1
|
van der Klugt T, van Gent M. The dynamic interactions between virus infections and nonsense-mediated decay. Hum Mol Genet 2025:ddae151. [PMID: 40292718 DOI: 10.1093/hmg/ddae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 04/30/2025] Open
Abstract
Humans are continuously exposed to a wide array of viruses that cause a significant amount of morbidity and mortality worldwide. Over recent years, the evolutionarily conserved host RNA degradation pathway nonsense-mediated decay (NMD) has emerged as a broad antiviral defense mechanism that controls infection of a variety of RNA and DNA viruses. Besides regulating the abundance of host transcripts, NMD directly destabilizes virus genomic RNA, replication intermediates, and viral transcripts to interfere with replication. In turn, viruses have evolved strategies to modulate cellular NMD activity or repurpose NMD factors to facilitate their replication. In this review, we describe our current understanding of the role of NMD in controlling virus infections as well as the strategies employed by viruses to interfere with NMD.
Collapse
Affiliation(s)
- Teun van der Klugt
- HerpesLabNL, Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Michiel van Gent
- HerpesLabNL, Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Zhi S, Wu W, Ding Y, Zhang Y, Pan L, Liu G, Li W. Development of rapid nucleic acid testing techniques for common respiratory infectious diseases in the Chinese population. Front Chem 2024; 12:1381738. [PMID: 38694405 PMCID: PMC11061412 DOI: 10.3389/fchem.2024.1381738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Background: Most respiratory viruses can cause serious lower respiratory diseases at any age. Therefore, timely and accurate identification of respiratory viruses has become even more important. This study focused on the development of rapid nucleic acid testing techniques for common respiratory infectious diseases in the Chinese population. Methods: Multiplex fluorescent quantitative polymerase chain reaction (PCR) assays were developed and validated for the detection of respiratory pathogens including the novel coronavirus (SARS-CoV-2), influenza A virus (FluA), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). Results: The assays demonstrated high specificity and sensitivity, allowing for the simultaneous detection of multiple pathogens in a single reaction. These techniques offer a rapid and reliable method for screening, diagnosis, and monitoring of respiratory pathogens. Conclusion: The implementation of these techniques might contribute to effective control and prevention measures, leading to improved patient care and public health outcomes in China. Further research and validation are needed to optimize and expand the application of these techniques to a wider range of respiratory pathogens and to enhance their utility in clinical and public health settings.
Collapse
Affiliation(s)
- Shenshen Zhi
- Department of Blood Transfusion, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wenyan Wu
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Yan Ding
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Yuanyuan Zhang
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Liyan Pan
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Guo Liu
- Zeal Dental, Chongqing, China
| | - Wei Li
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Luha R, Rana V, Vainstein A, Kumar V. Nonsense-mediated mRNA decay pathway in plants under stress: general gene regulatory mechanism and advances. PLANTA 2024; 259:51. [PMID: 38289504 DOI: 10.1007/s00425-023-04317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION Nonsense-mediated mRNA decay in eukaryotes is vital to cellular homeostasis. Further knowledge of its putative role in plant RNA metabolism under stress is pivotal to developing fitness-optimizing strategies. Nonsense-mediated mRNA decay (NMD), part of the mRNA surveillance pathway, is an evolutionarily conserved form of gene regulation in all living organisms. Degradation of mRNA-bearing premature termination codons and regulation of physiological RNA levels highlight NMD's role in shaping the cellular transcriptome. Initially regarded as purely a tool for cellular RNA quality control, NMD is now considered to mediate various aspects of plant developmental processes and responses to environmental changes. Here we offer a basic understanding of NMD in eukaryotes by explaining the concept of premature termination codon recognition and NMD complex formation. We also provide a detailed overview of the NMD mechanism and its role in gene regulation. The potential role of effectors, including ABCE1, in ribosome recycling during the translation process is also explained. Recent reports of alternatively spliced variants of corresponding genes targeted by NMD in Arabidopsis thaliana are provided in tabular format. Detailed figures are also provided to clarify the NMD concept in plants. In particular, accumulating evidence shows that NMD can serve as a novel alternative strategy for genetic manipulation and can help design RNA-based therapies to combat stress in plants. A key point of emphasis is its function as a gene regulatory mechanism as well as its dynamic regulation by environmental and developmental factors. Overall, a detailed molecular understanding of the NMD mechanism can lead to further diverse applications, such as improving cellular homeostasis in living organisms.
Collapse
Affiliation(s)
- Rashmita Luha
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science Bangalore, Bangaluru, India
| | - Varnika Rana
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
4
|
Dou X, Peng M, Jiang R, Li W, Zhang X. Upregulated CD8 + MAIT cell differentiation and KLRD1 gene expression after inactivated SARS-CoV-2 vaccination identified by single-cell sequencing. Front Immunol 2023; 14:1174406. [PMID: 37654490 PMCID: PMC10466403 DOI: 10.3389/fimmu.2023.1174406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Background The primary strategy for reducing the incidence of COVID-19 is SARS-CoV-2 vaccination. Few studies have explored T cell subset differentiation and gene expressions induced by SARS-CoV-2 vaccines. Our study aimed to analyze T cell dynamics and transcriptome gene expression after inoculation with an inactivated SARS-CoV-2 vaccine by using single-cell sequencing. Methods Single-cell sequencing was performed after peripheral blood mononuclear cells were extracted from three participants at four time points during the inactivated SARS-CoV-2 vaccination process. After library preparation, raw read data analysis, quality control, dimension reduction and clustering, single-cell T cell receptor (TCR) sequencing, TCR V(D)J sequencing, cell differentiation trajectory inference, differentially expressed genes, and pathway enrichment were analyzed to explore the characteristics and mechanisms of postvaccination immunodynamics. Results Inactivated SARS-CoV-2 vaccination promoted T cell proliferation, TCR clone amplification, and TCR diversity. The proliferation and differentiation of CD8+ mucosal-associated invariant T (MAIT) cells were significantly upregulated, as were KLRD1 gene expression and the two pathways of nuclear-transcribed mRNA catabolic process, nonsense-mediated decay, and translational initiation. Conclusion Upregulation of CD8+ MAIT cell differentiation and KLRD1 expression after inactivated SARS-CoV-2 vaccination was demonstrated by single-cell sequencing. We conclude that the inactivated SARS-CoV-2 vaccine elicits adaptive T cell immunity to enhance early immunity and rapid response to the targeted virus.
Collapse
Affiliation(s)
- Xiaowen Dou
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mian Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ruiwei Jiang
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiuming Zhang
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Fang J, Pietzsch C, Tsaprailis G, Crynen G, Cho KF, Ting AY, Bukreyev A, de la Torre JC, Saphire EO. Functional interactomes of the Ebola virus polymerase identified by proximity proteomics in the context of viral replication. Cell Rep 2022; 38:110544. [PMID: 35320713 PMCID: PMC10496643 DOI: 10.1016/j.celrep.2022.110544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/26/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Ebola virus (EBOV) critically depends on the viral polymerase to replicate and transcribe the viral RNA genome in the cytoplasm of host cells, where cellular factors can antagonize or facilitate the virus life cycle. Here we leverage proximity proteomics and conduct a small interfering RNA (siRNA) screen to define the functional interactome of EBOV polymerase. As a proof of principle, we validate two cellular mRNA decay factors from 35 identified host factors: eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1) and up-frameshift protein 1 (UPF1). Our data suggest that EBOV can subvert restrictions of cellular mRNA decay and repurpose GSPT1 and UPF1 to promote viral replication. Treating EBOV-infected human hepatocytes with a drug candidate that targets GSPT1 for degradation significantly reduces viral RNA load and particle production. Our work demonstrates the utility of proximity proteomics to capture the functional host interactome of the EBOV polymerase and to illuminate host-dependent regulation of viral RNA synthesis.
Collapse
Affiliation(s)
- Jingru Fang
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Colette Pietzsch
- Department of Pathology and Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Gogce Crynen
- Bioinformatics and Statistics Core, Scripps Research, Jupiter, FL 33458, USA
| | - Kelvin Frank Cho
- Cancer Biology Program, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Department of Genetics, Department of Biology, and Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Alexander Bukreyev
- Department of Pathology and Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA.
| | | | | |
Collapse
|