1
|
Altahrawi AY, James AW, Shah ZA. The Role of Oxidative Stress and Inflammation in the Pathogenesis and Treatment of Vascular Dementia. Cells 2025; 14:609. [PMID: 40277934 PMCID: PMC12026122 DOI: 10.3390/cells14080609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Vascular dementia (VaD) is a heterogeneous group of brain disorders caused by cerebrovascular pathologies and the second most common cause of dementia, accounting for over 20% of cases and posing an important global health concern. VaD can be caused by cerebral infarction or injury in critical brain regions, including the speech area of the dominant hemisphere or arcuate fasciculus of the dominant hemisphere, leading to notable cognitive impairment. Although the exact causes of dementia remain multifactorial and complex, oxidative stress (reactive oxygen species), neuroinflammation (TNFα, IL-6, and IL-1β), and inflammasomes are considered central mechanisms in its pathology. These conditions contribute to neuronal damage, synaptic dysfunction, and cognitive decline. Thus, antioxidants and anti-inflammatory agents have emerged as potential therapeutic targets in dementia. Recent studies emphasize that cerebrovascular disease plays a dual role: first, as a primary cause of cognitive impairment and then as a contributor to the manifestation of dementia driven by other factors, such as Alzheimer's disease and other neurodegenerative conditions. This comprehensive review of VaD focuses on molecular mechanisms and their consequences. We provided up-to-date knowledge about epidemiology, pathophysiological mechanisms, and current therapeutic approaches for VaD.
Collapse
Affiliation(s)
- Aseel Y. Altahrawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA;
| | - Zahoor A. Shah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
2
|
Akif A, My Nguyen TT, Liu L, Xu X, Kulkarni A, Jiang J, Zhang Y, Hao J. Targeting NLRP3 signaling with a novel sulfonylurea compound for the treatment of vascular cognitive impairment and dementia. RESEARCH SQUARE 2024:rs.3.rs-5611378. [PMID: 39764140 PMCID: PMC11702818 DOI: 10.21203/rs.3.rs-5611378/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Background As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD. Methods In this study, we investigated the therapeutic effects of a synthetic sulfonylurea NLRP3 inhibitor, AMS-17, in a VaD mouse model using bilateral common carotid artery stenosis (BCAS) and elucidated the underlying mechanisms. All mice were randomly divided into three groups: Sham, VaD + Vehicle, and VaD + AMS-17. Cognitive function was assessed using the Y-maze and Morris water maze (MWM) on the 50th day after BCAS. Brain sections and blood serum samples were collected for biomarker analysis and immunohistochemistry. Neurodegeneration, expressions of the molecules involved in the NLRP3 signaling pathways, tight junction proteins, and myelination were assessed using western blotting and immunofluorescence (IF). The levels of Interleukin-1 beta (IL-1β), Tumor Necrosis Factor-alpha (TNF-α) and Interleukin-4 (IL-4) in the blood were measured using ELISA. Results AMS-17 treatment improved cognitive function, enhanced blood-brain barrier (BBB) integrity, and promoted remyelination in VaD mice. Additionally, AMS-17 reduced neurodegeneration and decreased the expression of NLRP3 and its associated proteins, Apoptosis-associated speck-like protein (ASC), and cleaved caspase-1 in the brain. It also lowered pro-inflammatory TNF-α and IL-1β levels, while increasing the anti-inflammatory IL-4 level in the blood. Conclusions The findings of this study provide the first promising evidence for the use of AMS-17 in VaD treatment in mice. This study introduces AMS-17 as a novel chemical scaffold with NLRP3 inhibitory activity, which can be further developed for the treatment of VaD in humans.
Collapse
Affiliation(s)
| | | | - Langni Liu
- The University of Texas Health Science Center at Houston
| | - Xiaotian Xu
- The Affiliated Hospital of Yangzhou University
| | | | | | | | | |
Collapse
|
3
|
LI Y, HAO L, LI S, LUO Y, WANG J, WANG R, BAI X. Tongqiao Yizhi granule repress the nuclear factor kappa-b/nucleotide oligomerization domain-like receptors 3/caspase-1 pyroptosis pathway in the hippocampus to counter vascular dementia in rats. J TRADIT CHIN MED 2024; 44:680-687. [PMID: 39066528 PMCID: PMC11337261 DOI: 10.19852/j.cnki.jtcm.20240515.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2024]
Abstract
OBJECTIVE To explore the mechanism by which Tongqiao Yizhi granule (, TQYZKL) intervenes pyroptosis to treat vascular dementia (VaD) in a rat model. METHODS The rat model of VaD was established by two-vessel occlusion (2VO). The rats were randomly divided into Sham group, Model group, Nimodipine group, TQYZKL (6.2 g?kg-1?d-1), TQYZKL (12.4 g?kg-1?d-1), TQYZKL (24.8 g?kg-1?d-1). The Morris water maze (MWM) test was carried out to test the learning and memory function; Hematoxylin-eosin staining and transmission electron microscopy (TEM) to observe the pathological damage in the hippocampus; Tunel fluorescence staining to detect neuronal pyroptosis in the hippocampus. The expression levels of pyroptosis-related proteins, namely Golgi peripheral membrane protein p65 (P65), nucleotide oligomerization domain-like receptors 3 (NLRP3), caspase-1 and Gasdermin D (GSDMD), were detected using Western blotting and reverse transcription polymerase chain reaction. Moreover, the serum levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) were determined through the enzyme-linked immunosorbent assay. RESULTS The study revealed that TQYZKL effectively improved the ability of VaD ratsto learn and memorize, relieved the pathological damage in the hippocampus, restored neuronal morphology, and reduced the expression of pyroptosis-related proteins P65, NLRP3, caspase-1, GSDMD-N, IL-18 and IL-1β (P < 0.05). CONCLUSION TQYZKL inhibits neuronal pyroptosis in the hippocampus of VaD rats by regulating nuclear factor kappa-B/NLRP3/caspase-1 signaling pathway, thus exerting a therapeutic effect on VaD in the rats.
Collapse
Affiliation(s)
- Yanjiao LI
- 1 College of Integrative Medicine, Southwest Medical University, Luzhou 646600, China
| | - Linyao HAO
- 1 College of Integrative Medicine, Southwest Medical University, Luzhou 646600, China
| | - Shuangyang LI
- 2 Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yanqi LUO
- 1 College of Integrative Medicine, Southwest Medical University, Luzhou 646600, China
| | - Juan WANG
- 1 College of Integrative Medicine, Southwest Medical University, Luzhou 646600, China
| | - Raoqiong WANG
- 2 Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
- 3 Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xue BAI
- 2 Department of Neurology and National Traditional Chinese Medicine Clinical Research Base, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
4
|
O’Day DH. Calcium and Non-Penetrating Traumatic Brain Injury: A Proposal for the Implementation of an Early Therapeutic Treatment for Initial Head Insults. Biomolecules 2024; 14:853. [PMID: 39062567 PMCID: PMC11274459 DOI: 10.3390/biom14070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Finding an effective treatment for traumatic brain injury is challenging for multiple reasons. There are innumerable different causes and resulting levels of damage for both penetrating and non-penetrating traumatic brain injury each of which shows diverse pathophysiological progressions. More concerning is that disease progression can take decades before neurological symptoms become obvious. Currently, the primary treatment for non-penetrating mild traumatic brain injury, also called concussion, is bed rest despite the fact the majority of emergency room visits for traumatic brain injury are due to this mild form. Furthermore, one-third of mild traumatic brain injury cases progress to long-term serious symptoms. This argues for the earliest therapeutic intervention for all mild traumatic brain injury cases which is the focus of this review. Calcium levels are greatly increased in damaged brain regions as a result of the initial impact due to tissue damage as well as disrupted ion channels. The dysregulated calcium level feedback is a diversity of ways to further augment calcium neurotoxicity. This suggests that targeting calcium levels and function would be a strong therapeutic approach. An effective calcium-based traumatic brain injury therapy could best be developed through therapeutic programs organized in professional team sports where mild traumatic brain injury events are common, large numbers of subjects are involved and professional personnel are available to oversee treatment and documentation. This review concludes with a proposal with that focus.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
5
|
Yong J, Song J. CaMKII activity and metabolic imbalance-related neurological diseases: Focus on vascular dysfunction, synaptic plasticity, amyloid beta accumulation, and lipid metabolism. Biomed Pharmacother 2024; 175:116688. [PMID: 38692060 DOI: 10.1016/j.biopha.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Metabolic syndrome (MetS) is characterized by insulin resistance, hyperglycemia, excessive fat accumulation and dyslipidemia, and is known to be accompanied by neuropathological symptoms such as memory loss, anxiety, and depression. As the number of MetS patients is rapidly increasing globally, studies on the mechanisms of metabolic imbalance-related neuropathology are emerging as an important issue. Ca2+/calmodulin-dependent kinase II (CaMKII) is the main Ca2+ sensor and contributes to diverse intracellular signaling in peripheral organs and the central nervous system (CNS). CaMKII exerts diverse functions in cells, related to mechanisms such as RNA splicing, reactive oxygen species (ROS) generation, cytoskeleton, and protein-protein interactions. In the CNS, CaMKII regulates vascular function, neuronal circuits, neurotransmission, synaptic plasticity, amyloid beta toxicity, lipid metabolism, and mitochondrial function. Here, we review recent evidence for the role of CaMKII in neuropathologic issues associated with metabolic disorders.
Collapse
Affiliation(s)
- Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
6
|
Wang Y, Xie D, Ma S, Shao N, Zhang X, Wang X. Exploring the common mechanism of vascular dementia and inflammatory bowel disease: a bioinformatics-based study. Front Immunol 2024; 15:1347415. [PMID: 38736878 PMCID: PMC11084673 DOI: 10.3389/fimmu.2024.1347415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Objective Emerging evidence has shown that gut diseases can regulate the development and function of the immune, metabolic, and nervous systems through dynamic bidirectional communication on the brain-gut axis. However, the specific mechanism of intestinal diseases and vascular dementia (VD) remains unclear. We designed this study especially, to further clarify the connection between VD and inflammatory bowel disease (IBD) from bioinformatics analyses. Methods We downloaded Gene expression profiles for VD (GSE122063) and IBD (GSE47908, GSE179285) from the Gene Expression Omnibus (GEO) database. Then individual Gene Set Enrichment Analysis (GSEA) was used to confirm the connection between the two diseases respectively. The common differentially expressed genes (coDEGs) were identified, and the STRING database together with Cytoscape software were used to construct protein-protein interaction (PPI) network and core functional modules. We identified the hub genes by using the Cytohubba plugin. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied to identify pathways of coDEGs and hub genes. Subsequently, receiver operating characteristic (ROC) analysis was used to identify the diagnostic ability of these hub genes, and a training dataset was used to verify the expression levels of the hub genes. An alternative single-sample gene set enrichment (ssGSEA) algorithm was used to analyze immune cell infiltration between coDEGs and immune cells. Finally, the correlation between hub genes and immune cells was analyzed. Results We screened 167 coDEGs. The main articles of coDEGs enrichment analysis focused on immune function. 8 shared hub genes were identified, including PTPRC, ITGB2, CYBB, IL1B, TLR2, CASP1, IL10RA, and BTK. The functional categories of hub genes enrichment analysis were mainly involved in the regulation of immune function and neuroinflammatory response. Compared to the healthy controls, abnormal infiltration of immune cells was found in VD and IBD. We also found the correlation between 8 shared hub genes and immune cells. Conclusions This study suggests that IBD may be a new risk factor for VD. The 8 hub genes may predict the IBD complicated with VD. Immune-related coDEGS may be related to their association, which requires further research to prove.
Collapse
Affiliation(s)
- Yujiao Wang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Daojun Xie
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shijia Ma
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Nan Shao
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaoyan Zhang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xie Wang
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
7
|
Zhang H, Yang Y, Zhang J, Huang L, Niu Y, Chen H, Liu Q, Wang R. Oligodendrocytes Play a Critical Role in White Matter Damage of Vascular Dementia. Neuroscience 2024; 538:1-10. [PMID: 37913862 DOI: 10.1016/j.neuroscience.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
With the deepening of population aging, the treatment of cognitive impairment and dementia is facing increasing challenges. Vascular dementia (VaD) is a cognitive dysfunction caused by brain blood flow damage and one of the most common causes of dementia after Alzheimer's disease. White matter damage in patients with chronic ischemic dementia often occurs before cognitive impairment, and its pathological changes include leukoaraiosis, myelin destruction and oligodendrocyte death. The pathophysiology of vascular dementia is complex, involving a variety of neuronal and vascular lesions. The current proposed mechanisms include calcium overload, oxidative stress, nitrative stress and inflammatory damage, which can lead to hypoxia-ischemia and demyelination. Oligodendrocytes are the only myelinating cells in the central nervous system and closely associated with VaD. In this review article, we intend to further discuss the role of oligodendrocytes in white matter and myelin injury in VaD and the development of anti-myelin injury target drugs.
Collapse
Affiliation(s)
- Hexin Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yanrong Yang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jingjing Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Li Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Yang Niu
- Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia medical University, Yinchuan 750004, Ningxia, China
| | - Hua Chen
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Rui Wang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
8
|
Zhang Q, Li S, He L, Feng X. A brief review of polysialic acid-based drug delivery systems. Int J Biol Macromol 2023; 230:123151. [PMID: 36610578 DOI: 10.1016/j.ijbiomac.2023.123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Polysialic acid (PSA) is a straight-chain homoglycan linked by N-acetylneuraminic acid monomers via α-2, 8- or α-2, 9-glycosidic bonds. As a negatively charged non-glycosaminoglycan, PSA has the remarkable characteristics of non-immunogenicity and biodegradation. Although different in class, PSA is similar to poly(ethylene glycol), and was originally used to increase the stability of the delivery system in circulation to prolong the half-life. As research continues, PSA's application potential in the pharmaceutical field becomes increasingly prominent. It can be used as a biomaterial for protein polysialylation and tissue engineering, and it can be used alone or with other materials to develop multifunctional drug delivery systems. In this article, the results of the bioproduction and biofunction of PSA are introduced, the common strategies for chemical modification of PSA are summarized, and the application progress of PSA-based drug delivery systems is reviewed.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Shanshan Li
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China
| | - Lin He
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xueting Feng
- College of Pharmacy, Southwest Minzu University, Chengdu 610000, China
| |
Collapse
|
9
|
He Y, Chen X, Wu M, Hou X, Zhou Z. What type of cell death occurs in chronic cerebral hypoperfusion? A review focusing on pyroptosis and its potential therapeutic implications. Front Cell Neurosci 2023; 17:1073511. [PMID: 36937182 PMCID: PMC10017988 DOI: 10.3389/fncel.2023.1073511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is a major global disease with chronic cerebral blood flow reduction. It is also the main cause of cognitive impairment and neurodegenerative diseases. Pyroptosis, a novel form of cell death, is characterized by the rupture of the cell membrane and the release of pro-inflammatory mediators. In recent years, an increasing number of studies have identified the involvement of pyroptosis and its mediated inflammatory response in the pathological process of CCH. Therefore, preventing the activation of pyroptosis following CCH is beneficial to inhibit the inflammatory cascade and reduce brain injury. In this review, we discuss the research progress on the relationship between pyroptosis and CCH, in order to provide a reference for research in related fields.
Collapse
Affiliation(s)
- Yuxuan He
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Neurology, School of Medicine, Chongqing University, Chongqing, China
| | - Xi Chen
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Wu
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Xianhua Hou Zhenhua Zhou
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Xianhua Hou Zhenhua Zhou
| |
Collapse
|
10
|
O’Day DH. Calmodulin Binding Domains in Critical Risk Proteins Involved in Neurodegeneration. Curr Issues Mol Biol 2022; 44:5802-5814. [PMID: 36421678 PMCID: PMC9689381 DOI: 10.3390/cimb44110394] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 08/26/2023] Open
Abstract
Neurodegeneration leads to multiple early changes in cognitive, emotional, and social behaviours and ultimately progresses to dementia. The dysregulation of calcium is one of the earliest potentially initiating events in the development of neurodegenerative diseases. A primary neuronal target of calcium is the small sensor and effector protein calmodulin that, in response to calcium levels, binds to and regulates hundreds of calmodulin binding proteins. The intimate and entangled relationship between calmodulin binding proteins and all phases of Alzheimer's disease has been established, but the relationship to other neurodegenerative diseases is just beginning to be evaluated. Risk factors and hallmark proteins from Parkinson's disease (PD; SNCA, Parkin, PINK1, LRRK2, PARK7), Huntington's disease (HD; Htt, TGM1, TGM2), Lewy Body disease (LBD; TMEM175, GBA), and amyotrophic lateral sclerosis/frontotemporal disease (ALS/FTD; VCP, FUS, TDP-43, TBK1, C90rf72, SQSTM1, CHCHD10, SOD1) were scanned for the presence of calmodulin binding domains and, within them, appropriate binding motifs. Binding domains and motifs were identified in multiple risk proteins, some of which are involved in multiple neurodegenerative diseases. The potential calmodulin binding profiles for risk proteins involved in HD, PD, LBD, and ALS/FTD coupled with other studies on proven binding proteins supports the central and potentially critical role for calmodulin in neurodegenerative events.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
11
|
O'Day DH, Huber RJ. Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neurosci 2022; 23:10. [PMID: 35246032 PMCID: PMC8896083 DOI: 10.1186/s12868-022-00695-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
Calcium dysregulation (“Calcium Hypothesis”) is an early and critical event in Alzheimer’s and other neurodegenerative diseases. Calcium binds to and regulates the small regulatory protein calmodulin that in turn binds to and regulates several hundred calmodulin binding proteins. Initial and continued research has shown that many calmodulin binding proteins mediate multiple events during the onset and progression of Alzheimer’s disease, thus establishing the “Calmodulin Hypothesis”. To gain insight into the general applicability of this hypothesis, the involvement of calmodulin in neuroinflammation in Alzheimer’s, amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s disease, frontotemporal dementia, and other dementias was explored. After a literature search for calmodulin binding, 11 different neuroinflammatory proteins (TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, ABCA1, CH3L1/YKL-40 and NLRP3) were scanned for calmodulin binding domains using the Calmodulin Target Database. This analysis revealed the presence of at least one binding domain within which visual scanning demonstrated the presence of valid binding motifs. Coupled with previous research that identified 13 other neuroinflammation linked proteins (BACE1, BIN1, CaMKII, PP2B, PMCA, NOS, NMDAR, AchR, Ado A2AR, Aβ, APOE, SNCA, TMEM175), this work shows that at least 24 critical proteins involved in neuroinflammation are putative or proven calmodulin binding proteins. Many of these proteins are linked to multiple neurodegenerative diseases indicating that calmodulin binding proteins lie at the heart of neuroinflammatory events associated with multiple neurodegenerative diseases. Since many calmodulin-based pharmaceuticals have been successfully used to treat Huntington’s and other neurodegenerative diseases, these findings argue for their immediate therapeutic implementation.
Collapse
Affiliation(s)
- Danton H O'Day
- Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
12
|
Sun L, Yong Y, Wei P, Wang Y, Li H, Zhou Y, Ruan W, Li X, Song J. Electroacupuncture ameliorates postoperative cognitive dysfunction and associated neuroinflammation via NLRP3 signal inhibition in aged mice. CNS Neurosci Ther 2021; 28:390-400. [PMID: 34951130 PMCID: PMC8841296 DOI: 10.1111/cns.13784] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is associated with worsened prognosis especially in aged population. Clinical and animal studies suggested that electroacupuncture (EA) could improve POCD. However, the underlying mechanisms especially EA’s regulatory role of inflammasomes remain unclear. Methods The model of POCD was established by partial hepatectomy surgery in 18‐month mice with or without postoperative EA treatment to the Baihui acupoint (GV20) for 7 days. Cognitive functions were assessed by Morris water maze test, and proinflammatory cytokines IL‐1β and IL‐6 and microglia activity were assayed by qPCR, ELISA, or immunohistochemistry. Tight junction proteins, NLRP3 inflammasome and downstream proteins, and NF‐κB pathway proteins were evaluated by western blotting. Results EA markedly preserved cognitive dysfunctions in POCD mice, associated with the inhibition of neuroinflammation as evidenced by reduced microglial activation and decreased IL‐1β and IL‐6 levels in brain tissue. EA also preserved hippocampal neurons and tight junction proteins ZO‐1 and claudin 5. Mechanistically, the activation of NLRP3 inflammasome and NF‐κB was inhibited by EA, while NLRP3 activation abolished EA’s treatment effects on cognitive function. Conclusion EA alleviates POCD‐mediated cognitive dysfunction associated with ameliorated neuroinflammation. Mechanistically, EA’s treatment effects are dependent on NLRP3 inhibition.
Collapse
Affiliation(s)
- Long Sun
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yue Yong
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Pan Wei
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yongqiang Wang
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - He Li
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yalan Zhou
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Wenqing Ruan
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xing Li
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Jiangang Song
- Department of Anesthesiology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
13
|
Wang T, Ruan B, Wang J, Zhou Z, Zhang X, Zhang C, Zhao H, Yang Y, Yuan D. Activation of NLRP3-Caspase-1 pathway contributes to age-related impairments in cognitive function and synaptic plasticity. Neurochem Int 2021; 152:105220. [PMID: 34743016 DOI: 10.1016/j.neuint.2021.105220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
Aging is characterized by a progressive deterioration in physiological functions that is associated with cognitive decline as well as other physical functional impairments. Microglia activation leading to neuroinflammation has been generally recognized as playing a critical role in the development of age-related cognitive decline. NLRP3 inflammasome in microglia is fundamental for IL-1β maturation and subsequent inflammatory events. However, it remains unknown whether NLRP3 activation contributes to aging-induced cognitive decline in vivo. Here, our study demonstrated that aging rats showed declined cognitive function and impaired synaptic plasticity as well as decreased density of dendritic spines. Importantly, our data demonstrated strongly enhanced expression of NLRP3, ASC and Caspase-1 in the hippocampus of aged rats as well as decreased AMPA receptor and phosphorylated levels of CaMKII and CREB in the hippocampus of natural aging rats. Furthermore, NLRP3 inflammasome inhibitor elevated the surface expression of AMPA receptor and the phosphorylated levels of CaMKII, CREB in hippocampus, and finally contributed to the attenuation of hippocampal long-term potentiation (LTP) deficits and the improvement of cognitive decline of natural aging rats. These results revealed an important role for the NLRP3-Caspase-1 pathway in aging-induced cognitive decline and suggested that inhibition of NLRP3 inflammasome represented a novel therapeutic intervention for aging-related cognitive impairment.
Collapse
Affiliation(s)
- Ting Wang
- Academy of Nutrition and Health,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China; Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Bo Ruan
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Jinxin Wang
- College of Traditional Chinese Medicine, Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei, China
| | - Zhiyong Zhou
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Xulan Zhang
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Changcheng Zhang
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Haixia Zhao
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Yuanjian Yang
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.
| | - Ding Yuan
- College of Medical Science, Three Gorges University, Yichang, Hubei, China.
| |
Collapse
|
14
|
Zhang X, Connelly J, Levitan ES, Sun D, Wang JQ. Calcium/Calmodulin-Dependent Protein Kinase II in Cerebrovascular Diseases. Transl Stroke Res 2021; 12:513-529. [PMID: 33713030 PMCID: PMC8213567 DOI: 10.1007/s12975-021-00901-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Cerebrovascular disease is the most common life-threatening and debilitating condition that often leads to stroke. The multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) is a key Ca2+ sensor and an important signaling protein in a variety of biological systems within the brain, heart, and vasculature. In the brain, past stroke-related studies have been mainly focused on the role of CaMKII in ischemic stroke in neurons and established CaMKII as a major mediator of neuronal cell death induced by glutamate excitotoxicity and oxidative stress following ischemic stroke. However, with growing understanding of the importance of neurovascular interactions in cerebrovascular diseases, there are clearly gaps in our understanding of how CaMKII functions in the complex neurovascular biological processes and its contributions to cerebrovascular diseases. Additionally, emerging evidence demonstrates novel regulatory mechanisms of CaMKII and potential roles of the less-studied CaMKII isoforms in the ischemic brain, which has sparked renewed interests in this dynamic kinase family. This review discusses past findings and emerging evidence on CaMKII in several major cerebrovascular dysfunctions including ischemic stroke, hemorrhagic stroke, and vascular dementia, focusing on the unique roles played by CaMKII in the underlying biological processes of neuronal cell death, neuroinflammation, and endothelial barrier dysfunction triggered by stroke. We also highlight exciting new findings, promising therapeutic agents, and future perspectives for CaMKII in cerebrovascular systems.
Collapse
Affiliation(s)
- Xuejing Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA
| | - Jaclyn Connelly
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA
| | - Edwin S Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, Pittsburgh Institute For Neurodegenerative Diseases, University of Pittsburgh, 7016 Biomedical Science Tower-3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA.
| | - Jane Q Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, E1354 BST, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Intermittent fasting attenuates inflammasome-associated apoptotic and pyroptotic death in the brain following chronic hypoperfusion. Neurochem Int 2021; 148:105109. [PMID: 34174333 DOI: 10.1016/j.neuint.2021.105109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/20/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) has been shown to initiate several inflammatory pathways that can contribute to cognitive deficits and memory loss in vascular cognitive impairment (VCI). Multi-protein complexes termed inflammasomes that may be involved in the inflammatory response to CCH has already been shown to contribute to the inflammatory process and cell death following acute cerebral ischemia. Intermittent fasting (IF) has already been shown to decrease inflammasome activation and protect the brain from ischemic stroke; however, its effects during CCH remains unknown. The present study investigated the impact of IF (16 h of food deprivation daily) for four months on inflammasome-mediated cell death in the cerebellum following CCH in a mouse model of VCI using fourteen to sixteen-week-old male C57BL/6NTac mice. Here we demonstrated that IF decreased inflammasome activation, and initiation of apoptotic and pyroptotic cell death pathways as reflected by the reduction (20-30%) in the expression levels of key effector proteins and cell death markers in the cerebellum following CCH. In summary, our results indicate that IF can attenuate the inflammatory response and cell death pathways in the brain following chronic hypoperfusion in a mouse model of VCI.
Collapse
|
16
|
Saponins from Panax japonicus alleviate HFD-induced impaired behaviors through inhibiting NLRP3 inflammasome to upregulate AMPA receptors. Neurochem Int 2021; 148:105098. [PMID: 34129896 DOI: 10.1016/j.neuint.2021.105098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Obesity is characterized by a condition of low-grade chronic inflammation that facilitates development of numerous comorbidities and dysregulation of brain homeostasis. It is reported that obesity can lead to behavioral alterations such as cognitive decline and depression-like behaviors both in humans and rodents. Saponins from panax japonicus (SPJ) have been reported to exhibit anti-inflammatory action in mouse model of diet-induced obesity. We evaluated the neuroprotection of SPJ on high fat diet (HFD) induced impaired behaviors such as memory deficit and depressive-like behaviors, and explored the underlying mechanisms. 6-week male Balb/c mice were divided into normal control group (NC, 17% total calories from fat), HFD group (60% total calories from fat), and HFD treated with SPJ groups (orally gavaged with dosages of 15 mg/kg and 45 mg/kg), respectively. After treatment for 16 weeks, behavioral tests were performed to evaluate the cognition and depression-like behaviors of the mice. The underling mechanisms of SPJ on HFD-induced impaired behaviors were investigated through histopathological observation, Western blot analysis and immunofluorescence. Our results showed that HFD-fed mice caused behavioral disorders, neuronal degeneration as well as elevated neuroinflammation, which was partly involved in NLRP3 inflammasome that finally resulted in decreased protein levels of AMPA receptors and down-regulated phosphorylated levels of CaMKII and CREB in cortex and hippocampus. All the above changes in cortex and hippocampus induced by HFD were mitigated by SPJ treatment. SPJ treatment alleviated HFD-induced recognitive impairment and depression-like behaviors of mice, which could be partly due to the capacity of SPJ to mitigate neuroinflammation through inhibition of NLRP3 inflammasome and upregulation of AMPA receptors signaling pathway.
Collapse
|
17
|
Chen TT, Zhou X, Xu YN, Li Y, Wu XY, Xiang Q, Fu LY, Hu XX, Tao L, Shen XC. Gastrodin ameliorates learning and memory impairment in rats with vascular dementia by promoting autophagy flux via inhibition of the Ca 2+/CaMKII signal pathway. Aging (Albany NY) 2021; 13:9542-9565. [PMID: 33714957 PMCID: PMC8064221 DOI: 10.18632/aging.202667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Vascular dementia (VD) is a common disease that occurs during human aging. Gastrodin (GAS) has potential benefits for the prevention and treatment of VD. In the present study, we investigated the effects of GAS on cognitive dysfunction in rats with VD induced by permanent middle cerebral artery occlusion (pMCAO) and explored the underlying mechanism. Immunohistochemical and western blot analyses revealed that GAS attenuated hippocampal levels of LC3 (microtubule-associated protein 1 light chain 3), p62, and phosphorylated CaMKII (Ca2+-calmodulin stimulated protein kinase II) in VD rats. Additionally, our results revealed that cobalt chloride blocked autophagic flux in HT22 cells, which was confirmed by increased levels of LC3 and p62 when combined with chloroquine. Notably, GAS ameliorated the impaired autophagic flux. Furthermore, we confirmed that GAS combined with KN93 (a CaMKII inhibitor) or CaMKII knockdown did not impact the reduced p62 levels when compared with GAS treatment alone. Furthermore, a co-immunoprecipitation assay demonstrated that endogenous p62 bound to CaMKII, as confirmed by mass spectrometric analysis after the immunoprecipitation of p62 from HT22 cells. These findings revealed that GAS attenuated autophagic flux dysfunction by inhibiting the Ca2+/CaMKII signaling pathway to ameliorate cognitive impairment in VD.
Collapse
Affiliation(s)
- Ting-Ting Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- Guiyang Maternal and Child Health-Care Hospital, Guiyang 550000, P.R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources and The Union Key Laboratory of Guiyang City, Guizhou Medical University, School of Pharmaceutical Sciences, Guiyang 550025, P.R. China
| | - Xue Zhou
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Yi-Ni Xu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Yue Li
- Guiyang Maternal and Child Health-Care Hospital, Guiyang 550000, P.R. China
| | - Xiao-Ying Wu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources and The Union Key Laboratory of Guiyang City, Guizhou Medical University, School of Pharmaceutical Sciences, Guiyang 550025, P.R. China
| | - Quan Xiang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Ling-Yun Fu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Xiao-Xia Hu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Ling Tao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Xiang-Chun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources and The Union Key Laboratory of Guiyang City, Guizhou Medical University, School of Pharmaceutical Sciences, Guiyang 550025, P.R. China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang 550025, P.R. China
| |
Collapse
|
18
|
Kuang H, Zhou ZF, Zhu YG, Wan ZK, Yang MW, Hong FF, Yang SL. Pharmacological Treatment of Vascular Dementia: A Molecular Mechanism Perspective. Aging Dis 2021; 12:308-326. [PMID: 33532143 PMCID: PMC7801279 DOI: 10.14336/ad.2020.0427] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 11/01/2022] Open
Abstract
Vascular dementia (VaD) is a neurodegenerative disease, with cognitive dysfunction attributable to cerebrovascular factors. At present, it is the second most frequently occurring type of dementia in older adults (after Alzheimer's disease). The underlying etiology of VaD has not been completely elucidated, which limits its management. Currently, there are no approved standard treatments for VaD. The drugs used in VaD are only suitable for symptomatic treatment and cannot prevent or reduce the occurrence and progression of VaD. This review summarizes the current status of pharmacological treatment for VaD, from the perspective of the molecular mechanisms specified in various pathogenic hypotheses, including oxidative stress, the central cholinergic system, neuroinflammation, neuronal apoptosis, and synaptic plasticity. As VaD is a chronic cerebrovascular disease with multifactorial etiology, combined therapy, targeting multiple pathophysiological factors, may be the future trend in VaD.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Zhi-Feng Zhou
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Yu-Ge Zhu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Zhi-Kai Wan
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi, China.
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang, China.
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.
- Department of Experimental Teaching Center, Nanchang University, Nanchang, China.
| |
Collapse
|
19
|
He X, Fan X, Bai B, Lu N, Zhang S, Zhang L. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res 2021; 165:105447. [PMID: 33516832 DOI: 10.1016/j.phrs.2021.105447] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is a form of programmed cell death activated by various stimuli and is characterized by inflammasome assembly, membrane pore formation, and the secretion of inflammatory cytokines (IL-1β and IL-18). Atherosclerosis-related risk factors, including oxidized low-density lipoprotein (ox-LDL) and cholesterol crystals, have been shown to promote pyroptosis through several mechanisms that involve ion flux, ROS, endoplasmic reticulum stress, mitochondrial dysfunction, lysosomal rupture, Golgi function, autophagy, noncoding RNAs, post-translational modifications, and the expression of related molecules. Pyroptosis of endothelial cells, macrophages, and smooth muscle cells in the vascular wall can induce plaque instability and accelerate atherosclerosis progression. In this review, we focus on the pathogenesis, influence, and therapy of pyroptosis in atherosclerosis and provide novel ideas for suppressing pyroptosis and the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiao He
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Xuehui Fan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Bing Bai
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Nanjuan Lu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Shuang Zhang
- General Surgery, Harbin Changzheng Hospital, 363 Xuan Hua Street, Harbin 150001, Heilongjiang Province, China.
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
20
|
Sarkar A, Sarmah D, Datta A, Kaur H, Jagtap P, Raut S, Shah B, Singh U, Baidya F, Bohra M, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Post-stroke depression: Chaos to exposition. Brain Res Bull 2020; 168:74-88. [PMID: 33359639 DOI: 10.1016/j.brainresbull.2020.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Cerebral ischemia contributes to significant disabilities worldwide, impairing cognitive function and motor coordination in affected individuals. Stroke has severe neuropsychological outcomes, the major one being a stroke. Stroke survivors begin to show symptoms of depression within a few months of the incidence that overtime progresses to become a long-term ailment. As the pathophysiology for the progression of the disease is multifactorial and complex, it limits the understanding of the disease mechanism completely. Meta-analyses and randomized clinical trials have shown that intervening early with tricyclic antidepressants and selective serotonin receptor inhibitors can be effective. However, these pharmacotherapies possess several limitations that have given rise to newer approaches such as brain stimulation, psychotherapy and rehabilitation therapy, which in today's time are gaining attention for their beneficial results in post-stroke depression (PSD). The present review highlights numerous factors like lesion location, inflammatory mediators and genetic abnormalities that play a crucial role in the development of depression in stroke patients. Further, we have also discussed various mechanisms involved in post-stroke depression (PSD) and strategies for early detection and diagnosis using biomarkers that may revolutionize treatment for the affected population. Towards the end, along with the preclinical scenario, we have also discussed the various treatment approaches like pharmacotherapy, traditional medicines, psychotherapy, electrical stimulation and microRNAs being utilized for effectively managing PSD.
Collapse
Affiliation(s)
- Ankan Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Priya Jagtap
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Swapnil Raut
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Birva Shah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Upasna Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Falguni Baidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Mariya Bohra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
21
|
O’Day DH. Calmodulin Binding Proteins and Alzheimer's Disease: Biomarkers, Regulatory Enzymes and Receptors That Are Regulated by Calmodulin. Int J Mol Sci 2020; 21:ijms21197344. [PMID: 33027906 PMCID: PMC7582761 DOI: 10.3390/ijms21197344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
The integral role of calmodulin in the amyloid pathway and neurofibrillary tangle formation in Alzheimer’s disease was first established leading to the “Calmodulin Hypothesis”. Continued research has extended our insight into the central function of the small calcium sensor and effector calmodulin and its target proteins in a multitude of other events associated with the onset and progression of this devastating neurodegenerative disease. Calmodulin’s involvement in the contrasting roles of calcium/CaM-dependent kinase II (CaMKII) and calcineurin (CaN) in long term potentiation and depression, respectively, and memory impairment and neurodegeneration are updated. The functions of the proposed neuronal biomarker neurogranin, a calmodulin binding protein also involved in long term potentiation and depression, is detailed. In addition, new discoveries into calmodulin’s role in regulating glutamate receptors (mGluR, NMDAR) are overviewed. The interplay between calmodulin and amyloid beta in the regulation of PMCA and ryanodine receptors are prime examples of how the buildup of classic biomarkers can underly the signs and symptoms of Alzheimer’s. The role of calmodulin in the function of stromal interaction molecule 2 (STIM2) and adenosine A2A receptor, two other proteins linked to neurodegenerative events, is discussed. Prior to concluding, an analysis of how targeting calmodulin and its binding proteins are viable routes for Alzheimer’s therapy is presented. In total, calmodulin and its binding proteins are further revealed to be central to the onset and progression of Alzheimer’s disease.
Collapse
Affiliation(s)
- Danton H. O’Day
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
22
|
Discussion of the promising effect of electroacupuncture on cognitive improvement in D-galactose-induced aging rats based on NLRP3-ASC-Caspase-1 signaling pathway. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2020. [DOI: 10.1007/s11726-020-1195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Wan Omar WFN, Giribabu N, Karim K, Salleh N. Marantodes pumilum (Blume) Kuntze (Kacip Fatimah) stimulates uterine contraction in rats in post-partum period. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112175. [PMID: 31442621 DOI: 10.1016/j.jep.2019.112175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marantodes pumilum (Blume) Kuntze has traditionally been used to firm the uterus after delivery, however scientific evidences behind this claim is still lacking. AIMS OF STUDY To demonstrate Marantodes pumilum leaves aqueous extract (MPE) has an effect on uterine contraction after delivery and to elucidate the molecular mechanisms involved. METHODS Day-1 post-delivery female rats were given MPE (100, 250 and 500 mg/kg/day) orally for seven consecutive days. A day after the last treatment (day-8), rats were sacrificed and uteri were harvested and subjected for ex-vivo contraction study using organ bath followed by protein expression and distribution study by Western blotting and immunohistochemistry techniques, respectively. The proteins of interest include calmodulin-CaM, myosin light chain kinase-MLCK, sarcoplasmic reticulum Ca2+-ATPase (SERCA), G-protein α and β (Gα and Gβ), inositol-triphosphate 3-kinase (IP3K), oxytocin receptor-OTR, prostaglandin (PGF)2α receptor-PGFR, muscarinic receptor-MAChR and estrogen receptor (ER) isoforms α and β. Levels of estradiol and progesterone in serum were determined by enzyme-linked immunoassay (ELISA). RESULTS Ex-vivo contraction study revealed the force of uterine contraction increased with increasing doses of MPE. In addition, expression of CaM, MLCK, SERCA, Gα, Gβ, IP3K, OTR, PGF2α, MAChR, Erα and ERβ in the uterus increased with increasing doses of MPE. Serum analysis indicate that estradiol levels decreased while progesterone levels remained low at day-8 post-partum in rats receiving 250 and 500 mg/kg/day MPE. CONCLUSIONS These findings support the claims that MPE help to firm the uterus and pave the way for its use as a uterotonic agent after delivery.
Collapse
Affiliation(s)
- Wan Fatein Nabeila Wan Omar
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Kamarulzaman Karim
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Lembah Pantai, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Yao KX, Lyu H, Liao MH, Yang L, Gao YP, Liu QB, Wang CK, Lu YM, Jiang GJ, Han F, Wang P. Effect of low-dose Levamlodipine Besylate in the treatment of vascular dementia. Sci Rep 2019; 9:18248. [PMID: 31796756 PMCID: PMC6890753 DOI: 10.1038/s41598-019-47868-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
Vascular dementia (VaD) is a complex disorder caused by reduced blood flow in the brain. However, there is no effective pharmacological treatment option available until now. Here, we reported that low-dose levamlodipine besylate could reverse the cognitive impairment in VaD mice model of right unilateral common carotid arteries occlusion (rUCCAO). Oral administration of levamlodipine besylate (0.1 mg/kg) could reduce the latency to find the hidden platform in the MWM test as compared to the vehicle group. Furthermore, vehicle-treated mice revealed reduced phospho-CaMKII (Thr286) levels in the hippocampus, which can be partially restored by levamlodipine besylate (0.1 mg/kg and 0.5 mg/kg) treatment. No significant outcome on microglia and astrocytes were observed following levamlodipine besylate treatment. This data reveal novel findings of the therapeutic potential of low-dose levamlodipine besylate that could considerably enhance the cognitive function in VaD mice.
Collapse
Affiliation(s)
- Kai-Xin Yao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hang Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mei-Hua Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Yang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yin-Ping Gao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Qi-Bing Liu
- School of Pharmacy, Hainan Medical College, Haikou, China
| | - Cheng-Kun Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Guo-Jun Jiang
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang, China.
| | - Feng Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
25
|
Han QY, Zhang H, Zhang X, He DS, Wang SW, Cao X, Dai YT, Xu Y, Han LJ. dl-3-n-butylphthalide preserves white matter integrity and alleviates cognitive impairment in mice with chronic cerebral hypoperfusion. CNS Neurosci Ther 2019; 25:1042-1053. [PMID: 31334611 PMCID: PMC6698981 DOI: 10.1111/cns.13189] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/01/2023] Open
Abstract
Aims Effects of dl‐3‐n‐butylphthalide (NBP) on white matter damage and cognitive impairment in vascular cognitive impairment (VCI) have not been well studied. This study aimed to investigate the effects of NBP treatment on chronic cerebral hypoperfusion‐induced white matter lesions and cognitive dysfunction in mice. Methods Mice were subjected to bilateral common carotid artery stenosis (BCAS) for over 30 days. The cerebral blood flow was detected using a laser Doppler flowmetry. Cognitive functions were assessed by several behavioral tests. We also evaluated the effects of NBP on the blood‐brain barrier (BBB) disruption and reactive astrogliosis, using Evans Blue extravasation, Western blot, CBA, and immunofluorescence in BCAS mice and cultured astrocytes. Results The results indicated that NBP treatment attenuated spatial memory dysfunction while promoted cerebral perfusion and white matter integrity in BCAS mice. Moreover, NBP treatment prevented BBB leakage and damage of endothelial cells, as well as disruption of endothelial tight junctions. Furthermore, NBP administration effectively decreased the number of activated astrocytes and pro‐inflammatory cytokines, as well as the production of MMPs, in BCAS‐induced mice and LPS‐stimulated astrocytes. Conclusion Our results indicated that NBP represents a promising therapy for chronic cerebral hypoperfusion‐induced white matter damage and cognitive impairment.
Collapse
Affiliation(s)
- Qin-Yu Han
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - He Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xi Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Dong-Sheng He
- Department of Neurology, The Northern Area of Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Sun-Wei Wang
- Department of Neurology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yu-Tian Dai
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Li-Juan Han
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Han F. Cerebral microvascular dysfunction and neurodegeneration in dementia. Stroke Vasc Neurol 2019; 4:105-107. [PMID: 31338222 PMCID: PMC6613876 DOI: 10.1136/svn-2018-000213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Maintaining normal learning and memory functions requires a high degree of coordination between neural and vascular cells. Basic and clinical studies have shown that brain microvasculature dysfunction activates inflammatory cells in the brain, leading to progressive neuronal loss and eventually dementia. This review focuses on recent studies aimed at identifying the molecular events that link cerebral microvascular dysfunction to neurodegeneration, including oxidative/nitrosative stress, cellular metabolic dysfunction, inflammatory signalling and abnormal synaptic plasticity. A better understanding of the coupling between vasculature and brain neurons and how this coupling is disrupted under pathological conditions is of great significance in identifying new diagnostic and treatment targets for dementia for which no new drugs have been approved since 2003.
Collapse
Affiliation(s)
- Feng Han
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
State-of-the-art: functional fluorescent probes for bioimaging and pharmacological research. Acta Pharmacol Sin 2019; 40:717-723. [PMID: 30487651 DOI: 10.1038/s41401-018-0190-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases, neuropsychiatric disorders, and cancers seriously endanger human health. Mechanistic and pharmacological mechanisms of candidate drugs are central to the translational paradigm. Since many signal transduction and molecular events are implicated in these diseases, a novel method to interrogate the key pharmacological mechanisms is required to accelerate innovative drug discovery. Much attention now focuses on the real-time visualization of molecular disease events to yield new insights to the pathogenesis of the diseases. This review focuses on recent advances in the development of chemical probes for imaging pathological events to facilitate the study of the underlying pharmacodynamics and toxicity involved. As reviewed here, optical imaging is now frequently viewed as an indispensable technique in the field of biological research. Promoting interdisciplinary collaboration among chemistry, biology and medicine, is necessary to further refine functional fluorescent probes for diagnostic and therapeutic applications.
Collapse
|
28
|
Naveed M, Zhou QG, Han F. Cerebrovascular inflammation: A critical trigger for neurovascular injury? Neurochem Int 2019; 126:165-177. [PMID: 30890409 DOI: 10.1016/j.neuint.2019.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
The cerebrovascular system is not only inert bystandard that support the metabolic demands of the brain but also elicit the barrier functions against risk factors mediated neurovascular injury. The onsets of cerebrovascular inflammation are considered as stimuli that can provoke the host defense system and trigger the development of neurological disorders. Homeostasis of the brain function is regulated by the movement of endothelial, glial, and neuronal cells within the neurovascular unit (NVU), which acts as a "platform" for the coordinated action of anti- and pro-inflammatory mechanisms. The cerebrovascular system plays an integral role in the inflammatory response by either producing or expressing a variety of cytokines, adhesion molecules, metalloproteinases, and serine proteases. Excessive inflammatory cytokine production can further be affecting the blood-brain barrier (BBB) integrity and lead to brain tissue damage. In this review, we summarize the more recent evidence highlighting the importance of cerebrovascular injury in terms of risk prediction, and the mechanisms mediating the upregulation of inflammatory mediators in cerebrovascular dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Muhammad Naveed
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China; Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China
| | - Feng Han
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China.
| |
Collapse
|
29
|
Sapoń K, Janas T, Janas T. Biophysical Characterization of Polysialic Acid—Membrane Nanosystems. SERIES IN BIOENGINEERING 2019. [DOI: 10.1007/978-981-13-0989-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|