MrkH played a crucial role in the regulation of biofilm formation by K. pneumoniae. In contrast to carbapenem-sensitive K. pneumoniae, carbapenem-resistant K. pneumoniae was less likely to have strong biofilm-forming capacity because it does not carry the mrkH gene.
Collapse
Affiliation(s)
- Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiyang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiucai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Guofeng Dong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xuebin Tian
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenghai Wu
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital of Huangyan, Taizhou, Zhejiang Province, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
10
|
Godinho CP, Costa R, Sá‐Correia I. The ABC transporter Pdr18 is required for yeast thermotolerance due to its role in ergosterol transport and plasma membrane properties. Environ Microbiol 2021; 23:69-80. [PMID: 32985771 PMCID: PMC7891575 DOI: 10.1111/1462-2920.15253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Among the mechanisms by which yeast overcomes multiple stresses is the expression of genes encoding ATP-binding cassette (ABC) transporters required for resistance to a wide range of toxic compounds. These substrates may include weak acids, alcohols, agricultural pesticides, polyamines, metal cations, as in the case of Pdr18. This pleotropic drug resistance transporter was previously proposed to transport ergosterol at the plasma membrane (PM) level contributing to the maintenance of PM lipid organization and reduced diffusional permeation induced by lipophilic compounds. The present work reports a novel phenotype associated with the putative drug/xenobiotic-efflux-pump transporter Pdr18: the resistance to heat shock and to long-term growth at supra-optimal temperatures. Cultivation at 40°C was demonstrated to lead to higher PM permeabilization of a pdr18Δ cell population with the PDR18 gene deleted compared with the parental strain population, as indicated by flow cytometry analysis of propidium iodide stained cells. Cells of pdr18Δ grown at 40°C also exhibited increased transcription levels from genes of the ergosterol biosynthetic pathway, compared with parental cells. However, this adaptive response at 40°C was not enough to maintain PM physiological ergosterol levels in the population lacking the Pdr18 transporter and free ergosterol precursors accumulate in the deletion mutant cells.
Collapse
Affiliation(s)
- Cláudia P. Godinho
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - Rute Costa
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
- Department of BioengineeringInstituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - Isabel Sá‐Correia
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
- Department of BioengineeringInstituto Superior Técnico, Universidade de LisboaLisbonPortugal
| |
Collapse
|
11
|
|
12
|
Pais P, Califórnia R, Galocha M, Viana R, Ola M, Cavalheiro M, Takahashi-Nakaguchi A, Chibana H, Butler G, Teixeira MC. Candida glabrata Transcription Factor Rpn4 Mediates Fluconazole Resistance through Regulation of Ergosterol Biosynthesis and Plasma Membrane Permeability. Antimicrob Agents Chemother 2020; 64:e00554-20. [PMID: 32571817 PMCID: PMC7449212 DOI: 10.1128/aac.00554-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/13/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to acquire azole resistance is an emblematic trait of the fungal pathogen Candida glabrata Understanding the molecular basis of azole resistance in this pathogen is crucial for designing more suitable therapeutic strategies. This study shows that the C. glabrata transcription factor (TF) CgRpn4 is a determinant of azole drug resistance. RNA sequencing during fluconazole exposure revealed that CgRpn4 regulates the expression of 212 genes, activating 80 genes and repressing, likely in an indirect fashion, 132 genes. Targets comprise several proteasome and ergosterol biosynthesis genes, including ERG1, ERG2, ERG3, and ERG11 The localization of CgRpn4 to the nucleus increases upon fluconazole stress. Consistent with a role in ergosterol and plasma membrane homeostasis, CgRpn4 is required for the maintenance of ergosterol levels upon fluconazole stress, which is associated with a role in the upkeep of cell permeability and decreased intracellular fluconazole accumulation. We provide evidence that CgRpn4 directly regulates ERG11 expression through the TTGCAAA binding motif, reinforcing the relevance of this regulatory network in azole resistance. In summary, CgRpn4 is a new regulator of the ergosterol biosynthesis pathway in C. glabrata, contributing to plasma membrane homeostasis and, thus, decreasing azole drug accumulation.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Raquel Califórnia
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Mihaela Ola
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Geraldine Butler
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| |
Collapse
|
13
|
Monteiro PT, Oliveira J, Pais P, Antunes M, Palma M, Cavalheiro M, Galocha M, Godinho CP, Martins LC, Bourbon N, Mota MN, Ribeiro RA, Viana R, Sá-Correia I, Teixeira MC. YEASTRACT+: a portal for cross-species comparative genomics of transcription regulation in yeasts. Nucleic Acids Res 2020; 48:D642-D649. [PMID: 31586406 PMCID: PMC6943032 DOI: 10.1093/nar/gkz859] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 11/14/2022] Open
Abstract
The YEASTRACT+ information system (http://YEASTRACT-PLUS.org/) is a wide-scope tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in yeasts of biotechnological or human health relevance. YEASTRACT+ is a new portal that integrates the previously existing YEASTRACT (http://www.yeastract.com/) and PathoYeastract (http://pathoyeastract.org/) databases and introduces the NCYeastract (Non-Conventional Yeastract) database (http://ncyeastract.org/), focused on the so-called non-conventional yeasts. The information in the YEASTRACT database, focused on Saccharomyces cerevisiae, was updated. PathoYeastract was extended to include two additional pathogenic yeast species: Candida parapsilosis and Candida tropicalis. Furthermore, the NCYeastract database was created, including five biotechnologically relevant yeast species: Zygosaccharomyces baillii, Kluyveromyces lactis, Kluyveromyces marxianus, Yarrowia lipolytica and Komagataella phaffii. The YEASTRACT+ portal gathers 289 706 unique documented regulatory associations between transcription factors (TF) and target genes and 420 DNA binding sites, considering 247 TFs from 10 yeast species. YEASTRACT+ continues to make available tools for the prediction of the TFs involved in the regulation of gene/genomic expression. In this release, these tools were upgraded to enable predictions based on orthologous regulatory associations described for other yeast species, including two new tools for cross-species transcription regulation comparison, based on multi-species promoter and TF regulatory network analyses.
Collapse
Affiliation(s)
- Pedro T Monteiro
- Department of Computer Science and Engineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,INESC-ID, R. Alves Redol, 9, 1000-029 Lisbon, Portugal
| | | | - Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Miguel Antunes
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Margarida Palma
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Cláudia P Godinho
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Luís C Martins
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nuno Bourbon
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Marta N Mota
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ricardo A Ribeiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,iBB-Institute for BioEngineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
14
|
Santos R, Cavalheiro M, Costa C, Takahashi-Nakaguchi A, Okamoto M, Chibana H, Teixeira MC. Screening the Drug:H + Antiporter Family for a Role in Biofilm Formation in Candida glabrata. Front Cell Infect Microbiol 2020; 10:29. [PMID: 32117803 PMCID: PMC7010593 DOI: 10.3389/fcimb.2020.00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Biofilm formation and drug resistance are two key pathogenesis traits exhibited by Candida glabrata as a human pathogen. Interestingly, specific pathways appear to be in the crossroad between the two phenomena, making them promising targets for drug development. In this study, the 10 multidrug resistance transporters of the Drug:H+ Antiporter family of C. glabrata were screened for a role in biofilm formation. Besides previously identified players in this process, namely CgTpo1_2 and CgQdr2, two others are shown to contribute to biofilm formation: CgDtr1 and CgTpo4. The deletion of each of these genes was found to lead to lower biofilm formation, in both SDB and RPMI media, while their expression was found to increase during biofilm development and to be controlled by the transcription factor CgTec1, a predicted key regulator of biofilm formation. Additionally, the deletion of CgDTR1, CgTPO4, or even CgQDR2 was found to increase plasma membrane potential and lead to decreased expression of adhesin encoding genes, particularly CgALS1 and CgEPA1, during biofilm formation. Although the exact role of these drug transporters in biofilm formation remains elusive, our current model suggests that their control over membrane potential by the transport of charged molecules, may affect the perception of nutrient availability, which in turn may delay the triggering of adhesion and biofilm formation.
Collapse
Affiliation(s)
- Rui Santos
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Catarina Costa
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| |
Collapse
|
15
|
Phenotypic characteristics and transcriptome profile of Cryptococcus gattii biofilm. Sci Rep 2019; 9:6438. [PMID: 31015652 PMCID: PMC6478838 DOI: 10.1038/s41598-019-42896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we characterized Cryptococcus gattii biofilm formation in vitro. There was an increase in the density of metabolically active sessile cells up to 72 h of biofilm formation on polystyrene and glass surfaces. Scanning electron microscopy and confocal laser scanning microscopy analysis revealed that in the early stage of biofilm formation, yeast cells adhered to the abiotic surface as a monolayer. After 12 h, extracellular fibrils were observed projecting from C. gattii cells, connecting the yeast cells to each other and to the abiotic surface; mature biofilm consisted of a dense network of cells deeply encased in an extracellular polymeric matrix. These features were also observed in biofilms formed on polyvinyl chloride and silicone catheter surfaces. We used RNA-Seq-based transcriptome analysis to identify changes in gene expression associated with C. gattii biofilm at 48 h compared to the free-floating planktonic cells. Differential expression analysis showed that 97 and 224 transcripts were up-regulated and down-regulated in biofilm, respectively. Among the biological processes, the highest enriched term showed that the transcripts were associated with cellular metabolic processes, macromolecule biosynthetic processes and translation.
Collapse
|
16
|
A Transcriptomics Approach To Unveiling the Mechanisms of In Vitro Evolution towards Fluconazole Resistance of a Candida glabrata Clinical Isolate. Antimicrob Agents Chemother 2018; 63:AAC.00995-18. [PMID: 30348666 PMCID: PMC6325195 DOI: 10.1128/aac.00995-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/14/2018] [Indexed: 01/05/2023] Open
Abstract
Candida glabrata is an emerging fungal pathogen. Its increased prevalence is associated with its ability to rapidly develop antifungal drug resistance, particularly to azoles. Candida glabrata is an emerging fungal pathogen. Its increased prevalence is associated with its ability to rapidly develop antifungal drug resistance, particularly to azoles. In order to unravel new molecular mechanisms behind azole resistance, a transcriptomics analysis of the evolution of a C. glabrata clinical isolate (isolate 044) from azole susceptibility to posaconazole resistance (21st day), clotrimazole resistance (31st day), and fluconazole and voriconazole resistance (45th day), induced by longstanding incubation with fluconazole, was carried out. All the evolved strains were found to accumulate lower concentrations of azole drugs than the parental strain, while the ergosterol concentration remained mostly constant. However, only the population displaying resistance to all azoles was found to have a gain-of-function mutation in the C. glabrataPDR1 gene, leading to the upregulation of genes encoding multidrug resistance transporters. Intermediate strains, exhibiting posaconazole/clotrimazole resistance and increased fluconazole/voriconazole MIC levels, were found to display alternative ways to resist azole drugs. Particularly, posaconazole/clotrimazole resistance after 31 days was correlated with increased expression of adhesin genes. This finding led us to identify the Epa3 adhesin as a new determinant of azole resistance. Besides being required for biofilm formation, Epa3 expression was found to decrease the intracellular accumulation of azole antifungal drugs. Altogether, this work provides a glimpse of the transcriptomics evolution of a C. glabrata population toward multiazole resistance, highlighting the multifactorial nature of the acquisition of azole resistance and pointing out a new player in azole resistance.
Collapse
|
17
|
Host-Pathogen Interactions Mediated by MDR Transporters in Fungi: As Pleiotropic as it Gets! Genes (Basel) 2018; 9:genes9070332. [PMID: 30004464 PMCID: PMC6071111 DOI: 10.3390/genes9070332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
Fungal infections caused by Candida, Aspergillus, and Cryptococcus species are an increasing problem worldwide, associated with very high mortality rates. The successful prevalence of these human pathogens is due to their ability to thrive in stressful host niche colonization sites, to tolerate host immune system-induced stress, and to resist antifungal drugs. This review focuses on the key role played by multidrug resistance (MDR) transporters, belonging to the ATP-binding cassette (ABC), and the major facilitator superfamilies (MFS), in mediating fungal resistance to pathogenesis-related stresses. These clearly include the extrusion of antifungal drugs, with C. albicans CDR1 and MDR1 genes, and corresponding homologs in other fungal pathogens, playing a key role in this phenomenon. More recently, however, clues on the transcriptional regulation and physiological roles of MDR transporters, including the transport of lipids, ions, and small metabolites, have emerged, linking these transporters to important pathogenesis features, such as resistance to host niche environments, biofilm formation, immune system evasion, and virulence. The wider view of the activity of MDR transporters provided in this review highlights their relevance beyond drug resistance and the need to develop therapeutic strategies that successfully face the challenges posed by the pleiotropic nature of these transporters.
Collapse
|
18
|
Timmermans B, De Las Peñas A, Castaño I, Van Dijck P. Adhesins in Candida glabrata. J Fungi (Basel) 2018; 4:E60. [PMID: 29783771 PMCID: PMC6023314 DOI: 10.3390/jof4020060] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/31/2022] Open
Abstract
The human fungal pathogen Candida glabrata is causing more and more problems in hospitals, as this species shows an intrinsic antifungal drug resistance or rapidly becomes resistant when challenged with antifungals. C. glabrata only grows in the yeast form, so it is lacking a yeast-to-hyphae switch, which is one of the main virulence factors of C. albicans. An important virulence factor of C. glabrata is its capacity to strongly adhere to many different substrates. To achieve this, C. glabrata expresses a large number of adhesin-encoding genes and genome comparisons with closely related species, including the non-pathogenic S. cerevisiae, which revealed a correlation between the number of adhesin-encoding genes and pathogenicity. The adhesins are involved in the first steps during an infection; they are the first point of contact with the host. For several of these adhesins, their importance in adherence to different substrates and subsequent biofilm formation was demonstrated in vitro or in vivo. In this review, we provide an overview of the role of C. glabrata adhesins during adhesion and biofilm formation both, under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Bea Timmermans
- KU Leuven, Laboratory of Molecular Cell Biology, Kasteelpark Arenberg 31 bus 2438, 3001 Leuven, Belgium.
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium.
| | - Alejandro De Las Peñas
- IPICYT, División de Biología Molecular, Camino a la Presa San José 2055, C.P., San Luis Potosí 78216 San Luis Potosí, Mexico.
| | - Irene Castaño
- IPICYT, División de Biología Molecular, Camino a la Presa San José 2055, C.P., San Luis Potosí 78216 San Luis Potosí, Mexico.
| | - Patrick Van Dijck
- KU Leuven, Laboratory of Molecular Cell Biology, Kasteelpark Arenberg 31 bus 2438, 3001 Leuven, Belgium.
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium.
| |
Collapse
|
19
|
Deletion of ADA2 Increases Antifungal Drug Susceptibility and Virulence in Candida glabrata. Antimicrob Agents Chemother 2018; 62:AAC.01924-17. [PMID: 29311082 DOI: 10.1128/aac.01924-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
Candida glabrata, the second most frequent cause of candidiasis after Candida albicans, is an emerging human fungal pathogen that is intrinsically drug tolerant. Currently, studies of C. glabrata genes involved in drug tolerance are limited. Ada2, a component serving as a transcription adaptor of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, is required for antifungal drug tolerance and virulence in C. albicans However, its roles in C. glabrata remain elusive. In this study, we found that ada2 mutants demonstrated severe growth defects at 40°C but only mild defects at 37°C or 25°C. In addition, C. glabrata ada2 mutants exhibited pleiotropic phenotypes, including susceptibility to three classes of antifungal drugs (i.e., azoles, echinocandins, and polyenes) and cell wall-perturbing agents but resistance to the endoplasmic reticulum stressor tunicamycin. According to RNA sequence analysis, the expression of 43 genes was downregulated and the expression of 442 genes was upregulated in the ada2 mutant compared to their expression in the wild type. C. glabrata ADA2, along with its downstream target ERG6, controls antifungal drug tolerance and cell wall integrity. Surprisingly, ada2 mutants were hypervirulent in a murine model of systemic infection, possibly due to the upregulation of multiple adhesin-like genes, increased agar invasion, and overstimulation of murine tumor necrosis factor alpha production.
Collapse
|
20
|
Cavalheiro M, Teixeira MC. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med (Lausanne) 2018; 5:28. [PMID: 29487851 PMCID: PMC5816785 DOI: 10.3389/fmed.2018.00028] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.
Collapse
Affiliation(s)
- Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Romão D, Cavalheiro M, Mil-Homens D, Santos R, Pais P, Costa C, Takahashi-Nakaguchi A, Fialho AM, Chibana H, Teixeira MC. A New Determinant of Candida glabrata Virulence: The Acetate Exporter CgDtr1. Front Cell Infect Microbiol 2017; 7:473. [PMID: 29184852 PMCID: PMC5694539 DOI: 10.3389/fcimb.2017.00473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/30/2017] [Indexed: 01/29/2023] Open
Abstract
Persistence and virulence of Candida glabrata infections are multifactorial phenomena, whose understanding is crucial to design more suitable therapeutic strategies. In this study, the putative multidrug transporter CgDtr1, encoded by ORF CAGL0M06281g, is identified as a determinant of C. glabrata virulence in the infection model Galleria mellonella. CgDTR1 deletion is shown to decrease the ability to kill G. mellonella larvae by decreasing C. glabrata ability to proliferate in G. mellonella hemolymph, and to tolerate the action of hemocytes. The possible role of CgDtr1 in the resistance to several stress factors that underlie death induced by phagocytosis was assessed. CgDTR1 was found to confer resistance to oxidative and acetic acid stress. Consistently, CgDtr1 was found to be a plasma membrane acetic acid exporter, relieving the stress induced upon C. glabrata cells within hemocytes, and thus enabling increased proliferation and virulence against G. mellonella larvae.
Collapse
Affiliation(s)
- Daniela Romão
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Mafalda Cavalheiro
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Dalila Mil-Homens
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Rui Santos
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Pedro Pais
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Catarina Costa
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Arsénio M Fialho
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Miguel C Teixeira
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisbon, Portugal
| |
Collapse
|
22
|
Krátký M, Bősze S, Baranyai Z, Stolaříková J, Vinšová J. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. Bioorg Med Chem Lett 2017; 27:5185-5189. [PMID: 29097168 DOI: 10.1016/j.bmcl.2017.10.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/26/2023]
Abstract
Reflecting the known biological activity of isoniazid-based hydrazones, seventeen hydrazones of 4-(trifluoromethyl)benzohydrazide as their bioisosters were synthesized from various benzaldehydes and aliphatic ketones. The compounds were screened for their in vitro activity against Mycobacterium tuberculosis, nontuberculous mycobacteria (M. avium, M. kansasii), bacterial and fungal strains. The most antimicrobial potent derivatives were also investigated for their cytostatic and cytotoxic properties against three cell lines. Camphor-based molecule, 4-(trifluoromethyl)-N'-(1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)benzohydrazide, exhibited the highest and selective inhibition of M. tuberculosis with the minimum inhibitory concentration (MIC) of 4 µM, while N'-(4-chlorobenzylidene)-4-(trifluoromethyl)benzohydrazide was found to be superior against M. kansasii (MIC = 16 µM). N'-(5-Chloro-2-hydroxybenzylidene)-4-(trifluoromethyl)benzohydrazide showed the lowest MIC values for gram-positive bacteria including methicillin-resistant Staphylococcus aureus as well as against two fungal strains of Candida glabrata and Trichophyton mentagrophytes within the range of ≤0.49-3.9 µM. The convenient substitution of benzylidene moiety at the position 4 or the presence of 5-chloro-2-hydroxybenzylidene scaffold concomitantly with a sufficient lipophilicity are essential for the noticeable antimicrobial activity. This 5-chlorosalicylidene derivative avoided any cytotoxicity on two mammalian cell cultures (HepG2, BMMΦ) up to the concentration of 100 µM, but it affected the growth of MonoMac6 cells.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, P.O. Box 32, 1518 Budapest 112, Hungary
| | - Zsuzsa Baranyai
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, P.O. Box 32, 1518 Budapest 112, Hungary
| | - Jiřina Stolaříková
- Laboratory for Mycobacterial Diagnostics and Tuberculosis, Regional Institute of Public Health in Ostrava, Partyzánské náměstí 7, 702 00 Ostrava, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
23
|
Liu L, Yan Y, Huang J, Hsiang T, Wei Y, Li Y, Gao J, Zheng L. A Novel MFS Transporter Gene ChMfs1 Is Important for Hyphal Morphology, Conidiation, and Pathogenicity in Colletotrichum higginsianum. Front Microbiol 2017; 8:1953. [PMID: 29067014 PMCID: PMC5641377 DOI: 10.3389/fmicb.2017.01953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/22/2017] [Indexed: 11/13/2022] Open
Abstract
Colletotrichum higginsianum is a widely distributed fungus attacking many cruciferous species. To investigate pathogenic mechanisms of the pathogen on the host Arabidopsis thaliana, we screened and obtained a virulence-deficient mutant Ch-1-T513 in a T-DNA insertion mutant library of C. higginsianum. The mutant Ch-1-T513 produced yellow colony centers with distorted multi-branching hyphal tips as well as producing few conidia. Heavily swollen hyphae in the mutant could be observed, and intra-hyphal hyphae were found to be formed in the balloon-shaped hyphae. The mutant failed to produce lesions on 12-day-old Arabidopsis seedlings, and invasive hyphae did not differentiate into large primary and thin secondary hyphae after appressorial formation on Arabidopsis leaves, but formed abundant bulbous hyphae in epidermal cells. Southern blot analysis showed Ch-1-T513 had double-site T-DNA integrations. The mutant had insertions upstream of genes for a major facilitator superfamily (MFS) transporter, ChMfs1 and an aldo/keto reductase, ChAkr. Complementation experiments by transforming genomic sequences from a wild-type strain into the insertion mutant demonstrated that ChMfs1 is involved in the Ch-1-T513 phenotype. The complementation strain C-ChMfs1-1 exhibited normal hyphal morphology, conidiation, and pathogenicity identical to the wild-type. The results demonstrate that ChMfs1 is involved in intra-hyphal hyphae production, conidiation, and pathogenicity in C. higginsianum. To our knowledge, this is the first report of a MFS transporter gene in a phytopathogenic fungus associated with intra-hyphal hyphae formation, playing a key role in infection of its plant host.
Collapse
Affiliation(s)
- Liping Liu
- Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China.,Laboratory of Plant Pathology, Department of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yaqin Yan
- Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Junbin Huang
- Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yu Li
- Laboratory of Plant Pathology, Department of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jie Gao
- Laboratory of Plant Pathology, Department of Agronomy, Jilin Agricultural University, Changchun, China
| | - Lu Zheng
- Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Ames L, Duxbury S, Pawlowska B, Ho HL, Haynes K, Bates S. Galleria mellonella as a host model to study Candida glabrata virulence and antifungal efficacy. Virulence 2017; 8:1909-1917. [PMID: 28658597 PMCID: PMC5750810 DOI: 10.1080/21505594.2017.1347744] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Lauren Ames
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| | - Sarah Duxbury
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| | - Bogna Pawlowska
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| | - Hsueh-Lui Ho
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| | - Ken Haynes
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| | - Steven Bates
- a Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , Devon , UK
| |
Collapse
|
25
|
Dalton JP, Uy B, Swift S, Wiles S. A Novel Restraint Device for Injection of Galleria mellonella Larvae that Minimizes the Risk of Accidental Operator Needle Stick Injury. Front Cell Infect Microbiol 2017; 7:99. [PMID: 28401069 PMCID: PMC5368263 DOI: 10.3389/fcimb.2017.00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/13/2017] [Indexed: 01/01/2023] Open
Abstract
Larvae of the insect Galleria mellonella are increasingly being used for studying pathogenic microbes and their virulence mechanisms, and as a rapid model for screening novel antimicrobial agents. The larvae (waxworms) are most frequently infected by injection of pathogenic organisms into the haemocoel through the insect's prolegs. The mostly widely used method for restraining the waxworms for injection is by grasping them between the operator's fingers, which puts the operator at risk of needle stick injury, an important consideration when working with highly pathogenic and/or drug-resistant microorganisms. While use of a stab proof glove can reduce this risk of injury, it does so at the loss of manual dexterity and speed, resulting in a more labor-intensive, and cumbersome assay. We describe a simple cost effective device (the so-called “Galleria Grabber”) for restraining waxworms for injection that keeps the operator's fingers clear of the needle thus reducing the risk of injury.
Collapse
Affiliation(s)
- James P Dalton
- Bioluminescent Superbugs Lab, University of AucklandAuckland, New Zealand; Department of Molecular Medicine and Pathology, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand
| | - Benedict Uy
- Bioluminescent Superbugs Lab, University of AucklandAuckland, New Zealand; Department of Molecular Medicine and Pathology, University of AucklandAuckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland Auckland, New Zealand
| | - Siouxsie Wiles
- Bioluminescent Superbugs Lab, University of AucklandAuckland, New Zealand; Department of Molecular Medicine and Pathology, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand
| |
Collapse
|