1
|
Gao L, Jiang X, Duan H, Shen Y, Gu K, Huang K, Wang Y, Shu M, Zhang R, Lin Z. Molecular dynamics simulation-driven focused virtual screening and experimental validation of Fisetin as an inhibitor of Helicobacter pylori HtrA protease. Mol Divers 2025:10.1007/s11030-025-11137-2. [PMID: 39988708 DOI: 10.1007/s11030-025-11137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Helicobacter pylori (H. pylori, Hp) is a primary contributor to various stomach diseases, including gastritis and gastric cancer. This bacterium can colonize gastric epithelial cells, compromising their integrity and leading to the development of these conditions. While antibiotics are the mainstay of treatment for H. pylori infections, their widespread use has led to serious issues with drug resistance. High-temperature requirement A (HtrA) protein is an active serine protease secreted by H. pylori, which can destroy gastric epithelium, thus helping H. pylori to colonize gastric mucosa efficiently. In this study, we identified three compounds-Quercetin, Fisetin, and Geniposide-as potential natural compounds that might specifically interact with the HtrA protein, based on molecular docking and molecular dynamics simulations (MDs). The casein hydrolysis experiment indicated that Fisetin could inhibit the activity of HtrA in hydrolyzing casein at the concentration of 50 μM m. Additionally, our in vitro antibacterial experiments further showed that Fisetin could effectively inhibit the growth of H. pylori in a concentration-dependent manner, with an inhibition rate of 80% achieved at a concentration of 10 μM. In summary, these results suggest that Fisetin has an inhibitory effect on the growth of H. pylori, and this study may be the first to reveal its obviously inhibitory effect on HtrA protein. Our findings imply that Fisetin could be a potential candidate for further research as a therapeutic agent targeting protein HtrA, providing a new direction for the exploration of lead compounds and potential drugs against H. pylori infections.
Collapse
Affiliation(s)
- Li Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
| | - Xianqiong Jiang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
| | - Hongtao Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China.
| | - Kui Gu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
| | - Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Zhihua Lin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China.
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
2
|
Rosochowicz MA, Kulcenty K, Suchorska WM. Exploring the Role of HtrA Family Genes in Cancer: A Systematic Review. Mol Diagn Ther 2024; 28:347-377. [PMID: 38717523 PMCID: PMC11211202 DOI: 10.1007/s40291-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 06/28/2024]
Abstract
PURPOSE HtrA1, HtrA2, HtrA3 and HtrA4 appear to be involved in the development of pathologies such as cancer. This systematic review reports the results of a literature search performed to compare the expression of HtrA family genes and proteins in cancer versus non-cancer tissues and cell lines, assess relationships between HtrA expression and cancer clinical features in cancer, and analyse the molecular mechanism, by which HtrA family affects cancer. METHODS The literature search was conducted according to the PRISMA statement among four databases (PubMed, Web of Science, Embase and Scopus). RESULTS A total of 38 articles met the inclusion criteria and involved the expression of HtrA family members and concerned the effect of HtrA expression on cancer and metastasis development or on the factor that influences it. Additionally, 31 reports were retrieved manually. Most articles highlighted that HtrA1 and HtrA3 exhibited tumour suppressor activity, while HtrA2 was associated with tumour growth and metastasis. There were too few studies to clearly define the role of the HtrA4 protease in tumours. CONCLUSION Although the expression of serine proteases of the HtrA family was dependent on tumour type, stage and the presence of metastases, most articles indicated that HtrA1 and HtrA3 expression in tumours was downregulated compared with healthy tissue or cell lines. The expression of HtrA2 was completely study dependent. The limited number of studies on HtrA4 expression made it impossible to draw conclusions about differences in expression between healthy and tumour tissue. The conclusions drawn from the study suggest that HtrA1 and HtrA3 act as tumour suppressors.
Collapse
Affiliation(s)
- Monika Anna Rosochowicz
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland.
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | - Wiktoria Maria Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Ferrero-Bordera B, Bartel J, van Dijl JM, Becher D, Maaß S. From the outer space to the inner cell: deconvoluting the complexity of Bacillus subtilis disulfide stress responses by redox state and absolute abundance quantification of extracellular, membrane, and cytosolic proteins. Microbiol Spectr 2024; 12:e0261623. [PMID: 38358275 PMCID: PMC10986503 DOI: 10.1128/spectrum.02616-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding cellular mechanisms of stress management relies on omics data as a valuable resource. However, the lack of absolute quantitative data on protein abundances remains a significant limitation, particularly when comparing protein abundances across different cell compartments. In this study, we aimed to gain deeper insights into the proteomic responses of the Gram-positive model bacterium Bacillus subtilis to disulfide stress. We determined proteome-wide absolute abundances, focusing on different sub-cellular locations (cytosol and membrane) as well as the extracellular medium, and combined these data with redox state determination. To quantify secreted proteins in the culture medium, we developed a simple and straightforward protocol for the absolute quantification of extracellular proteins in bacteria. We concentrated extracellular proteins, which are highly diluted in the medium, using StrataClean beads along with a set of standard proteins to determine the extent of the concentration step. The resulting data set provides new insights into protein abundances in different sub-cellular compartments and the extracellular medium, along with a comprehensive proteome-wide redox state determination. Our study offers a quantitative understanding of disulfide stress management, protein production, and secretion in B. subtilis. IMPORTANCE Stress responses play a crucial role in bacterial survival and adaptation. The ability to quantitatively measure protein abundances and redox states in different cellular compartments and the extracellular environment is essential for understanding stress management mechanisms. In this study, we addressed the knowledge gap regarding absolute quantification of extracellular proteins and compared protein concentrations in various sub-cellular locations and in the extracellular medium under disulfide stress conditions. Our findings provide valuable insights into the protein production and secretion dynamics of B. subtilis, shedding light on its stress response strategies. Furthermore, the developed protocol for absolute quantification of extracellular proteins in bacteria presents a practical and efficient approach for future studies in the field. Overall, this research contributes to the quantitative understanding of stress management mechanisms and protein dynamics in B. subtilis, which can be used to enhance bacterial stress tolerance and protein-based biotechnological applications.
Collapse
Affiliation(s)
- Borja Ferrero-Bordera
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, University of Greifswald, Centre of Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| |
Collapse
|
4
|
Zarzecka U, Tegtmeyer N, Sticht H, Backert S. Trimer stability of Helicobacter pylori HtrA is regulated by a natural mutation in the protease domain. Med Microbiol Immunol 2023:10.1007/s00430-023-00766-9. [PMID: 37183214 DOI: 10.1007/s00430-023-00766-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
The human pathogen Helicobacter pylori is a major risk factor for gastric disease development. Serine protease HtrA is an important bacterial virulence factor that cleaves the cell junction proteins occludin, claudin-8 and E-cadherin, which causes gastric tissue damage. Using casein zymography, we discovered that HtrA trimer stability varies in clinical H. pylori strains. Subsequent sequence analyses revealed that HtrA trimer stability correlated with the presence of leucine or serine residue at position 171. The importance of these amino acids in determining trimer stability was confirmed by leucine-to-serine swapping experiments using isogenic H. pylori mutant strains as well as recombinant HtrA proteins. In addition, this sequence position displays a high sequence variability among various bacterial species, but generally exhibits a preference for hydrophilic amino acids. This natural L/S171 polymorphism in H. pylori may affect the protease activity of HtrA during infection, which could be of clinical importance and may determine gastric disease development.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Linz B, Sharafutdinov I, Tegtmeyer N, Backert S. Evolution and Role of Proteases in Campylobacter jejuni Lifestyle and Pathogenesis. Biomolecules 2023; 13:biom13020323. [PMID: 36830692 PMCID: PMC9953165 DOI: 10.3390/biom13020323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Infection with the main human food-borne pathogen Campylobacter jejuni causes campylobacteriosis that accounts for a substantial percentage of gastrointestinal infections. The disease usually manifests as diarrhea that lasts for up to two weeks. C. jejuni possesses an array of peptidases and proteases that are critical for its lifestyle and pathogenesis. These include serine proteases Cj1365c, Cj0511 and HtrA; AAA+ group proteases ClpP, Lon and FtsH; and zinc-dependent protease PqqE, proline aminopeptidase PepP, oligopeptidase PepF and peptidase C26. Here, we review the numerous critical roles of these peptide bond-dissolving enzymes in cellular processes of C. jejuni that include protein quality control; protein transport across the inner and outer membranes into the periplasm, cell surface or extracellular space; acquisition of amino acids and biofilm formation and dispersal. In addition, we highlight their role as virulence factors that inflict intestinal tissue damage by promoting cell invasion and mediating cleavage of crucial host cell factors such as epithelial cell junction proteins. Furthermore, we reconstruct the evolution of these proteases in 34 species of the Campylobacter genus. Finally, we discuss to what extent C. jejuni proteases have initiated the search for inhibitor compounds as prospective novel anti-bacterial therapies.
Collapse
Affiliation(s)
- Bodo Linz
- Correspondence: ; Tel.: +49-(0)-9131-8528988
| | | | | | | |
Collapse
|
6
|
Xie Y, Mao Y, Mao ZW, Xia W. Identification of Substrates of Secreted Bacterial Protease by APEX2-Based Proximity Labeling. Methods Mol Biol 2023; 2674:169-179. [PMID: 37258967 DOI: 10.1007/978-1-0716-3243-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The interactions between bacterial virulence factors and host receptors play a critical role during bacterial infection. Therefore, the identification of interactions between host receptor and bacterial virulence factors can not only elucidate the molecular mechanisms of bacterial infection but also provide a framework for new therapeutic and prevention strategies. Herein, we report an APEX2-based live cell proximity labeling strategy in combination with high-resolution quantitative mass spectrometry to profile the substrates of Helicobacter pylori HtrA protease on the membrane of human stomach epithelial cells. This strategy can be further applied to identify other interactions between secreted bacterial virulence factors and host receptors on live cells.
Collapse
Affiliation(s)
- Yanxuan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Naumann M, Ferino L, Sharafutdinov I, Backert S. Gastric Epithelial Barrier Disruption, Inflammation and Oncogenic Signal Transduction by Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:207-238. [PMID: 38231220 DOI: 10.1007/978-3-031-47331-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori exemplifies one of the most favourable bacterial pathogens worldwide. The bacterium colonizes the gastric mucosa in about half of the human population and constitutes a major risk factor for triggering gastric diseases such as stomach cancer. H. pylori infection represents a prime example of chronic inflammation and cancer-inducing bacterial pathogens. The microbe utilizes a remarkable set of virulence factors and strategies to control cellular checkpoints of inflammation and oncogenic signal transduction. This chapter emphasizes on the pathogenicity determinants of H. pylori such as the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system (T4SS), effector protein CagA, lipopolysaccharide (LPS) metabolite ADP-glycero-β-D-manno-heptose (ADP-heptose), cytotoxin VacA, serine protease HtrA, and urease, and how they manipulate various key host cell signaling networks in the gastric epithelium. In particular, we highlight the H. pylori-induced disruption of cell-to-cell junctions, pro-inflammatory activities, as well as proliferative, pro-apoptotic and anti-apoptotic responses. Here we review these hijacked signal transduction events and their impact on gastric disease development.
Collapse
Affiliation(s)
- Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Lorena Ferino
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Irshad Sharafutdinov
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Steffen Backert
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
8
|
Sharafutdinov I, Ekici A, Vieth M, Backert S, Linz B. Early and late genome-wide gastric epithelial transcriptome response during infection with the human carcinogen Helicobacterpylori. CELL INSIGHT 2022; 1:100032. [PMID: 37193047 PMCID: PMC10120309 DOI: 10.1016/j.cellin.2022.100032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/18/2023]
Abstract
Infection of the stomach by Helicobacter pylori is a major risk factor for the development of gastric cancer. Colonization of the gastric epithelium leads to the activation of multiple disease-related signaling pathways. Serine protease HtrA represents an important secreted virulence factor that mediates cleavage of cellular junctions. However, its potential role in nuclear responses is unknown. Here, we performed a genome-wide RNA-seq analysis of polarized gastric epithelial cells infected by wild-type (wt) and ΔhtrA mutant bacteria. Fluorescence microscopy showed that H. pylori wt, but not ΔhtrA bacteria, preferably localized at cellular junctions. Our results pinpointed early (2 h) and late (6 h) transcriptional responses, with most differentially expressed genes at 6 h post infection. The transcriptomes revealed HtrA-dependent targeting of genes associated with inflammation and apoptosis (e.g. IL8, ZFP36, TNF). Accordingly, infection with the ΔhtrA mutant induced increased apoptosis rates in host cells, which was associated with reduced H. pylori CagA expression. In contrast, transcription of various carcinogenesis-associated genes (e.g. DKK1, DOCK8) was affected by H. pylori independent of HtrA. These findings suggest that H. pylori disturbs previously unknown molecular pathways in an HtrA-dependent and HtrA-independent manner, and provide valuable new insights of this significant pathogen in humans and thus potential targets for better controlling the risk of malignant transformation.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, University Hospital, Friedrich Alexander Universität Erlangen-Nürnberg, Schwabachanlage 10, D-91054, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str 101, D-95445, Bayreuth, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Bodo Linz
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| |
Collapse
|
9
|
Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol 2022; 53:33-50. [PMID: 34988937 PMCID: PMC8731681 DOI: 10.1007/s42770-021-00675-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is an organism associated with ulcer disease and gastric cancer. The latter is one of the most prevalent malignancies and currently the fourth major cause of cancer-related deaths globally. The pathogen infects about 50% of the world population, and currently, no treatment ensures its total elimination. There has been an increase in our understanding of the pathophysiology and pathogenesis mechanisms of H. pylori over the years. H. pylori can induce several genetic alterations, express numerous virulence factors, and trigger diverse adaptive mechanisms during its adherence and colonization. For successful colonization and infection establishment, several effector proteins/toxins are released by the organism. Evidence is also available reporting spiral to coccoid transition as a unique tactic H. pylori uses to survive in the host's gastrointestinal tract (GIT). Thus, the virulence and pathogenicity of H. pylori are under the control of complex interplay between the virulence factors, host, and environmental factors. Expounding the role of the various virulence factors in H. pylori pathogenesis and clinical outcomes is crucial for vaccine development and in providing and developing a more effective therapeutic intervention. Here we critically reflect on H. pylori infection and delineate what is currently known about the virulence and pathogenesis mechanisms of H. pylori.
Collapse
Affiliation(s)
| | - Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria.
| |
Collapse
|
10
|
Cortactin Promotes Effective AGS Cell Scattering by Helicobacter pylori CagA, but Not Cellular Vacuolization and Apoptosis Induced by the Vacuolating Cytotoxin VacA. Pathogens 2021; 11:pathogens11010003. [PMID: 35055951 PMCID: PMC8777890 DOI: 10.3390/pathogens11010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Cortactin is an actin-binding protein and actin-nucleation promoting factor regulating cytoskeletal rearrangements in eukaryotes. Helicobacter pylori is a gastric pathogen that exploits cortactin to its own benefit. During infection of gastric epithelial cells, H. pylori hijacks multiple cellular signaling pathways, leading to the disruption of key cell functions. Two bacterial virulence factors play important roles in this scenario, the vacuolating cytotoxin VacA and the translocated effector protein CagA of the cag type IV secretion system (T4SS). Specifically, by overruling the phosphorylation status of cortactin, H. pylori alternates the activity of molecular interaction partners of this important protein, thereby manipulating the performance of cytoskeletal rearrangements, endosomal trafficking and cell movement. Based on shRNA knockdown and other studies, it was previously reported that VacA utilizes cortactin for its cellular uptake, intracellular travel and induction of apoptosis by a mitochondria-dependent mechanism, while CagA induces cell scattering, motility and elongation. To investigate the role of cortactin in these phenotypes in more detail, we produced a complete knockout mutant of cortactin in the gastric adenocarcinoma cell line AGS by CRISPR-Cas9. These cells were infected with H. pylori wild-type or various isogenic mutant strains. Unexpectedly, cortactin deficiency did not prevent the uptake and formation of VacA-dependent vacuoles, nor the induction of apoptosis by internalized VacA, while the induction of T4SS- and CagA-dependent AGS cell movement and elongation were strongly reduced. Thus, we provide evidence that cortactin is required for the function of internalized CagA, but not VacA.
Collapse
|
11
|
Cao Q, Wei W, Wang H, Wang Z, Lv Y, Dai M, Tan C, Chen H, Wang X. Cleavage of E-cadherin by porcine respiratory bacterial pathogens facilitates airway epithelial barrier disruption and bacterial paracellular transmigration. Virulence 2021; 12:2296-2313. [PMID: 34482810 PMCID: PMC8425755 DOI: 10.1080/21505594.2021.1966996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Airway epithelial cells are the first line of defense against respiratory pathogens. Porcine bacterial pathogens, such as Bordetella bronchiseptica, Actinobacillus pleuropneumoniae, Glaesserella (Haemophilus) parasuis, and Pasteurella multocida, breach this barrier to lead to local or systematic infections. Here, we demonstrated that respiratory bacterial pathogen infection disrupted the airway epithelial intercellular junction protein, E-cadherin, thus contributing to impaired epithelial cell integrity. E-cadherin knocking-out in newborn pig tracheal cells via CRISPR/Cas9 editing technology confirmed that E-cadherin was sufficient to suppress the paracellular transmigration of these porcine respiratory bacterial pathogens, including G. parasuis, A. pleuropneumoniae, P. multocida, and B. bronchiseptica. The E-cadherin ectodomain cleavage by these pathogens was probably attributed to bacterial HtrA/DegQ protease, but not host HtrA1, MMP7 and ADAM10, and the prominent proteolytic activity was further confirmed by a serine-to-alanine substitution mutation in the active center of HtrA/DegQ protein. Moreover, deletion of the htrA gene in G. parasuis led to severe defects in E-cadherin ectodomain cleavage, cell adherence and paracellular transmigration in vitro, as well as bacterial breaking through the tracheal epithelial cells, systemic invasion and dissemination in vivo. This common pathogenic mechanism shared by other porcine respiratory bacterial pathogens explains how these bacterial pathogens destroy the airway epithelial cell barriers and proliferate in respiratory mucosal surface or other systemic tissues.
Collapse
Affiliation(s)
- Qi Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wenbin Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Huan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Zesong Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yujin Lv
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Menghong Dai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, Hubei, China
| |
Collapse
|
12
|
Zarzecka U, Matkowska D, Backert S, Skorko-Glonek J. Importance of two PDZ domains for the proteolytic and chaperone activities of Helicobacter pylori serine protease HtrA. Cell Microbiol 2020; 23:e13299. [PMID: 33277762 DOI: 10.1111/cmi.13299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
The Helicobacter pylori HtrA protein (HtrAHp ) is an important virulence factor involved in the infection process by proteolysis of components of the tight (claudin-8 and occludin) and adherens junctions (E-cadherin) between epithelial cells. As a protease and chaperone, HtrAHp is involved in protein quality control, which is particularly important under stress conditions. HtrAHp contains a protease domain and two C-terminal PDZ domains (PDZ1 and PDZ2). In the HtrA protein family, the PDZ domains are proposed to play important roles, including regulation of proteolytic activity. We therefore mutated the PDZ1 and PDZ2 domains in HtrAHp and studied the maintenance of proteolytic activity, assembly and rearrangement of the corresponding oligomeric forms. Our in vitro experiments demonstrated that at least PDZ1 is important for efficient substrate cleavage, while both PDZ domains are dispensable for the chaperone-like activity. However, in living H. pylori cells, only the mutant containing at least PDZ1, but not PDZ2, ensured bacterial growth under stressful conditions. Moreover, we can demonstrate that PDZ1 is crucial for HtrAHp oligomerization. Interestingly, all truncated proteolytically active HtrAHp variants were functional in the in vitro infection assay and caused damage to the E-cadherin-based adherens junctions. These findings provide valuable new insights into the function of HtrAHp in an important pathogen of humans.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland.,Division of Microbiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dorota Matkowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
13
|
Zarzecka U, Harrer A, Zawilak-Pawlik A, Skorko-Glonek J, Backert S. Chaperone activity of serine protease HtrA of Helicobacter pylori as a crucial survival factor under stress conditions. Cell Commun Signal 2019; 17:161. [PMID: 31796064 PMCID: PMC6892219 DOI: 10.1186/s12964-019-0481-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Serine protease HtrA exhibits both proteolytic and chaperone activities, which are involved in cellular protein quality control. Moreover, HtrA is an important virulence factor in many pathogens including Helicobacter pylori, for which the crucial stage of infection is the cleavage of E-cadherin and other cell-to-cell junction proteins. METHODS The in vitro study of H. pylori HtrA (HtrAHp) chaperone activity was carried out using light scattering assays and investigation of lysozyme protein aggregates. We produced H. pylori ∆htrA deletion and HtrAHp point mutants without proteolytic activity in strain N6 and investigated the survival of the bacteria under thermal, osmotic, acidic and general stress conditions as well as the presence of puromycin or metronidazole using serial dilution tests and disk diffusion method. The levels of cellular and secreted proteins were examined using biochemical fraction and Western blotting. We also studied the proteolytic activity of secreted HtrAHp using zymography and the enzymatic digestion of β-casein. Finally, the consequences of E-cadherin cleavage were determined by immunofluorescence microscopy. RESULTS We demonstrate that HtrAHp displays chaperone activity that inhibits the aggregation of lysozyme and is stable under various pH and temperature conditions. Next, we could show that N6 expressing only HtrA chaperone activity grow well under thermal, pH and osmotic stress conditions, and in the presence of puromycin or metronidazole. In contrast, in the absence of the entire htrA gene the bacterium was more sensitive to a number of stresses. Analysing the level of cellular and secreted proteins, we noted that H. pylori lacking the proteolytic activity of HtrA display reduced levels of secreted HtrA. Moreover, we compared the amounts of secreted HtrA from several clinical H. pylori strains and digestion of β-casein. We also demonstrated a significant effect of the HtrAHp variants during infection of human epithelial cells and for E-cadherin cleavage. CONCLUSION Here we identified the chaperone activity of the HtrAHp protein and have proven that this activity is important and sufficient for the survival of H. pylori under multiple stress conditions. We also pinpointed the importance of HtrAHp chaperone activity for E- cadherin degradation and therefore for the virulence of this eminent pathogen.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Aileen Harrer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
14
|
Neddermann M, Backert S. Quantification of serine protease HtrA molecules secreted by the foodborne pathogen Campylobacter jejuni. Gut Pathog 2019; 11:14. [PMID: 31044013 PMCID: PMC6460743 DOI: 10.1186/s13099-019-0295-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/23/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Campylobacter jejuni is a major food-borne pathogen and a worldwide health threat. Utilizing different virulence factors, C. jejuni invades the host's intestinal epithelial cell layer. One important factor in this process is the serine protease HtrA, which is secreted into the extracellular space, and helps the bacteria to transmigrate across the gut epithelium by cleaving various cell-cell adhesion proteins. The aim of the present study is to quantify the amount of HtrA molecules secreted per bacterial cell in liquid culture and during infection. RESULTS HtrA protein purification and quantitative Western blotting were used to determine the number of HtrA molecules secreted by two C. jejuni model strains, 11168 and 81-176, in liquid culture during an 8-h time course. On average, the two strains yielded similar HtrA secretion rates, with strain 11168 secreting 4314 ± 949 molecules and 81-176 secreting 5483 ± 1246 per bacterium after 2 h. After 8 h, both strains showed a decrease in the average amount of HtrA secreted per bacterial cell over time. Secretion of HtrA by strain 11168 reduced to about 1772 ± 520 molecules and only 2151 ± 562 HtrA molecules were secreted by strain 81-176 at this time point. During infection of gut epithelial cells, the secretion of HtrA is slightly higher with a similar secretion pattern over time compared to culturing in vitro. CONCLUSION We determined the number of HtrA molecules secreted by single C. jejuni cells over time. The results suggest that HtrA secretion is regulated in a time-dependent fashion, leading to increasing accumulative HtrA concentrations in the extracellular medium.
Collapse
Affiliation(s)
- Matthias Neddermann
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|