1
|
Liu X, Cao Y, Hu X, Lv A. Rahnella aquatilis VgrG-mediated PANoptosis in macrophages of Carassius auratus by dual RNA-seq analysis. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110155. [PMID: 39864564 DOI: 10.1016/j.fsi.2025.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Rahnella aquatilis is an emerging opportunistic pathogen that usually causes septicemia in fish and poses a potential threat to human health. VgrG gene is an important virulence factor of type VI secretion system in R. aquatilis, but its regulatory mechanism underlying PANoptosis is still unknown. Here, VgrG deletion mutant strain of R. aquatilis (ΔVgrG-RA) and recombinant plasmid pET32a-VgrG were respectively constructed, and immunohistochemistry for VgrG as well as PANoptosis features were evaluated. Moreover, the interaction transcriptome of ΔVgrG-mediated pathogen and host was determined by dual RNA-seq using an in vitro model of the primary macrophage cells from crucian carp Carassius auratus, and a total of 889 and 3765 differentially expressed genes (DEGs) were identified in pathogen-host interaction genes, respectively. Notably, GO and KEGG enrichment analysis were significantly involved in the PANoptosis pathways in ΔVgrG mutant-infected macrophages. The regulatory relationship of potential PANoptosis-related genes (PRGs) were analysed comprehensively, and their binding interaction of several hub proteins (eg., YcgR, Bcl2a, Calr3a, IL-1β) were determined by molecular docking analysis. To our best knowledge, this is first report of R. aquatilis VgrG-mediated interactions between pathogen and host macrophage cells, which will provide a new reference for understanding of molecular mechanism underlying PANoptosis in fish.
Collapse
Affiliation(s)
- Xiaoran Liu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Yanyan Cao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China.
| | - Aijun Lv
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
2
|
Chang MX. Emerging mechanisms and functions of inflammasome complexes in teleost fish. Front Immunol 2023; 14:1065181. [PMID: 36875130 PMCID: PMC9978379 DOI: 10.3389/fimmu.2023.1065181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Inflammasomes are multiprotein complexes, which are assembled in response to a diverse range of exogenous pathogens and endogenous danger signals, leading to produce pro-inflammatory cytokines and induce pyroptotic cell death. Inflammasome components have been identified in teleost fish. Previous reviews have highlighted the conservation of inflammasome components in evolution, inflammasome function in zebrafish infectious and non-infectious models, and the mechanism that induce pyroptosis in fish. The activation of inflammasome involves the canonical and noncanonical pathways, which can play critical roles in the control of various inflammatory and metabolic diseases. The canonical inflammasomes activate caspase-1, and their signaling is initiated by cytosolic pattern recognition receptors. However the noncanonical inflammasomes activate inflammatory caspase upon sensing of cytosolic lipopolysaccharide from Gram-negative bacteria. In this review, we summarize the mechanisms of activation of canonical and noncanonical inflammasomes in teleost fish, with a particular focus on inflammasome complexes in response to bacterial infection. Furthermore, the functions of inflammasome-associated effectors, specific regulatory mechanisms of teleost inflammasomes and functional roles of inflammasomes in innate immune responses are also reviewed. The knowledge of inflammasome activation and pathogen clearance in teleost fish will shed new light on new molecular targets for treatment of inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of InSciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Zhao J, Chen W, Zhang Y, Liu Q, Yang D, Wang Z. Bacterial infection induces pyroptotic signaling-mediated neutrophil extracellular traps (NETs) formation in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:982-990. [PMID: 35870743 DOI: 10.1016/j.fsi.2022.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Neutrophils can capture and kill pathogens by releasing neutrophils extracellular traps (NETs), which play critical roles in anti-microbial infection in mammals; however, the mechanisms involved in NETs formation and its role in anti-bacterial infection in teleost fish remains largely unknown. In this study, to explore the function of NETs in turbot, we established an in vitro bacterial infection model in head kidney derived neutrophils, and found that the haemolysin over-expressed Edwardsiella piscicida (ethA+) could induce a robust phenotype of NETs, compared with that in wild type or ethA mutant (ethA+ -ΔethA) strains. Besides, the NETosis was mediated by ethA+ -induced pyroptosis, and arms the ability of bacterial killing in neutrophils of turbot. Moreover, we found that neutrophils elastase (NE) might involves in this pyroptotic signaling, rather than inflammatory Smcaspase. Taken together, this study reveals the important role of pyroptosis in NETs formation in turbot neutrophils, suggesting that NETs formation is a critical immune response during bacterial infection in teleost fish.
Collapse
Affiliation(s)
- Jingjing Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
4
|
Song Z, Zou J, Wang M, Chen Z, Wang Q. A Comparative Review of Pyroptosis in Mammals and Fish. J Inflamm Res 2022; 15:2323-2331. [PMID: 35431566 PMCID: PMC9012342 DOI: 10.2147/jir.s361266] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022] Open
Abstract
Pyroptosis is a form of programmed cell death, which is executed by gasdermin family proteins. Under the stimulation of pathogen- and/or damage-associated molecular patterns, pattern recognition receptors (PRRs) such as Nod like receptors could recruit apoptosis-associated speck-like protein containing a CARD (ASC) and pro-caspases to form inflammasomes and then activate caspases through various pathways. The activated caspases then cleave gasdermin family proteins, and N-terminal (NT) domains of gasdermins were released to form oligomeric pores, resulting in the increased membrane permeability, cell swelling, and final pyroptosis. During this process, caspases also promote the maturation and release of inflammatory cytokines such as IL-1β and IL-18, thus pyroptosis is also named inflammatory cell death. Unlike numerous gasdermin family proteins in mammals, only gasdermin E (GSDME) has been identified in fish. GSDME in fish can be cleaved by caspase-a/-b to release its NT domain and induce pyroptosis. Studies indicated that pyroptosis in fish mainly depends on NLR family pyrin domain-containing 3 (NLRP3) inflammasome. ASC and different caspase proteins also were identified in different fish species. The influences of pathogenic microorganism infection and environmental pollutants on fish pyroptosis were studied in recent years. Considering that fish living environment is affected by multiple factors such as water salinity, temperature, oxygen supply, and highly fluctuating food supply, the in-depth research about fish pyroptosis will contribute to revealing the mechanism of pyroptosis during evolution.
Collapse
Affiliation(s)
- Zixi Song
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Jiahong Zou
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Mengya Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Zhenwei Chen
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
| | - Qingchao Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China
- Correspondence: Qingchao Wang, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Shizishan Street 1st, Hongshan District, Wuhan, Hubei, People’s Republic of China, Tel +86-138 71499065, Fax +86-27 87282113, Email
| |
Collapse
|
5
|
Wen Y, Wang Y, Chen S, Zhou X, Zhang Y, Yang D, Núñez G, Liu Q. Dysregulation of Cytosolic c-di-GMP in Edwardsiella piscicida Promotes Cellular Non-Canonical Ferroptosis. Front Cell Infect Microbiol 2022; 12:825824. [PMID: 35186798 PMCID: PMC8855483 DOI: 10.3389/fcimb.2022.825824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 01/31/2023] Open
Abstract
Programmed cell death plays an important role in modulating host immune defense and pathogen infection. Ferroptosis is a type of inflammatory cell death induced by intracellular iron-dependent accumulation of toxic lipid peroxides. Although ferroptosis has been associated with cancer and other sterile diseases, very little is known about the role of ferroptosis in modulating host-pathogen interactions. We show that accumulation of the secondary messenger bis-(3′,5′)-cyclic dimeric GMP (c-di-GMP) in the pathogenic bacterium Edwardsiella piscicida (E. piscicida) triggers a non-canonical ferroptosis pathway in infected HeLa cells. Moreover, we observed that the dysregulation of c-di-GMP in E. piscicida promotes iron accumulation, mitochondrial dysfunction, and production of reactive oxygen species, all of which that can be blocked by iron chelator. Importantly, unlike classical ferroptosis that is executed via excess lipid peroxidation, no lipid peroxidation was detected in the infected cells. Furthermore, lipoxygenases inhibitors and lipophilic antioxidants are not able to suppress morphological changes and cell death induced by E. piscicida mutant producing excess c-di-GMP, and this c-di-GMP dysregulation attenuates bacterial virulence in vivo. Collectively, our results reveal a novel non-canonical ferroptosis pathway mediated by bacterial c-di-GMP and provide evidence for a role of ferroptosis in the regulation of pathogen infection.
Collapse
Affiliation(s)
- Ying Wen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Pathology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Ying Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- *Correspondence: Qin Liu,
| |
Collapse
|
6
|
Chen S, Jin P, Chen H, Wu D, Li S, Zhang Y, Liu Q, Yang D. Dual function of a turbot inflammatory caspase in mediating both canonical and non-canonical inflammasome activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104078. [PMID: 33794278 DOI: 10.1016/j.dci.2021.104078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Host protective inflammatory caspase activity must be tightly regulated to prevent pathogens infection, however, the inflammatory caspase-engaged inflammasome activation in teleost fish remains largely unknown. In this study, we reveal a bifurcated evolutionary role of the inflammatory caspase in mediating both non-canonical and canonical inflammasome pathways in teleost fish. Through characterization of a unique inflammatory SmCaspase from the teleost Scophthalmus maximus (turbot), we found it can directly recognize cytosolic lipopolysaccharide (LPS) via its N-terminal CARD domain, resulting in caspase-5-like proteolytic enzyme activity-mediated pyroptosis in Turbot Muscle Fibroblasts. Interestingly, we also found that this inflammatory caspase can be recruited to SmNLRP3-SmASC to form the NLRP3 inflammasome complex, engaging the SmIL-1β release in Head Kidney-derived Macrophages. Consequently, the SmCaspase activation can recognize and cleave the SmGSDMEb to release its N-terminal domain, mediating both pyroptosis and bactericidal activities. Furthermore, the SmCaspase-SmGSDMEb axis-gated pyroptosis governs the bacterial clearance and epithelial desquamation in fish gill filaments in vivo. To our knowledge, this study is the first to identify an inflammatory caspase acting as a central coordinator in NLRP3 inflammasome, as well as a cytosolic LPS receptor; thus uncovering a previously unrecognized function of inflammatory caspase in turbot innate immunity.
Collapse
Affiliation(s)
- Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Di Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuxin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
7
|
Chen W, Zhao J, Mu D, Wang Z, Liu Q, Zhang Y, Yang D. Pyroptosis Mediates Neutrophil Extracellular Trap Formation during Bacterial Infection in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2021; 206:1913-1922. [PMID: 33712519 DOI: 10.4049/jimmunol.2001335] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
The formation of neutrophil extracellular trap (NET) is a critical host defense when neutrophils migrate to infection sites. Pyroptosis is a newly identified programmed cell death, which is tightly regulated by inflammasome activation. However, the mechanism of pyroptotic signaling participating in NET production remains to be elucidated. In this study, the zebrafish larvae otic vesicle microinjection model was used to infect larvae with hemolysin-overexpressing Edwardsiella piscicida (EthA+), and a rapid migration of neutrophils to infection sites was observed. Intriguingly, EthA+ infection effectively induced significant neutrophil membrane rupture in vivo, which was dependent on caspase-B (caspy2) and gasdermin Eb (GSDMEb) but not caspase-A or gasdermin Ea. Specifically, the EthA+ E. piscicida infection induced pyroptosis along with NETosis in vitro, and depletion of either caspy2 or GSDMEb impaired NET formation in vivo. Consequently, inhibition of the caspy2-GSDMEb axis-gated NETosis impaired bacterial clearance in vivo. Altogether, these data provide evidence that teleost fish innate immune cells, including neutrophils, express features of pyroptosis that are critical for NETosis in teleost innate immunity.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingjing Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di Mu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; and
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
8
|
Wang Z, Gu Z, Hou Q, Chen W, Mu D, Zhang Y, Liu Q, Liu Z, Yang D. Zebrafish GSDMEb Cleavage-Gated Pyroptosis Drives Septic Acute Kidney Injury In Vivo. THE JOURNAL OF IMMUNOLOGY 2020; 204:1929-1942. [PMID: 32111733 DOI: 10.4049/jimmunol.1901456] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway-induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide-staining method and reveal that the caspy2-GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies.
Collapse
Affiliation(s)
- Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaoyan Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di Mu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; and
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; and.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; and
| |
Collapse
|
9
|
Ren Y, Liu Q, Liu H, Zhou X, Zhang Y, Cai M. Engineering substrate and energy metabolism for living cell production of cytidine-5'-diphosphocholine. Biotechnol Bioeng 2020; 117:1426-1435. [PMID: 31997310 DOI: 10.1002/bit.27291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/26/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Cytidine-5'-diphosphocholine (CDP-choline) is a widely used neuroprotective drug for multiple indications. In industry, CDP-choline is synthesized by a two-step cell culture/permeabilized cell biotransformation method because substrates often do not enter cells in an efficient manner. This study develops a novel one-step living cell fermentation method for CDP-choline production. For this purpose, the feasibility of Pichia pastoris as a chassis was demonstrated by substrate feeding and CDP-choline production. Overexpression of choline phosphate cytidylyltransferase and choline kinase enhanced the choline transformation pathway and improved the biosynthesis of CDP-choline. Furthermore, co-overexpression of ScHnm1, which is a heterologous choline transporter, highly improved the utilization of choline substrates, despite its easy degradation in cells. This strategy increased CDP-choline titer by 55-folds comparing with the wild-type (WT). Overexpression of cytidine-5'-monophosphate (CMP) kinase and CDP kinase in the CMP transformation pathway showed no positive effects. An increase in the ATP production by citrate stimulation or metabolic pathway modification further improved CDP-choline biosynthesis by 120%. Finally, the orthogonal optimization of key substrates and pH was carried out, and the resulting CDP-choline titer (6.0 g/L) at optimum conditions increased 88 times the original titer in the WT. This study provides a new paradigm for CDP-choline bioproduction by living cells.
Collapse
Affiliation(s)
- Yanna Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haifeng Liu
- China Resources Angde Biotech Pharmaceutical Co, Ltd, Liaocheng, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,China Resources Angde Biotech Pharmaceutical Co, Ltd, Liaocheng, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Zebrafish in Inflammasome Research. Cells 2019; 8:cells8080901. [PMID: 31443239 PMCID: PMC6721725 DOI: 10.3390/cells8080901] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes are cytosolic multiprotein complexes that regulate inflammatory responses to danger stimuli and infection, and their dysregulation is associated with an increasing number of autoinflammatory diseases. In recent years, zebrafish models of human pathologies to study inflammasome function in vivo have started to emerge. Here, we discuss inflammasome research in zebrafish in light of current knowledge about mammalian inflammasomes. We summarize the evolutionary conservation of inflammasome components between zebrafish and mammals, highlighting the similarities and possible divergence in functions of these components. We present new insights into the evolution of the caspase-1 family in the teleost lineage, and how its evolutionary origin may help contextualize its functions. We also review existing infectious and non-infectious models in zebrafish in which inflammasomes have been directly implicated. Finally, we discuss the advantages of zebrafish larvae for intravital imaging of inflammasome activation and summarize available tools that will help to advance inflammasome research.
Collapse
|