1
|
Rakoczy K, Szymańska N, Stecko J, Kisiel M, Sleziak J, Gajewska-Naryniecka A, Kulbacka J. The Role of RAC2 and PTTG1 in Cancer Biology. Cells 2025; 14:330. [PMID: 40072059 PMCID: PMC11899714 DOI: 10.3390/cells14050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Several molecular pathways are likely involved in the regulation of cancer stem cells (CSCs) via Ras-associated C3 botulinum toxin substrate 2, RAC2, and pituitary tumor-transforming gene 1 product, PTTG1, given their roles in cellular signaling, survival, proliferation, and metastasis. RAC2 is a member of the Rho GTPase family and plays a crucial role in actin cytoskeleton dynamics, reactive oxygen species production, and cell migration, contributing to epithelial-mesenchymal transition (EMT), immune evasion, and therapy resistance. PTTG1, also known as human securin, regulates key processes such as cell cycle progression, apoptosis suppression, and EMT, promoting metastasis and enhancing cancer cell survival. This article aims to describe the molecular pathways involved in the proliferation, invasiveness, and drug response of cancer cells through RAC2 and PTTG1, aiming to clarify their respective roles in neoplastic process dependencies. Both proteins are involved in critical signaling pathways, including PI3K/AKT, TGF-β, and NF-κB, which facilitate tumor progression by modulating CSC properties, angiogenesis, and immune response. This review highlights the molecular mechanisms by which RAC2 and PTTG1 influence tumorigenesis and describes their potential and efficacy as prognostic biomarkers and therapeutic targets in managing various neoplasms.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Michał Kisiel
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
2
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
Klaile E, Prada Salcedo JP, Klassert TE, Besemer M, Bothe AK, Durotin A, Müller MM, Schmitt V, Luther CH, Dittrich M, Singer BB, Dandekar T, Slevogt H. Antibody ligation of CEACAM1, CEACAM3, and CEACAM6, differentially enhance the cytokine release of human neutrophils in responses to Candida albicans. Cell Immunol 2021; 371:104459. [PMID: 34847408 DOI: 10.1016/j.cellimm.2021.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
Invasive candidiasis is a healthcare-associated fungal infection with a high mortality rate. Neutrophils, the first line of defense during fungal infections, express the immunoregulatory Candida albicans receptors CEACAM1, CEACAM3, and CEACAM6. We analyzed the effects of specific antibodies on C. albicans-induced neutrophil responses. CEACAM6 ligation by 1H7-4B and to some extent CEACAM1 ligation by B3-17, but not CEACAM3 ligation by 308/3-3, resulted in the immediate release of stored CXCL8 and altered transcriptional responses of the C. albicans-stimulated neutrophils. Integrated network analyses and dynamic simulations of signaling cascades predicted alterations in apoptosis and cytokine secretion. We verified that CEACAM6 ligation enhanced Candida-induced neutrophil apoptosis and increased long-term IL-1β/IL-6 release in responses to C. albicans. CEACAM3 ligation, but not CEACAM1 ligation, increased the long-term release of pro-inflammatory IL-1β/IL-6. Taken together, we demonstrated for the first time that ligation of CEACAM receptors differentially affects the regulation of C. albicans-induced immune functions in human neutrophils.
Collapse
Affiliation(s)
- Esther Klaile
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Juan P Prada Salcedo
- Dept. of Bioinformatics, University of Würzburg, Biocenter/Am Hubland, 97074 Würzburg, Germany.
| | - Tilman E Klassert
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Matthias Besemer
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Anne-Katrin Bothe
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Adrian Durotin
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Mario M Müller
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| | - Verena Schmitt
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany.
| | - Christian H Luther
- Dept. of Bioinformatics, University of Würzburg, Biocenter/Am Hubland, 97074 Würzburg, Germany.
| | - Marcus Dittrich
- Dept. of Bioinformatics, University of Würzburg, Biocenter/Am Hubland, 97074 Würzburg, Germany; Dept. of Human Genetics, University of Würzburg, Biocenter/Am Hubland, 97074 Würzburg, Germany.
| | - Bernhard B Singer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany.
| | - Thomas Dandekar
- Dept. of Bioinformatics, University of Würzburg, Biocenter/Am Hubland, 97074 Würzburg, Germany.
| | - Hortense Slevogt
- ZIK Septomics, University Hospital Jena, Albert-Einstein-Straße 10, 07749 Jena, Germany.
| |
Collapse
|
4
|
Russell MW, Jerse AE, Gray-Owen SD. Progress Toward a Gonococcal Vaccine: The Way Forward. Front Immunol 2019; 10:2417. [PMID: 31681305 PMCID: PMC6803597 DOI: 10.3389/fimmu.2019.02417] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
The concept of immunizing against gonorrhea has received renewed interest because of the recent emergence of strains of Neisseria gonorrhoeae that are resistant to most currently available antibiotics, an occurrence that threatens to render gonorrhea untreatable. However, despite efforts over many decades, no vaccine has yet been successfully developed for human use, leading to pessimism over whether this goal was actually attainable. Several factors have contributed to this situation, including extensive variation of the expression and specificity of many of the gonococcal surface antigens, and the ability of N. gonorrhoeae to resist destruction by complement and other innate immune defense mechanisms. The natural host restriction of N. gonorrhoeae for humans, coupled with the absence of any definable state of immunity arising from an episode of gonorrhea, have also complicated efforts to study gonococcal pathogenesis and the host's immune responses. However, recent findings have elucidated how the gonococcus exploits and manipulates the host's immune system for its own benefit, utilizing human-specific receptors for attachment to and invasion of tissues, and subverting adaptive immune responses that might otherwise be capable of eliminating it. While no single experimental model is capable of providing all the answers, experiments utilizing human cells and tissues in vitro, various in vivo animal models, including genetically modified strains of mice, and both experimental and observational human clinical studies, have combined to yield important new insight into the immuno-pathogenesis of gonococcal infection. In turn, these have now led to novel approaches for the development of a gonococcal vaccine. Ongoing investigations utilizing all available tools are now poised to make the development of an effective human vaccine against gonorrhea an achievable goal within a foreseeable time-frame.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, United States
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Palmer A, Criss AK. Gonococcal Defenses against Antimicrobial Activities of Neutrophils. Trends Microbiol 2018; 26:1022-1034. [PMID: 30115561 DOI: 10.1016/j.tim.2018.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Neisseria gonorrhoeae initiates a strong local immune response that is characterized by copious recruitment of neutrophils to the site of infection. Neutrophils neutralize microbes by mechanisms that include phagocytosis, extracellular trap formation, production of reactive oxygen species, and the delivery of antimicrobial granular contents. However, neutrophils do not clear infection with N. gonorrhoeae. N. gonorrhoeae not only expresses factors that defend against neutrophil bactericidal components, but it also manipulates neutrophil production and release of these components. In this review, we highlight the numerous approaches used by N. gonorrhoeae to survive exposure to neutrophils both intracellularly and extracellularly. These approaches reflect the exquisite adaptation of N. gonorrhoeae to its obligate human host.
Collapse
Affiliation(s)
- Allison Palmer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|