1
|
Chaudhari R, Dasgupta M, Kodgire P. Unravelling the Impact of Outer Membrane Protein, OmpA, From S. Typhimurium on Aberrant AID Expression and IgM to IgA Class Switching in Human B-Cells. Immunology 2025. [PMID: 40300848 DOI: 10.1111/imm.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/12/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium that causes gastrointestinal infection and poses significant public health risks worldwide. This study aims to explore how S. Typhimurium manipulates B-cell function through outer membrane protein A (OmpA). We investigate the effect of OmpA on Raji human B-cells, leading to the induction of activation-induced cytidine deaminase (AID) protein, which plays an important role in generating antibody diversity in B-cells, via initiating the process of somatic hypermutation (SHM) and class switch recombination (CSR). Our key findings demonstrate that OmpA is crucial for inducing aberrant AID expression in B-cells, leading to increased CSR. Interestingly, the increased AID expression was likely due to overexpression of cMYC, an activator for AID expression. Not only was the expression of cMYC elevated, but its occupancy on the aicda locus was raised. Furthermore, increased AID expression induced CSR events, specifically switching to IgA. In summary, our study suggests that OmpA plays a potential role in modulating B-cell regulation and controlling the adaptive immune system. These functional attributes of OmpA implicate its potential as a therapeutic target for combating S. Typhimurium pathogenesis.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Indore, India
| | - Mallar Dasgupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Indore, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Indore, India
| |
Collapse
|
2
|
Mathieu-Denoncourt A, Whitfield GB, Vincent AT, Berne C, Pauzé-Foixet J, Mahieddine FC, Brun YV, Duperthuy M. The carRS-ompV-virK operon of Vibrio cholerae senses antimicrobial peptides and activates the expression of multiple resistance systems. Sci Rep 2025; 15:13686. [PMID: 40258937 PMCID: PMC12012098 DOI: 10.1038/s41598-025-98217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/10/2025] [Indexed: 04/23/2025] Open
Abstract
Antimicrobial peptides are small cationic molecules produced by eukaryotic cells to combat infection, as well as by bacteria for niche competition. Polymyxin B (PmB), a cyclic antimicrobial peptide, is used prophylactically in livestock and as a last-resort treatment for multidrug-resistant bacterial infections in humans. In this study, a transcriptomic analysis in Vibrio cholerae showed that expression of the uncharacterized gene ompV is stimulated in response to PmB. We found that ompV is organized in a conserved four-gene operon with the two-component system carRS and virK in V. cholerae. A virK deletion mutant and an ompV deletion mutant were more sensitive to antimicrobials, suggesting that both OmpV and VirK contribute to antimicrobial resistance. Our transcriptomic analysis showed that the efflux pump vexAB, a known effector of PmB resistance, was upregulated in an ompV-dependent manner in the presence of PmB. The predicted structure of OmpV revealed a lateral opening in the β-barrel wall with access to an electronegative pocket in the barrel lumen that can accommodate PmB. Such an interaction could facilitate intracellular signaling through a conformational change in OmpV. This provides the first evidence of a specialized operon governing multiple systems for antimicrobial resistance in V. cholerae.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Centre d'Innovation Biomédicale, Faculté de médecine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Gregory B Whitfield
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Centre d'Innovation Biomédicale, Faculté de médecine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Antony T Vincent
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut de biologie Intégrative et des systèmes, Université Laval, Québec, QC, G1V 0A, Canada
| | - Cécile Berne
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Centre d'Innovation Biomédicale, Faculté de médecine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Julien Pauzé-Foixet
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Centre d'Innovation Biomédicale, Faculté de médecine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Feriel C Mahieddine
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Centre d'Innovation Biomédicale, Faculté de médecine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Centre d'Innovation Biomédicale, Faculté de médecine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Marylise Duperthuy
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Centre d'Innovation Biomédicale, Faculté de médecine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
3
|
Lu J, Wu H, Wu S, Wang S, Fan H, Ruan H, Qiao J, Caiyin Q, Wen M. Salmonella: Infection mechanism and control strategies. Microbiol Res 2025; 292:128013. [PMID: 39675139 DOI: 10.1016/j.micres.2024.128013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Salmonella is a foodborne pathogen that predominantly resides in the intestinal tract of humans and animals. Infections caused by Salmonella can lead to various illnesses, including gastroenteritis, bacteremia, septicemia, and focal infections, with severe cases potentially resulting in host mortality. The mechanisms by which Salmonella invades host cells and disseminates throughout the body are partly understood, but there are still many scientific questions to be solved. This review aims to synthesize existing research on the interactions between Salmonella and hosts, detailing a comprehensive infection mechanism from adhesion and invasion to intracellular propagation and systemic spread. Overuse of antibiotics contributes to the emergence of drug-resistant Salmonella strains. An in-depth analysis of the mechanism of Salmonella infection will provide a theoretical basis for the development of novel Salmonella control strategies. These innovative control strategies include antibiotic adjuvants, small molecules, phages, attenuated vaccines, and probiotic therapies, which show huge potential in controlling Salmonella infection.
Collapse
Affiliation(s)
- Juane Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Hongfei Fan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Narimisa N, Bostanghadiri N, Khoshbayan A, Gharaghani S, Razavi S, Masjedian Jazi F. Impact of nafcillin and diosmin on the attachment, invasion, and stress survival of Salmonella Typhimurium. Sci Rep 2025; 15:6308. [PMID: 39984662 PMCID: PMC11845584 DOI: 10.1038/s41598-025-90808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025] Open
Abstract
Salmonella Typhimurium is an invasive intracellular pathogen that employs various factors for its survival within host cells. To mitigate S. Typhimurium survival, it is crucial to identify factors that influence bacterial survival and to develop drugs that inhibit these factors. In this study, we investigated the effects of nafcillin and diosmin, both of which have been identified as inhibitors of Lon protease, on the intracellular survival of S. Typhimurium and its survival under various stress conditions. Additionally, we examined the expression of genes associated with the type II toxin-antitoxin system to enhance our understanding of the impact of these systems on the bacterium's survival. Our findings indicate that while nafcillin and diosmin did not affect S. Typhimurium attachment, they significantly reduced bacterial intracellular survival, particularly in Hep2 cells after 16 h. These inhibitors were also effective in decreasing bacterial survival under oxidative and acidic stress conditions. Furthermore, gene expression analysis revealed that although there were variations in the expression of TA system genes in S. Typhimurium across different cell lines, the relEB system emerged as the most effective among those studied, exhibiting the highest increase in expression. This study highlights the efficacy of nafcillin and diosmin in reducing the intracellular survival of S. Typhimurium as well as its survival under stress conditions. These findings suggest potential new strategies for developing therapies aimed at preventing S. Typhimurium infections.
Collapse
Affiliation(s)
- Negar Narimisa
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Singh B, Kodgire P. Refolding dynamics and immunoinformatic insights into Vibrio cholerae OmpA, OmpK, and OmpV for vaccine applications. Int J Biol Macromol 2024; 283:137643. [PMID: 39547634 DOI: 10.1016/j.ijbiomac.2024.137643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
OmpA, OmpK, and OmpV are crucial for the pathogenesis of Vibrio cholerae, functioning within the bacterium's outer membrane; they present significant potential as candidates for vaccine development. Due to their intrinsic β-sheet richness, these OMPs tend to form inclusion bodies whenever overexpression is attempted. To achieve a native-like structure, detergents can be utilized during the refolding of OMPs from inclusion bodies. The impact of different detergents is examined on the renaturation of these OMPs, specifically non-ionic and zwitterionic detergents. The findings provide valuable insights into detergent selection, with LDAO and DDM emerging as the best protein refolding agents, facilitating successful structural and functional studies of these OMPs. Furthermore, using immunoinformatics it is established that OmpA, OmpK, and OmpV carry B- and T-cell epitopes in their exposed extracellular regions. The presence of immunodominant regions makes it easier to employ these proteins as vaccine candidates as they are stable, non-allergenic, and likely to stimulate successful innate and active immune responses. Overall, with all three OMPs harboring numerous immunogenic epitopes, they can be employed in subunit vaccines against Vibrio spp. and contribute to the development of diagnostic tools for effective disease mitigation.
Collapse
Affiliation(s)
- Brijeshwar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
6
|
De Gaetano GV, Lentini G, Coppolino F, Famà A, Pietrocola G, Beninati C. Engagement of α 3β 1 and α 2β 1 integrins by hypervirulent Streptococcus agalactiae in invasion of polarized enterocytes. Front Microbiol 2024; 15:1367898. [PMID: 38511003 PMCID: PMC10951081 DOI: 10.3389/fmicb.2024.1367898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
The gut represents an important site of colonization of the commensal bacterium Streptococcus agalactiae (group B Streptococcus or GBS), which can also behave as a deadly pathogen in neonates and adults. Invasion of the intestinal epithelial barrier is likely a crucial step in the pathogenesis of neonatal infections caused by GBS belonging to clonal complex 17 (CC17). We have previously shown that the prototypical CC17 BM110 strain invades polarized enterocyte-like cells through their lateral surfaces using an endocytic pathway. By analyzing the cellular distribution of putative GBS receptors in human enterocyte-like Caco-2 cells, we find here that the alpha 3 (α3) and alpha 2 (α2) integrin subunits are selectively expressed on lateral enterocyte surfaces at equatorial and parabasal levels along the vertical axis of polarized cells, in an area corresponding to GBS entry sites. The α3β1 and α2β1 integrins were not readily accessible in fully differentiated Caco-2 monolayers but could be exposed to specific antibodies after weakening of intercellular junctions in calcium-free media. Under these conditions, anti-α3β1 and anti-α2β1 antibodies significantly reduced GBS adhesion to and invasion of enterocytes. After endocytosis, α3β1 and α2β1 integrins localized to areas of actin remodeling around GBS containing vacuoles. Taken together, these data indicate that GBS can invade enterocytes by binding to α3β1 and α2β1 integrins on the lateral membrane of polarized enterocytes, resulting in cytoskeletal remodeling and bacterial internalization. Blocking integrins might represent a viable strategy to prevent GBS invasion of gut epithelial tissues.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Section, University of Pavia, Pavia, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
- Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
7
|
Morot A, Delavat F, Bazire A, Paillard C, Dufour A, Rodrigues S. Genetic Insights into Biofilm Formation by a Pathogenic Strain of Vibrio harveyi. Microorganisms 2024; 12:186. [PMID: 38258011 PMCID: PMC10820411 DOI: 10.3390/microorganisms12010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The Vibrio genus includes bacteria widely distributed in aquatic habitats and the infections caused by these bacteria can affect a wide range of hosts. They are able to adhere to numerous surfaces, which can result in biofilm formation that helps maintain them in the environment. The involvement of the biofilm lifestyle in the virulence of Vibrio pathogens of aquatic organisms remains to be investigated. Vibrio harveyi ORM4 is a pathogen responsible for an outbreak in European abalone Haliotis tuberculata populations. In the present study, we used a dynamic biofilm culture technique coupled with laser scanning microscopy to characterize the biofilm formed by V. harveyi ORM4. We furthermore used RNA-seq analysis to examine the global changes in gene expression in biofilm cells compared to planktonic bacteria, and to identify biofilm- and virulence-related genes showing altered expression. A total of 1565 genes were differentially expressed, including genes associated with motility, polysaccharide synthesis, and quorum sensing. The up-regulation of 18 genes associated with the synthesis of the type III secretion system suggests that this virulence factor is induced in V. harveyi ORM4 biofilms, providing indirect evidence of a relationship between biofilm and virulence.
Collapse
Affiliation(s)
- Amandine Morot
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | | | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
| | | | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100 Lorient, France
| |
Collapse
|
8
|
Chatterjee R, Chowdhury AR, Nair AV, Hajra D, Kar A, Datey A, Shankar S, Mishra RK, Chandra N, Chakravortty D. Salmonella Typhimurium PgtE is an essential arsenal to defend against the host resident antimicrobial peptides. Microbiol Res 2023; 271:127351. [PMID: 36931126 DOI: 10.1016/j.micres.2023.127351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Salmonella enterica serovar Typhimurium is a common cause of gastroenteritis in humans and occasionally causes systemic infection. Salmonella's ability to survive and replicate within macrophages is an important characteristic during systemic infection. The outer membrane protease PgtE of S. enterica is a member of the Omptin family of outer membrane aspartate proteases which has well-characterized proteolytic activities in-vitro against a wide range of physiologically relevant substrates. However, no study has been done so far that draws a direct correlation between these in-vitro observations and the biology of the pathogen in-vivo. The main goals of this study were to characterize the pathogenesis-associated functions of pgtE and study its role in the intracellular survival and in-vivo virulence of Salmonella Typhimurium. Our study elucidated a possible role of Salmonella Typhimurium pgtE in combating host antimicrobial peptide- bactericidal/ permeability increasing protein (BPI) to survive in human macrophages. The pgtE-deficient strain of Salmonella showed attenuated proliferation and enhanced colocalization with BPI in U937 and Thp1 cells. In the presence of polymixin B, the attenuated in-vitro survival of STM ΔpgtE suggested a role of PgtE against the antimicrobial peptides. In addition, our study revealed that compared to the wild type Salmonella, the pgtE mutant is replication-deficient in C57BL/6 mice. Further, we showed that PgtE interacts directly with several antimicrobial peptides (AMPs) in the host gut. This gives the pathogen a survival advantage and helps to mount a successful infection in the host.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipasree Hajra
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Arpita Kar
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Akshay Datey
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Santhosh Shankar
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Rishi Kumar Mishra
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India; Adjunct Faculty, Indian Institute of Science Research and Education, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
9
|
Ling C, Liang S, Li Y, Cao Q, Ye H, Zhang C, Dong Z, Feng D, Wang W, Zuo J. A Potential Adhesin/Invasin STM0306 Participates in Host Cell Inflammation Induced by Salmonella enterica Serovar Typhimurium. Int J Mol Sci 2023; 24:ijms24098170. [PMID: 37175877 PMCID: PMC10179656 DOI: 10.3390/ijms24098170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Salmonella enterica serovar typhimurium (S. Typhimurium) is a common Gram-negative foodborne pathogenic bacterium that causes gastrointestinal disease in humans and animals. It is well known that adhesins and invasins play crucial roles in the infection mechanism of S. Typhimurium. S. Typhimurium STM0306 has been denoted as a putative protein and its functions have rarely been reported. In this study, we constructed the STM0306 gene mutant strain of S. Typhimurium and purified the recombinant STM0306 from Escherichia coli. Deletion of the STM0306 gene resulted in reduced adhesion and invasion of S. Typhimurium to IPEC-J2, Caco-2, and RAW264.7 cells. In addition, STM0306 could bind to intestinal epithelial cells and induced F-actin modulation in IPEC-J2 cells. Furthermore, we found that STM0306 activated the nuclear factor kappa B (NF-κB) signaling pathway and increased the mRNA expression of pro-inflammatory cytokines such as IL-1β, TNF-α, as well as chemokine CXCL2, thus resulting in cellular inflammation in host cells. In vivo, the deletion of the STM0306 gene led to reduced pathogenicity of S. Typhimurium, as evidenced by lower fecal bacterial counts and reduced body weight loss in S. Typhimurium infected mice. In conclusion, the STM0306 of S. Typhimurium is an important adhesin/invasin involved in the pathogenic process and cellular inflammation of the host.
Collapse
Affiliation(s)
- Chong Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shujie Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingyun Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Changming Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zemin Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dingyuan Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Zuo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Alexpandi R, Abirami G, Murugesan B, Durgadevi R, Swasthikka RP, Cai Y, Ragupathi T, Ravi AV. Tocopherol-assisted magnetic Ag-Fe 3O 4-TiO 2 nanocomposite for photocatalytic bacterial-inactivation with elucidation of mechanism and its hazardous level assessment with zebrafish model. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130044. [PMID: 36179621 DOI: 10.1016/j.jhazmat.2022.130044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many endeavours have been prompted with photocatalytic nanomaterials by the need to eradicate pathogenic microorganisms from water bodies. Herein, a tocopherol-assisted Ag-Fe3O4-TiO2 nanocomposite (TAFTN) was synthesized for photocatalytic bacterial inactivation. The prepared TAFTN became active under sunlight due to its narrowed bandgap, inactivating the bacterial contaminants via photo-induced ROS stress. The ROS radicals destroy bacteria by creating oxidative stress, which damages the cell membrane and cellular components such as nucleic acids and proteins. For the first time, the nano-LC-MS/MS-based quantitative proteomics reveals that the disrupted proteins are involved in a variety of cellular functions; the most of these are involved in the metabolic pathway, eventually leading to bacterial death during TAFTN-photocatalysis under sunlight. Furthermore, the toxicity analysis confirmed that the inactivated bacteria seemed to have no detrimental impact on zebrafish model, showing that the disinfected water via TAFTN-photocatalysis is enormously safe. Furthermore, the TAFTN-photocatalysis successfully killed the bacterial cells in natural seawater, indicating the consistent photocatalytic efficacy when recycled repeatedly. The results of this work demonstrate that the produced nanocomposite might be a powerful recyclable and sunlight-active photocatalyst for environmental water treatment.
Collapse
Affiliation(s)
- Rajaiah Alexpandi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Gurusamy Abirami
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Balaji Murugesan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Ravindran Durgadevi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Roshni Prithiviraj Swasthikka
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Thennarasu Ragupathi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
11
|
Edwardsiella tarda TraT is an anti-complement factor and a cellular infection promoter. Commun Biol 2022; 5:637. [PMID: 35768577 PMCID: PMC9243006 DOI: 10.1038/s42003-022-03587-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Edwardsiella tarda is a well-known bacterial pathogen with a broad range of host, including fish, amphibians, and mammals. One eminent virulence feature of E. tarda is its strong ability to resist the killing of host serum complement, but the involving mechanism is unclear. In this report, we identified E. tarda TraT as a key player in both complement resistance and cellular invasion. TraT, a surface-localized protein, bound and recruited complement factor H onto E. tarda, whereby inhibiting complement activation via the alternative pathway. TraT also interacted with host CD46 in a specific complement control protein domain-dependent manner, whereby facilitating the cellular infection and tissue dissemination of E. tarda. Thus, by acting as an anti-complement factor and a cellular infection promoter, TraT makes an important contribution to the complement evasion and systemic infection of E. tarda. These results add insights into the pathogen-host interaction mechanism during E. tarda infection. Edwardsiella tarda TraT promotes cellular infection and serves as an anti-complement factor, shedding light on the mechanisms of E. tarda’s strong evasion of killing by the host.
Collapse
|
12
|
Mechanisms for the Invasion and Dissemination of Salmonella. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:2655801. [PMID: 35722038 PMCID: PMC9203224 DOI: 10.1155/2022/2655801] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Salmonella enterica is a gastroenteric Gram-negative bacterium that can infect both humans and animals and causes millions of illnesses per year around the world. Salmonella infections usually occur after the consumption of contaminated food or water. Infections with Salmonella species can cause diseases ranging from enterocolitis to typhoid fever. Salmonella has developed multiple strategies to invade and establish a systemic infection in the host. Different cell types, including epithelial cells, macrophages, dendritic cells, and M cells, are important in the infection process of Salmonella. Dissemination throughout the body and colonization of remote organs are hallmarks of Salmonella infection. There are several routes for the dissemination of Salmonella typhimurium. This review summarizes the current understanding of the infection mechanisms of Salmonella. Additionally, different routes of Salmonella infection will be discussed. In this review, the strategies used by Salmonella enterica to establish persistent infection will be discussed. Understanding both the bacterial and host factors leading to the successful colonization of Salmonella enterica may enable the rational design of effective therapeutic strategies.
Collapse
|
13
|
Liu Y, Xu T, Wang Q, Huang J, Zhu Y, Liu X, Liu R, Yang B, Zhou K. Vibrio cholerae senses human enteric α-defensin 5 through a CarSR two-component system to promote bacterial pathogenicity. Commun Biol 2022; 5:559. [PMID: 35676416 PMCID: PMC9178039 DOI: 10.1038/s42003-022-03525-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio cholerae (V. cholerae) is an aquatic bacterium responsible for acute and fatal cholera outbreaks worldwide. When V. cholerae is ingested, the bacteria colonize the epithelium of the small intestine and stimulate the Paneth cells to produce large amounts of cationic antimicrobial peptides (CAMPs). Human defensin 5 (HD-5) is the most abundant CAMPs in the small intestine. However, the role of the V. cholerae response to HD-5 remains unclear. Here we show that HD-5 significantly upregulates virulence gene expression. Moreover, a two-component system, CarSR (or RstAB), is essential for V. cholerae virulence gene expression in the presence of HD-5. Finally, phosphorylated CarR can directly bind to the promoter region of TcpP, activating transcription of tcpP, which in turn activates downstream virulence genes to promote V. cholerae colonization. In conclusion, this study reveals a virulence-regulating pathway, in which the CarSR two-component regulatory system senses HD-5 to activate virulence genes expression in V. cholerae.
Collapse
Affiliation(s)
- Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Tingting Xu
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, Guangdong, PR China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Junxi Huang
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, Guangdong, PR China
| | - Yangfei Zhu
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Laboratory Department, Shenzhen People's Hospital, Shenzhen, Guangdong, PR China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China.
| | - Kai Zhou
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, Guangdong, PR China.
| |
Collapse
|
14
|
Campylobacter jejuni Triggers Signaling through Host Cell Focal Adhesions To Inhibit Cell Motility. mBio 2021; 12:e0149421. [PMID: 34425711 PMCID: PMC8406305 DOI: 10.1128/mbio.01494-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen that exploits the focal adhesions of intestinal cells to promote invasion and cause severe gastritis. Focal adhesions are multiprotein complexes involved in bidirectional signaling between the actin cytoskeleton and the extracellular matrix. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected cells using a comprehensive set of approaches, including confocal microscopy of live and fixed cells, immunoblotting, and superresolution interferometric photoactivated localization microscopy (iPALM). We found that C. jejuni infection of epithelial cells results in increased focal adhesion size and altered topology. These changes resulted in a persistent modulatory effect on the host cell focal adhesion, evidenced by an increase in cell adhesion strength, a decrease in individual cell motility, and a reduction in collective cell migration. We discovered that C. jejuni infection causes an increase in phosphorylation of paxillin and an alteration of paxillin turnover at the focal adhesion, which together represent a potential mechanistic basis for altered cell motility. Finally, we observed that infection of epithelial cells with the C. jejuni wild-type strain in the presence of a protein synthesis inhibitor, a C. jejuni CadF and FlpA fibronectin-binding protein mutant, or a C. jejuni flagellar export mutant blunts paxillin phosphorylation and partially reestablishes individual host cell motility and collective cell migration. These findings provide a potential mechanism for the restricted intestinal repair observed in C. jejuni-infected animals and raise the possibility that bacteria targeting extracellular matrix components can alter cell behavior after binding and internalization by manipulating focal adhesions.
Collapse
|
15
|
Salmonella Typhimurium Adhesin OmpV Activates Host Immunity To Confer Protection against Systemic and Gastrointestinal Infection in Mice. Infect Immun 2021; 89:e0012121. [PMID: 34097470 DOI: 10.1128/iai.00121-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica Typhimurium is a rod-shaped Gram-negative bacterium that mostly enters the human body through contaminated food. It causes a gastrointestinal disorder called salmonellosis in humans and typhoid-like systemic disease in mice. OmpV, an outer membrane protein of S. Typhimurium, helps in adhesion and invasion of bacteria to intestinal epithelial cells and thus plays a vital role in the pathogenesis of S. Typhimurium. In this study, we have shown that intraperitoneal immunization with OmpV is able to induce high IgG production and protection against systemic disease. Further, oral immunization with OmpV-incorporated proteoliposome (OmpV-proteoliposome [PL]) induces production of high IgA antibody levels and protection against gastrointestinal infection. Furthermore, we have shown that OmpV induces Th1 bias in systemic immunization with purified OmpV, but both Th1 and Th2 polarization in oral immunization with OmpV-proteoliposome (PL). Additionally, we have shown that OmpV activates innate immune cells, such as monocytes, macrophages, and intestinal epithelial cells, in a Toll-like receptor 2 (TLR2)-dependent manner. Interestingly, OmpV is recognized by the TLR1/2 heterodimer in monocytes, but by both TLR1/2 and TLR2/6 heterodimers in macrophages and intestinal epithelial cells. Further, downstream signaling involves MyD88, interleukin-1 receptor-associated kinase (IRAK)-1, mitogen-activated protein kinase (MAPK) (both p38 and Jun N-terminal protein kinase (JNK)), and transcription factors NF-κB and AP-1. Due to its ability to efficiently activate both the innate and adaptive immune systems and protective efficacy, OmpV can be a potential vaccine candidate against S. Typhimurium infection. Further, the fact that OmpV can be recognized by both TLR1/2 and TLR2/6 heterodimers increases its potential to act as good adjuvant in other vaccine formulations.
Collapse
|