1
|
Brühlmann F, Perry C, Griessen C, Gunasekera K, Reymond JL, Naguleswaran A, Rottenberg S, Woods K, Olias P. TurboID mapping reveals the exportome of secreted intrinsically disordered proteins in the transforming parasite Theileria annulata. mBio 2024; 15:e0341223. [PMID: 38747635 PMCID: PMC11237503 DOI: 10.1128/mbio.03412-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
Theileria annulata is a tick-transmitted apicomplexan parasite that gained the unique ability among parasitic eukaryotes to transform its host cell, inducing a fatal cancer-like disease in cattle. Understanding the mechanistic interplay between the host cell and malignant Theileria species that drives this transformation requires the identification of responsible parasite effector proteins. In this study, we used TurboID-based proximity labeling, which unbiasedly identified secreted parasite proteins within host cell compartments. By fusing TurboID to nuclear export or localization signals, we biotinylated proteins in the vicinity of the ligase enzyme in the nucleus or cytoplasm of infected macrophages, followed by mass spectrometry analysis. Our approach revealed with high confidence nine nuclear and four cytosolic candidate parasite proteins within the host cell compartments, eight of which had no orthologs in non-transforming T. orientalis. Strikingly, all eight of these proteins are predicted to be highly intrinsically disordered proteins. We discovered a novel tandem arrayed protein family, nuclear intrinsically disordered proteins (NIDP) 1-4, featuring diverse functions predicted by conserved protein domains. Particularly, NIDP2 exhibited a biphasic host cell-cycle-dependent localization, interacting with the EB1/CD2AP/CLASP1 parasite membrane complex at the schizont surface and the tumor suppressor stromal antigen 2 (STAG2), a cohesion complex subunit, in the host nucleus. In addition to STAG2, numerous NIDP2-associated host nuclear proteins implicated in various cancers were identified, shedding light on the potential role of the T. annulata exported protein family NIDP in host cell transformation and cancer-related pathways.IMPORTANCETurboID proximity labeling was used to identify secreted proteins of Theileria annulata, an apicomplexan parasite responsible for a fatal, proliferative disorder in cattle that represents a significant socio-economic burden in North Africa, central Asia, and India. Our investigation has provided important insights into the unique host-parasite interaction, revealing secreted parasite proteins characterized by intrinsically disordered protein structures. Remarkably, these proteins are conspicuously absent in non-transforming Theileria species, strongly suggesting their central role in the transformative processes within host cells. Our study identified a novel tandem arrayed protein family, with nuclear intrinsically disordered protein 2 emerging as a central player interacting with established tumor genes. Significantly, this work represents the first unbiased screening for exported proteins in Theileria and contributes essential insights into the molecular intricacies behind the malignant transformation of immune cells.
Collapse
Affiliation(s)
- Francis Brühlmann
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Carmen Perry
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | | | - Kapila Gunasekera
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| | | | - Sven Rottenberg
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Kerry Woods
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Philipp Olias
- Institute of Animal Pathology, University of Bern, Bern, Switzerland
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
2
|
Ma Q, Han Y, Fu Y, Teng G, Wang X, Liu J, Li Z. Theileria annulata subtelomere-encoded variable secreted protein-TA05560 interacts with bovine RNA binding motif protein 39 (RBM39). Acta Trop 2024; 252:107133. [PMID: 38280638 DOI: 10.1016/j.actatropica.2024.107133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Theileria annulata is the only eukaryotic pathogen able to transform bovine leukocytes, including B cells, macrophages and dendritic cells. T. annulata-transformed cells exhibit several cancer-like phenotypes, such as hyperproliferation, immortalization and dissemination. Although several parasite factors involved in bovine cell transformation have been explored, the roles of subtelomere-encoded variable secreted proteins (SVSPs) of the parasite in host-cell interactions are largely unknown. In the present study, the target molecule TA05560, a member of the SVSP multigene family of T. annulata, was identified at the mRNA level during different life cycles through a quantitative real-time PCR assay, and the subcellular distribution of TA05560 was examined via confocal microscopy. The results showed that the parasite molecule TA05560 was transcribed mainly in the schizont stage of T. annulata infection, and the protein was distributed in the nucleus and cytoplasm of the parasitized cells. The potential host cell proteins that interact with TA05560 were screened using the yeast two-hybrid system, and the direct interaction between TA05560 and its prey protein, Bos taurus RNA binding motif protein 39 (RBM39) was further identified in HEK293T cells by using confocal microscopy, coimmunoprecipitation and bimolecular fluorescence complementation assays. Moreover, the interaction between TA05560 and its host protein was observed in T. annulata-infected cells via confocal microscopy. Therefore, our study is the first to show that the T. annulata-secreted TA05560 protein directly binds to both the exogenous and endogenous host cell molecule RBM39, laying the foundation for exploring host-parasite interactions and understanding the transformation mechanisms induced by T. annulata and other transforming parasites.
Collapse
Affiliation(s)
- Quanying Ma
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Yuan Han
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Animal Disease Pathogen Diagnosis and Green Prevention and Control Technology of Qinghai Province, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai 810016, China
| | - Yong Fu
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Animal Disease Pathogen Diagnosis and Green Prevention and Control Technology of Qinghai Province, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai 810016, China
| | - Guixiang Teng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Xiaoqiang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, China
| | - Zhi Li
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Animal Disease Pathogen Diagnosis and Green Prevention and Control Technology of Qinghai Province, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, Qinghai 810016, China.
| |
Collapse
|
3
|
Villares M, Lourenço N, Ktorza I, Berthelet J, Panagiotou A, Richard A, Amo A, Koziy Y, Medjkane S, Valente S, Fioravanti R, Pioche-Durieu C, Lignière L, Chevreux G, Mai A, Weitzman JB. Theileria parasites sequester host eIF5A to escape elimination by host-mediated autophagy. Nat Commun 2024; 15:2235. [PMID: 38472173 DOI: 10.1038/s41467-024-45022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Intracellular pathogens develop elaborate mechanisms to survive within the hostile environments of host cells. Theileria parasites infect bovine leukocytes and cause devastating diseases in cattle in developing countries. Theileria spp. have evolved sophisticated strategies to hijack host leukocytes, inducing proliferative and invasive phenotypes characteristic of cell transformation. Intracellular Theileria parasites secrete proteins into the host cell and recruit host proteins to induce oncogenic signaling for parasite survival. It is unknown how Theileria parasites evade host cell defense mechanisms, such as autophagy, to survive within host cells. Here, we show that Theileria annulata parasites sequester the host eIF5A protein to their surface to escape elimination by autophagic processes. We identified a small-molecule compound that reduces parasite load by inducing autophagic flux in host leukocytes, thereby uncoupling Theileria parasite survival from host cell survival. We took a chemical genetics approach to show that this compound induced host autophagy mechanisms and the formation of autophagic structures via AMPK activation and the release of the host protein eIF5A which is sequestered at the parasite surface. The sequestration of host eIF5A to the parasite surface offers a strategy to escape elimination by autophagic mechanisms. These results show how intracellular pathogens can avoid host defense mechanisms and identify a new anti-Theileria drug that induces autophagy to target parasite removal.
Collapse
Affiliation(s)
- Marie Villares
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Nelly Lourenço
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Ivan Ktorza
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Aristeidis Panagiotou
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Aurélie Richard
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Angélique Amo
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Yulianna Koziy
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Souhila Medjkane
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France
| | - Sergio Valente
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, 00185, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, 00185, Italy
| | | | - Laurent Lignière
- Université Paris Cité, CNRS, UMR 7592 Institut Jacques Monod, Paris, 75013, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, UMR 7592 Institut Jacques Monod, Paris, 75013, France
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, 00185, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, 00185, Italy
| | - Jonathan B Weitzman
- Université Paris Cité, CNRS, UMR7126 Epigenetics and Cell Fate, Paris, 75013, France.
| |
Collapse
|
4
|
Elati K, Tajeri S, Obara I, Mhadhbi M, Zweygarth E, Darghouth MA, Nijhof AM. Dual RNA-seq to catalogue host and parasite gene expression changes associated with virulence of T. annulata-transformed bovine leukocytes: towards identification of attenuation biomarkers. Sci Rep 2023; 13:18202. [PMID: 37875584 PMCID: PMC10598219 DOI: 10.1038/s41598-023-45458-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
The apicomplexan parasite Theileria annulata is transmitted by Hyalomma ticks and causes an acute lymphoproliferative disease that is invariably lethal in exotic cattle breeds. The unique ability of the schizont stage of T. annulata to transform infected leukocytes to a cancer-like phenotype and the simplicity of culturing and passaging T. annulata-transformed cells in vitro have been explored for live vaccine development by attenuating the transformed cells using lengthy serial propagation in vitro. The empirical in vivo evaluation of attenuation required for each batch of long-term cultured cells is a major constraint since it is resource intensive and raises ethical issues regarding animal welfare. As yet, the molecular mechanisms underlying attenuation are not well understood. Characteristic changes in gene expression brought about by attenuation are likely to aid in the identification of novel biomarkers for attenuation. We set out to undertake a comparative transcriptome analysis of attenuated (passage 296) and virulent (passage 26) bovine leukocytes infected with a Tunisian strain of T. annulata termed Beja. RNA-seq was used to analyse gene expression profiles and the relative expression levels of selected genes were verified by real-time quantitative PCR (RT-qPCR) analysis. Among the 3538 T. annulata genes analysed, 214 were significantly differentially expressed, of which 149 genes were up-regulated and 65 down-regulated. Functional annotation of differentially expressed T. annulata genes revealed four broad categories of metabolic pathways: carbon metabolism, oxidative phosphorylation, protein processing in the endoplasmic reticulum and biosynthesis of secondary metabolites. It is interesting to note that of the top 40 genes that showed altered expression, 13 were predicted to contain a signal peptide and/or at least one transmembrane domain, suggesting possible involvement in host-parasite interaction. Of the 16,514 bovine transcripts, 284 and 277 showed up-regulated and down-regulated expression, respectively. These were assigned to functional categories relevant to cell surface, tissue morphogenesis and regulation of cell adhesion, regulation of leucocyte, lymphocyte and cell activation. The genetic alterations acquired during attenuation that we have catalogued herein, as well as the accompanying in silico functional characterization, do not only improve understanding of the attenuation process, but can also be exploited by studies aimed at identifying attenuation biomarkers across different cell lines focusing on some host and parasite genes that have been highlighted in this study, such as bovine genes (CD69, ZNF618, LPAR3, and APOL3) and parasite genes such as TA03875.
Collapse
Affiliation(s)
- Khawla Elati
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia.
| | - Shahin Tajeri
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Isaiah Obara
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Moez Mhadhbi
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia
| | - Erich Zweygarth
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mohamed Aziz Darghouth
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Univ. Manouba, 2020, Sidi Thabet, Tunisia
| | - Ard Menzo Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
| |
Collapse
|
5
|
Araveti PB, Kar PP, Kuriakose A, Sanju A, Kumar KA, Srivastava A. Identification of a Novel Interaction between Theileria Prohibitin ( TaPHB-1) and Bovine RuvB-Like AAA ATPase 1. Microbiol Spectr 2023; 11:e0250222. [PMID: 36651733 PMCID: PMC9927103 DOI: 10.1128/spectrum.02502-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Theileriosis is a tick-borne disease caused by Theileria annulata, an intracellular parasite that belongs to the phylum Apicomplexa. The infective forms of the parasite to cattle are sporozoites that are introduced into the host when the infected ticks take a blood meal. The sporozoites selectively invade bovine B cells, macrophages, or monocytes, leading to their cellular transformation. The parasite factors involved in the host cell transformation are not well explored. In pursuit of this, we revisited the probable secretome of the parasite and, following a stringent downscaling criterion, have identified Theileria prohibitin (TaPHB-1) as one of factors secreted into the host cells. Interestingly, in infected cells, TaPHB-1 localized both on the parasite surface and in the host cytoplasm, and independent approaches such as coimmunoprecipitation, yeast two-hybrid screening (Y2H), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed RuvB-like AAA ATPase 1 (RUVBL-1) as one of its interacting partners. Further, the T. annulata infection does not affect the localization of bovine prohibitin. Mitigating the expression of bovine RUVBL-1 precluded the translocation of TaPHB-1 in the host cell cytoplasm without affecting the host cell viability. Taken together, we report for the first time a unique interaction of TaPHB-1 with bovine RUVBL-1 that is likely needed to cause cancer-like hallmarks during theileriosis. IMPORTANCE Theileria annulata is an apicomplexan parasite that causes tropical theileriosis in cattle. It is the only eukaryotic pathogen able to cause cellular transformation of host cells yielding a cancer-like phenotype. The parasite factors responsible for the transformation of the host cell are largely unknown. This study demonstrates for the first time the partial role of Theileria prohibitin (TaPHB-1) in maintaining the transformed state of the host cell and its interaction with RuvB-like AAA ATPase 1 (RUVBL-1) in a T. annulata-infected bovine cell line. Interestingly, the knockdown of bovine RUVBL-1 rendered the parasites metabolically inactive, implying that the identified interaction is critical for parasite survival. This study contributes to our understanding the Theileria-host interactions and offers scope for novel therapeutic interventions to control theileriosis.
Collapse
Affiliation(s)
- Prasanna Babu Araveti
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Prajna Parimita Kar
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Akshay Kuriakose
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Achintya Sanju
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Kota Arun Kumar
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad, Telangana, India
| | - Anand Srivastava
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| |
Collapse
|
6
|
Role of Host Small GTPases in Apicomplexan Parasite Infection. Microorganisms 2022; 10:microorganisms10071370. [PMID: 35889089 PMCID: PMC9319929 DOI: 10.3390/microorganisms10071370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
The Apicomplexa are obligate intracellular parasites responsible for several important human diseases. These protozoan organisms have evolved several strategies to modify the host cell environment to create a favorable niche for their survival. The host cytoskeleton is widely manipulated during all phases of apicomplexan intracellular infection. Moreover, the localization and organization of host organelles are altered in order to scavenge nutrients from the host. Small GTPases are a class of proteins widely involved in intracellular pathways governing different processes, from cytoskeletal and organelle organization to gene transcription and intracellular trafficking. These proteins are already known to be involved in infection by several intracellular pathogens, including viruses, bacteria and protozoan parasites. In this review, we recapitulate the mechanisms by which apicomplexan parasites manipulate the host cell during infection, focusing on the role of host small GTPases. We also discuss the possibility of considering small GTPases as potential targets for the development of novel host-targeted therapies against apicomplexan infections.
Collapse
|
7
|
Kumar M, Michael S, Alvarado-Valverde J, Mészáros B, Sámano‐Sánchez H, Zeke A, Dobson L, Lazar T, Örd M, Nagpal A, Farahi N, Käser M, Kraleti R, Davey N, Pancsa R, Chemes L, Gibson T. The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Res 2022; 50:D497-D508. [PMID: 34718738 PMCID: PMC8728146 DOI: 10.1093/nar/gkab975] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023] Open
Abstract
Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.
Collapse
Affiliation(s)
- Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hugo Sámano‐Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
- Biomedical Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Laszlo Dobson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mihkel Örd
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Anurag Nagpal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa 403726, India
| | - Nazanin Farahi
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Melanie Käser
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Ramya Kraleti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Justus Liebig University Giessen, Ludwigstraße 23, 35390 Gießen, Germany
| | - Norman E Davey
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Rita Pancsa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
8
|
Kimmel J, Kehrer J, Frischknecht F, Spielmann T. Proximity-dependent biotinylation approaches to study apicomplexan biology. Mol Microbiol 2021; 117:553-568. [PMID: 34587292 DOI: 10.1111/mmi.14815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
In the last 10 years, proximity-dependent biotinylation (PDB) techniques greatly expanded the ability to study protein environments in the living cell that range from specific protein complexes to entire compartments. This is achieved by using enzymes such as BirA* and APEX that are fused to proteins of interest and biotinylate proteins in their proximity. PDB techniques are now also increasingly used in apicomplexan parasites. In this review, we first give an overview of the main PDB approaches and how they compare with other techniques that address similar questions. PDB is particularly valuable to detect weak or transient protein associations under physiological conditions and to study cellular structures that are difficult to purify or have a poorly understood protein composition. We also highlight new developments such as novel smaller or faster-acting enzyme variants and conditional PDB approaches, providing improvements in both temporal and spatial resolution which may offer broader application possibilities useful in apicomplexan research. In the second part, we review work using PDB techniques in apicomplexan parasites and how this expanded our knowledge about these medically important parasites.
Collapse
Affiliation(s)
- Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
9
|
Li Z, Liu J, Ma Q, Liu A, Li Y, Guan G, Luo J, Yin H. Screening and identification of Theileria annulata subtelomere-encoded variable secreted protein-950454 (SVSP454) interacting proteins from bovine B cells. Parasit Vectors 2021; 14:319. [PMID: 34116718 PMCID: PMC8196448 DOI: 10.1186/s13071-021-04820-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Theileria annulata is a protozoan parasite that can infect and transform bovine B cells, macrophages, and dendritic cells. The mechanism of the transformation is still not well understood, and some parasite molecules have been identified, which contribute to cell proliferation by regulating host signaling pathways. Subtelomeric variable secreted proteins (SVSPs) of Theileria might affect the host cell phenotype, but its function is still not clear. Therefore, in the present study, we explored the interactions of SVSP454 with host cell proteins to investigate the molecular mechanism of T. annulata interaction with host cells. METHODS The transcription level of an SVSP protein from T. annulata, SVSP454, was analyzed between different life stages and transformed cell passages using qRT-PCR. Then, SVSP454 was used as a bait to screen its interacting proteins from the bovine B cell cDNA library using a yeast two-hybrid (Y2H) system. The potential interacting proteins of host cells with SVSP454 were further identified by using a coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays. RESULTS SVSP454 was transcribed in all three life stages of T. annulata but had the highest transcription during the schizont stage. However, the transcription level of SVSP454 continuously decreased as the cultures passaged. Two proteins, Bos Taurus coiled-coil domain 181 (CCDC181) and Bos Taurus mitochondrial ribosomal protein L30 (MRPL30), were screened. The proteins CCDC181 and MRPL30 of the host were further identified to directly interact with SVSP454. CONCLUSION In the present study, SVSP454 was used as a bait plasmid, and its prey proteins CCDC181 and MRPL30 were screened out by using a Y2H system. Then, we demonstrated that SVSP454 directly interacted with both CCDC181 and MRPL30 by Co-IP and BiFC assays. Therefore, we speculate that SVSP454-CCDC181/SVSP454MRPL30 is an interacting axis that regulates the microtubule network and translation process of the host by some vital signaling molecules. Identification of the interaction of SVSP454 with CCDC181 and MRPL30 will help illustrate the transformation mechanisms induced by T. annulata.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Quanying Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
10
|
Cheeseman K, Jannot G, Lourenço N, Villares M, Berthelet J, Calegari-Silva T, Hamroune J, Letourneur F, Rodrigues-Lima F, Weitzman JB. Dynamic methylation of histone H3K18 in differentiating Theileria parasites. Nat Commun 2021; 12:3221. [PMID: 34050145 PMCID: PMC8163883 DOI: 10.1038/s41467-021-23477-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Lysine methylation on histone tails impacts genome regulation and cell fate determination in many developmental processes. Apicomplexa intracellular parasites cause major diseases and they have developed complex life cycles with fine-tuned differentiation events. Yet, apicomplexa genomes have few transcription factors and little is known about their epigenetic control systems. Tick-borne Theileria apicomplexa species have relatively small, compact genomes and a remarkable ability to transform leucocytes in their bovine hosts. Here we report enriched H3 lysine 18 monomethylation (H3K18me1) on the gene bodies of repressed genes in Theileria macroschizonts. Differentiation to merozoites (merogony) leads to decreased H3K18me1 in parasite nuclei. Pharmacological manipulation of H3K18 acetylation or methylation impacted parasite differentiation and expression of stage-specific genes. Finally, we identify a parasite SET-domain methyltransferase (TaSETup1) that can methylate H3K18 and represses gene expression. Thus, H3K18me1 emerges as an important epigenetic mark which controls gene expression and stage differentiation in Theileria parasites.
Collapse
Affiliation(s)
- Kevin Cheeseman
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Guillaume Jannot
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Nelly Lourenço
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Marie Villares
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Jérémy Berthelet
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France.,Université de Paris, Functional and Adaptive Biology, CNRS, Paris, France
| | | | | | | | | | | |
Collapse
|
11
|
Woods K, Perry C, Brühlmann F, Olias P. Theileria's Strategies and Effector Mechanisms for Host Cell Transformation: From Invasion to Immortalization. Front Cell Dev Biol 2021; 9:662805. [PMID: 33959614 PMCID: PMC8096294 DOI: 10.3389/fcell.2021.662805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
One of the first events that follows invasion of leukocytes by Theileria sporozoites is the destruction of the surrounding host cell membrane and the rapid association of the intracellular parasite with host microtubules. This is essential for the parasite to establish its niche within the cytoplasm of the invaded leukocyte and sets Theileria spp. apart from other members of the apicomplexan phylum such as Toxoplasma gondii and Plasmodium spp., which reside within the confines of a host-derived parasitophorous vacuole. After establishing infection, transforming Theileria species (T. annulata, T. parva) significantly rewire the signaling pathways of their bovine host cell, causing continual proliferation and resistance to ligand-induced apoptosis, and conferring invasive properties on the parasitized cell. Having transformed its target cell, Theileria hijacks the mitotic machinery to ensure its persistence in the cytoplasm of the dividing cell. Some of the parasite and bovine proteins involved in parasite-microtubule interactions have been fairly well characterized, and the schizont expresses at least two proteins on its membrane that contain conserved microtubule binding motifs. Theileria-encoded proteins have been shown to be translocated to the host cell cytoplasm and nucleus where they have the potential to directly modify signaling pathways and host gene expression. However, little is known about their mode of action, and even less about how these proteins are secreted by the parasite and trafficked to their target location. In this review we explore the strategies employed by Theileria to transform leukocytes, from sporozoite invasion until immortalization of the host cell has been established. We discuss the recent description of nuclear pore-like complexes that accumulate on membranes close to the schizont surface. Finally, we consider putative mechanisms of protein and nutrient exchange that might occur between the parasite and the host. We focus in particular on differences and similarities with recent discoveries in T. gondii and Plasmodium species.
Collapse
Affiliation(s)
- Kerry Woods
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Tajeri S, Langsley G. Theileria secretes proteins to subvert its host leukocyte. Biol Cell 2021; 113:220-233. [PMID: 33314227 DOI: 10.1111/boc.202000096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Abstract
Theileria parasites are classified in the phylum Apicomplexa that includes several genera of medical and veterinary importance such as Plasmodium, Babesia, Toxoplasma and Cryptosporidium. These protozoans have evolved subtle ways to reshape their intracellular niche for their own benefit and Theileria is no exception. This tick transmitted microorganism is unique among all eukaryotes in that its intracellular schizont stage is able to transform its mammalian host leukocytes into an immortalised highly disseminating cell that phenocopies tumour cells. Here, we describe what is known about secreted Theileria-encoded host cell manipulators.
Collapse
Affiliation(s)
- Shahin Tajeri
- INSERM U1016, CNRS UMR8104, Cochin Institute, Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes-Sorbonne Paris Cité, Paris, 75014, France.,Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, 75013, France
| | - Gordon Langsley
- INSERM U1016, CNRS UMR8104, Cochin Institute, Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes-Sorbonne Paris Cité, Paris, 75014, France
| |
Collapse
|
13
|
Abstract
Proteome networks are a crucial facet of biological systems that mediate cellular functions and responses to the environment. However, a main limitation of traditional approaches to study protein interactions, such as yeast-2-hybrid and affinity purification-coupled with mass spectrometry (AP-MS), is their restricted ability to identify interactions for membrane-bound and/or insoluble protein complexes. These types of interactions include many of the protein complexes that mediate the perception and response to cellular stimuli and are therefore of great research interest. Proximity-dependent biotinylation (PDB) coupled to mass spectrometry provides a powerful approach to survey proximal protein interactions in living cells, including membrane bound and insoluble complexes. One PDB method, BioID, translationally fuses a promiscuous biotin ligase to a bait protein of interest, allowing covalent biotinylation of proximal proteins (within ~10 nm). Modified proteins can be purified from cells without the need to maintain protein interactions, and subsequently identified by mass spectrometry. Although BioID has revolutionized the study of proteomes in numerous organisms, its application to plant systems has only recently been realized. In this chapter, we outline a protocol for BioID in tissues of the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Madiha Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Li Y, Wang B, Wang ZW, Huang Y, Jian JC, Lu YS. Molecular cloning, characterization and expression profiles of CD2AP in Nile tilapia (Oreochromis niloticus) responding to Streptococcus agalactiae infection and interaction with CD2 cytoplasmic segment. FISH & SHELLFISH IMMUNOLOGY 2020; 101:205-215. [PMID: 32247045 DOI: 10.1016/j.fsi.2020.03.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The interaction between CD2-associated protein (CD2AP) and CD2 plays a vital role in lymphocyte adhesion and T cells activation in mammals. In this study, a CD2AP gene (GenBank accession number: MK579862; designated as On-CD2AP) was identified from tilapia (Oreochromis niloticus). Sequence analysis showed that On-CD2AP protein shares high similarity with mammals, including three Src homology 3 (SH3) domains, a section of poly proline motif and a coiled coil region. Transcription levels of On-CD2AP were detected in nine tissues of healthy Nile tilapia, and the highest expression levels were detected in the spleen and gill. On-CD2AP were significantly up-regulated in thymus, head kidney and brain after infected by Streptococcus agalactiae, as well as in head kidney leukocytes (HKLs) with LPS and LTA stimulation. Moreover, a section conserved pro-rich motif that are responsible for binding of CD2 to CD2AP were found in the CD2 cytoplasmic sequence of Nile tilapia (On-CD2C). A weak interaction between On-CD2AP and On-CD2C was proved by yeast two-hybrid assay. In addition, the recombinant proteins of CD2AP-His (rOn-CD2AP-His) and GST-CD2C (GST-rOn-CD2C) were obtained through prokaryotic expression system. His pull-down assay showed that rOn-CD2AP-His and GST-rOn-CD2C could bind to each other. These findings indicate that CD2AP is crucial in immune response during S.agalactiae infection, and the mechanism of interaction between CD2AP and CD2 is conservative in Nile tilapia.
Collapse
Affiliation(s)
- Yuan Li
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, Guangdong, China; Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Bei Wang
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, Guangdong, China; Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhi-Wen Wang
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, Guangdong, China; Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yu Huang
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, Guangdong, China; Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ji-Chang Jian
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, Guangdong, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yi-Shan Lu
- Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, Guangdong, China; Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
15
|
Abstract
Theileria schizonts are the only known eukaryotic organisms capable of transforming another eukaryotic cell; as such, probing of the interactions that occur at the host-parasite interface is likely to lead to novel insights into the cell biology underlying leukocyte proliferation and transformation. Little is known about how the parasite communicates with its host or by what route secreted parasite proteins are translocated into the host, and we propose that nuclear trafficking machinery at the parasite surface might play a role in this. The function of AL remains completely unknown, and our work provides a basis for further investigation into the contribution that these porous, cytomembranous structures might make to the survival of fast-growing transformed cells. Parasitic protozoans of the genus Theileria are intracellular pathogens that induce the cellular transformation of leukocytes, causing uncontrolled proliferation of the infected host cell. The transforming stage of the parasite has a strictly intracellular lifestyle and ensures its distribution to both daughter cells during host cell cytokinesis by aligning itself across the metaphase plate and by binding tightly to central spindle and astral microtubules. Given the importance of the parasite surface in maintaining interactions with host microtubules, we analyzed the ultrastructure of the host-parasite interface using transmission electron microscopy combined with high-resolution fluorescence microscopy and live-cell imaging. We show that porous membranes, termed annulate lamellae (AL), closely associate with the Theileria surface in infected T cells, B cells, and macrophages and are not detectable in noninfected bovine cell lines such as BL20 or BoMACs. AL are membranous structures found in the cytoplasm of fast-proliferating cells such as cancer cells, oocytes, and embryonic cells. Although AL were first observed more than 60 years ago, the function of these organelles is still not known. Indirect immunofluorescence analysis with a pan-nuclear pore complex antibody, combined with overexpression of a panel of nuclear pore proteins, revealed that the parasite recruits nuclear pore complex components close to its surface. Importantly, we show that, in addition to structural components of the nuclear pore complex, nuclear trafficking machinery, including importin beta 1, RanGAP1, and the small GTPase Ran, also accumulated close to the parasite surface. IMPORTANCETheileria schizonts are the only known eukaryotic organisms capable of transforming another eukaryotic cell; as such, probing of the interactions that occur at the host-parasite interface is likely to lead to novel insights into the cell biology underlying leukocyte proliferation and transformation. Little is known about how the parasite communicates with its host or by what route secreted parasite proteins are translocated into the host, and we propose that nuclear trafficking machinery at the parasite surface might play a role in this. The function of AL remains completely unknown, and our work provides a basis for further investigation into the contribution that these porous, cytomembranous structures might make to the survival of fast-growing transformed cells.
Collapse
|
16
|
Huber S, Karagenc T, Ritler D, Rottenberg S, Woods K. Identification and characterisation of a Theileria annulata proline-rich microtubule and SH3 domain-interacting protein (TaMISHIP) that forms a complex with CLASP1, EB1, and CD2AP at the schizont surface. Cell Microbiol 2018; 20:e12838. [PMID: 29520916 PMCID: PMC6033098 DOI: 10.1111/cmi.12838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022]
Abstract
Theileria annulata is an apicomplexan parasite that modifies the phenotype of its host cell completely, inducing uncontrolled proliferation, resistance to apoptosis, and increased invasiveness. The infected cell thus resembles a cancer cell, and changes to various host cell signalling pathways accompany transformation. Most of the molecular mechanisms leading to Theileria-induced immortalization of leukocytes remain unknown. The parasite dissolves the surrounding host cell membrane soon after invasion and starts interacting with host proteins, ensuring its propagation by stably associating with the host cell microtubule network. By using BioID technology together with fluorescence microscopy and co-immunoprecipitation, we identified a CLASP1/CD2AP/EB1-containing protein complex that surrounds the schizont throughout the host cell cycle and integrates bovine adaptor proteins (CIN85, 14-3-3 epsilon, and ASAP1). This complex also includes the schizont membrane protein Ta-p104 together with a novel secreted T. annulata protein (encoded by TA20980), which we term microtubule and SH3 domain-interacting protein (TaMISHIP). TaMISHIP localises to the schizont surface and contains a functional EB1-binding SxIP motif, as well as functional SH3 domain-binding Px(P/A)xPR motifs that mediate its interaction with CD2AP. Upon overexpression in non-infected bovine macrophages, TaMISHIP causes binucleation, potentially indicative of a role in cytokinesis.
Collapse
Affiliation(s)
- Sandra Huber
- Institute for Animal Pathology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Tulin Karagenc
- Department of Parasitology, Faculty of Veterinary MedicineAdnan Menderes UniversityAydinTurkey
| | - Dominic Ritler
- Institute of Parasitology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Sven Rottenberg
- Institute for Animal Pathology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Kerry Woods
- Institute for Animal Pathology, Vetsuisse FacultyUniversity of BernBernSwitzerland
| |
Collapse
|