1
|
Chen C, Li C, Lan X, Ren Z, Zheng Y, Chen D, Xu W, Cui Y, Wang X, Cheng F, Wang Q. Huang-Lian-Jie-Du decoction inhibits CD4+ T cell infiltration into CNS in MCAO rats by regulating BBB. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156607. [PMID: 40117945 DOI: 10.1016/j.phymed.2025.156607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Stroke, especially ischemic stroke (IS), represents a major global health challenge due to its high incidence, disability, mortality, recurrence, and economic impact. The limited therapeutic window for thrombolysis underscores the need for new treatments. The blood-brain barrier (BBB), which protects the brain, becomes compromised following ischemia-reperfusion injury, allowing peripheral immune cell infiltration and subsequent neuroinflammation. Huang-Lian-Jie-Du Decoction (HLJDT), a traditional formula with significant neuroprotective effects demonstrated in preliminary studies and literature reviews, has not yet been fully explored for its potential to inhibit peripheral immune cell infiltration through BBB protection. PURPOSE This study aims to: (1) Evaluate the efficacy of HLJDT in treating MCAO. (2) Observe the regulatory effect of HLJDT on the infiltration of CD4+ T cells into the central nervous system. (3) Investigate the effect of HLJDT on the Wnt/β-Catenin Signaling Pathway. METHODS A focal MCAO reperfusion model will be used to evaluate HLJDT's effects on neurological function (Zea Longa and Garcia scores), infarction volume (TTC staining), and pathological changes (HE and NISSL staining). Immune-inflammatory responses will be assessed using ELISA for cytokines, flow cytometry for T lymphocyte distribution, and immunofluorescence staining for CD4+ T cell infiltration. The interaction of T cell antigens (LFA-1) and endothelial adhesion molecules (ICAM-1) will be studied with ELISA and immunofluorescence. BBB protection will be evaluated with Evans blue staining and transmission electron microscopy. Mechanisms of T cell infiltration will be examined using transmission electron microscopy and Western blotting (WB) for key proteins. Additionally, the impact of HLJDT on the Wnt/β-catenin pathway will be assessed with WB. RESULTS HLJDT significantly improves neurological scores, reduces infarction volume, and mitigates pathological damage. It balances CD4+ T cell responses by inhibiting pro-inflammatory cytokines and enhancing anti-inflammatory ones, reducing CD4+ T cell CNS infiltration. HLJDT inhibits LFA-1/ICAM-1 interactions. It can also inhibit CD4+ T cell infiltration by repairing paracellular and transcellular structures of the BBB, with the Wnt/β-catenin signaling pathway playing a key role in this process. CONCLUSION We have innovatively demonstrated for the first time that HLJDT can regulate the balance between peripheral and central immune inflammation. It inhibits LFA-1/ICAM-1-mediated cell adhesion and, by modulating the Wnt/β-catenin pathway, improves the paracellular and transcellular structures of the blood-brain barrier, thereby suppressing CD4+ T cell infiltration and providing multifaceted protective effects for MCAO rats.
Collapse
Affiliation(s)
- Congai Chen
- Beijing Hospital of Traditional Chinese Medicine, Beijing, 100010, PR China
| | - Changxiang Li
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xin Lan
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zilin Ren
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yuxiao Zheng
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Dan Chen
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wenxiu Xu
- Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Youxiang Cui
- Key Laboratory of Neurological Rehabilitation, Cangzhou Hospital of Integrated Traditional Chinese Medicineand Western Medicine, Cangzhou 061000, PR China
| | - Xueqian Wang
- Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Fafeng Cheng
- Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Qingguo Wang
- Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
2
|
Jing XJ, Zhou X, Zan ZY, Luo J, Li F, Zhang H. The value of electroencephalography features in the prognostic evaluation of large hemispheric infarction patients at different time intervals. Neurol Sci 2025; 46:791-800. [PMID: 39382625 DOI: 10.1007/s10072-024-07785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Large Hemispheric Infarction (LHI) is a devastating disease with high mortality. This study aimed to use electroencephalography (EEG) to evaluate the death risk of LHI patients and identify suitable evaluation time. METHODS This study retrospectively collected clinical and EEG data from 73 LHI patients, dividing them into death and survival group at discharge. EEG data was classified as 1-5 days and 6-14 days after onset according to the time intervals of cerebral edema. Regression and receiver operator characteristic curve (ROC) analysis were applied to explore the impact of temporal changes in various EEG and clinical features on death. RESULTS The areas under ROC curve (AUC) of death prediction for non-α frequency on non-infarct side at 6-14 days after onset was significantly higher than that at 1-5 days (p = 0.004). And there was no significant difference between the AUC of seizure activity for death prediction at 1-5 days and 6-14 days (p = 0.418). Multivariate regression analysis revealed that non-α frequency on non-infarct side and seizure activity at 6-14 days after onset were the independent risk factors for the death of LHI patients. Additionally, above two EEG features significantly improved the death predictive efficacy of clinical features in LHI patients with the integrated discrimination improvement index (IDI) of 0.174 (p = 0.015) and the net reclassification improvement (NRI) of 1.314 (p<0.001). CONCLUSIONS Non-α frequency on non-infarct side and seizure activity were reliable indicators for death prediction. 6-14 days after onset was the better time window for death evaluation of LHI patients through EEG.
Collapse
Affiliation(s)
- Xiao-Jun Jing
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China
| | - Xin Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China
| | - Zhi-Yuan Zan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China
| | - Jing Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China.
| | - Feng Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China.
| | - Hua Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
3
|
Ding J, Ma X, Huang W, Yue C, Xu G, Wang Y, Sheng S, Liu M, Ren Y. Validation and refinement of a predictive nomogram using artificial intelligence: assessing in-hospital mortality in patients with large hemispheric cerebral infarction. Front Neurol 2024; 15:1398142. [PMID: 38984035 PMCID: PMC11231922 DOI: 10.3389/fneur.2024.1398142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Background Large Hemispheric Infarction (LHI) poses significant mortality and morbidity risks, necessitating predictive models for in-hospital mortality. Previous studies have explored LHI progression to malignant cerebral edema (MCE) but have not comprehensively addressed in-hospital mortality risk, especially in non-decompressive hemicraniectomy (DHC) patients. Methods Demographic, clinical, risk factor, and laboratory data were gathered. The population was randomly divided into Development and Validation Groups at a 3:1 ratio, with no statistically significant differences observed. Variable selection utilized the Bonferroni-corrected Boruta technique (p < 0.01). Logistic Regression retained essential variables, leading to the development of a nomogram. ROC and DCA curves were generated, and calibration was conducted based on the Validation Group. Results This study included 314 patients with acute anterior-circulating LHI, with 29.6% in the Death group (n = 93). Significant variables, including Glasgow Coma Score, Collateral Score, NLR, Ventilation, Non-MCA territorial involvement, and Midline Shift, were identified through the Boruta algorithm. The final Logistic Regression model led to a nomogram creation, exhibiting excellent discriminative capacity. Calibration curves in the Validation Group showed a high degree of conformity with actual observations. DCA curve analysis indicated substantial clinical net benefit within the 5 to 85% threshold range. Conclusion We have utilized NIHSS score, Collateral Score, NLR, mechanical ventilation, non-MCA territorial involvement, and midline shift to develop a highly accurate, user-friendly nomogram for predicting in-hospital mortality in LHI patients. This nomogram serves as valuable reference material for future studies on LHI patient prognosis and mortality prevention, while addressing previous research limitations.
Collapse
Affiliation(s)
- Jian Ding
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoming Ma
- Department of Neurology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Wendie Huang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chunxian Yue
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Geman Xu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, China
| | - Yumei Wang
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shiying Sheng
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Meng Liu
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yi Ren
- Department of Neurology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
4
|
Gong H, Li Z, Huang G, Mo X. Effects of peripheral blood cells on ischemic stroke: Greater immune response or systemic inflammation? Heliyon 2024; 10:e32171. [PMID: 38868036 PMCID: PMC11168442 DOI: 10.1016/j.heliyon.2024.e32171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Ischemic stroke is still one of the most serious medical conditions endangering human health worldwide. Current research on the mechanism of ischemic stroke focuses on the primary etiology as well as the subsequent inflammatory response and immune modulation. Recent research has revealed that peripheral blood cells and their components are crucial to the ensuing progression of ischemic stroke. However, it remains unclear whether blood cell elements are principally in charge of systemic inflammation or immunological regulation, or if their participation is beneficial or harmful to the development of ischemic stroke. In this review, we aim to describe the changes in peripheral blood cells and their corresponding parameters in ischemic stroke. Specifically, we elaborate on the role of each peripheral component in the inflammatory response or immunological modulation as well as their interactions. It has been suggested that more specific therapies aimed at targeting peripheral blood cell components and their role in inflammation or immunity are more favorable to the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Huanhuan Gong
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Li
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guoqing Huang
- Department of Emergency, Xiangya Hospital, Central South University, PR China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, PR China
| |
Collapse
|
5
|
Yu W, Jia M, Guo W, Xu J, Ren C, Li S, Zhao W, Chen J, Duan J, Ma Q, Song H, Ji X. Predicting Futile Recanalization in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy: The Role of White Blood Cell Count to Mean Platelet Volume Ratio. Curr Neurovasc Res 2024; 21:6-14. [PMID: 38141190 DOI: 10.2174/0115672026288143231212051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Approximately half of AIS patients have an unfavorable outcome even after complete reperfusion. White blood cell (WBC) count to mean platelet volume (MPV) ratio (WMR) may be a promising predictive factor for futile recanalization. This study aimed to determine the predictive value of WMR in identifying individuals at higher risk of futile recanalization. METHODS In this retrospective cohort study, 296 patients who achieved complete reperfusion after endovascular treatment (EVT) were included in the analysis. WBC count and MPV were collected at admission. Multivariable logistic regression was used to examine the independent association of the WMR with functional outcomes at three months. Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) analyses were used to compare the accuracy of WMR for predicting futile recanalization. RESULTS The adjusted odds ratios for the fourth quartile of WMR were 3.142 (95% CI 1.405- 7.027, P = 0.005) for unfavorable outcomes at 3 months in comparison with the first quartile. The inclusion of WMR in the traditional model enabled a more accurate prediction of unfavorable outcomes (NRI 0.250, P = 0.031; IDI 0.022, P = 0.017). CONCLUSION Elevated WMR at admission was independently associated with futile recanalization among AIS patients who received EVT and might be useful in identifying futile recanalization.
Collapse
Affiliation(s)
- Wantong Yu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Milan Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Wenting Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jiali Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiangang Duan
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University Beijing, China
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Deng X, Hu Z, Zhou S, Wu Y, Fu M, Zhou C, Sun J, Gao X, Huang Y. Perspective from single-cell sequencing: Is inflammation in acute ischemic stroke beneficial or detrimental? CNS Neurosci Ther 2024; 30:e14510. [PMID: 37905592 PMCID: PMC10805403 DOI: 10.1111/cns.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) is a common cerebrovascular event associated with high incidence, disability, and poor prognosis. Studies have shown that various cell types, including microglia, astrocytes, oligodendrocytes, neurons, and neutrophils, play complex roles in the early stages of AIS and significantly affect its prognosis. Thus, a comprehensive understanding of the mechanisms of action of these cells will be beneficial for improving stroke prognosis. With the rapid development of single-cell sequencing technology, researchers have explored the pathophysiological mechanisms underlying AIS at the single-cell level. METHOD We systematically summarize the latest research on single-cell sequencing in AIS. RESULT In this review, we summarize the phenotypes and functions of microglia, astrocytes, oligodendrocytes, neurons, neutrophils, monocytes, and lymphocytes, as well as their respective subtypes, at different time points following AIS. In particular, we focused on the crosstalk between microglia and astrocytes, oligodendrocytes, and neurons. Our findings reveal diverse and sometimes opposing roles within the same cell type, with the possibility of interconversion between different subclusters. CONCLUSION This review offers a pioneering exploration of the functions of various glial cells and cell subclusters after AIS, shedding light on their regulatory mechanisms that facilitate the transformation of detrimental cell subclusters towards those that are beneficial for improving the prognosis of AIS. This approach has the potential to advance the discovery of new specific targets and the development of drugs, thus representing a significant breakthrough in addressing the challenges in AIS treatment.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Ziliang Hu
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Shengjun Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Yiwen Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Menglin Fu
- School of Economics and ManagementChina University of GeosciencesWuhanChina
| | - Chenhui Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Jie Sun
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Xiang Gao
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Yi Huang
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| |
Collapse
|
7
|
Grabherr S, Waltenspühl A, Büchler L, Lütge M, Cheng HW, Caviezel-Firner S, Ludewig B, Krebs P, Pikor NB. An Innate Checkpoint Determines Immune Dysregulation and Immunopathology during Pulmonary Murine Coronavirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:774-785. [PMID: 36715496 PMCID: PMC9986052 DOI: 10.4049/jimmunol.2200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023]
Abstract
Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1β and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.
Collapse
Affiliation(s)
- Sarah Grabherr
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alexandra Waltenspühl
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lorina Büchler
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Sonja Caviezel-Firner
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Natalia B. Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
8
|
Xie M, Hao Y, Feng L, Wang T, Yao M, Li H, Ma D, Feng J. Neutrophil Heterogeneity and its Roles in the Inflammatory Network after Ischemic Stroke. Curr Neuropharmacol 2023; 21:621-650. [PMID: 35794770 PMCID: PMC10207908 DOI: 10.2174/1570159x20666220706115957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
As the first peripheral immune cells to enter the brain after ischemic stroke, neutrophils are important participants in stroke-related neuroinflammation. Neutrophils are quickly mobilized from the periphery in response to a stroke episode and cross the blood-brain barrier to reach the ischemic brain parenchyma. This process involves the mobilization and activation of neutrophils from peripheral immune organs (including the bone marrow and spleen), their chemotaxis in the peripheral blood, and their infiltration into the brain parenchyma (including disruption of the blood-brain barrier, inflammatory effects on brain tissue, and interactions with other immune cell types). In the past, it was believed that neutrophils aggravated brain injuries through the massive release of proteases, reactive oxygen species, pro-inflammatory factors, and extracellular structures known as neutrophil extracellular traps (NETs). With the failure of early clinical trials targeting neutrophils and uncovering their underlying heterogeneity, our view of their role in ischemic stroke has become more complex and multifaceted. As neutrophils can be divided into N1 and N2 phenotypes in tumors, neutrophils have also been found to have similar phenotypes after ischemic stroke, and play different roles in the development and prognosis of ischemic stroke. N1 neutrophils are dominant during the acute phase of stroke (within three days) and are responsible for the damage to neural structures via the aforementioned mechanisms. However, the proportion of N2 neutrophils gradually increases in later phases, and this has a beneficial effect through the release of anti-inflammatory factors and other neuroprotective mediators. Moreover, the N1 and N2 phenotypes are highly plastic and can be transformed into each other under certain conditions. The pronounced differences in their function and their high degree of plasticity make these neutrophil subpopulations promising targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Meizhen Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Tian Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Mengyue Yao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin, Changchun, Jilin Province 130021, China
| |
Collapse
|
9
|
Zhai M, Cao S, Wang X, Liu Y, Tu F, Xia M, Li Z. Increased neutrophil-to-lymphocyte ratio is associated with unfavorable functional outcomes in acute pontine infarction. BMC Neurol 2022; 22:445. [PMID: 36447170 PMCID: PMC9707260 DOI: 10.1186/s12883-022-02969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The neutrophil-to-lymphocyte ratio (NLR) is positively associated with unfavorable outcomes in patients with cerebral infarction. This study aimed to investigate the relationship between the NLR and the short-term clinical outcome of acute pontine infarction. METHODS Patients with acute pontine infarction were consecutively included. Clinical and laboratory data were collected. All patients were followed up at 3 months using modified Rankin Scale (mRS) scores. An unfavorable outcome was defined as an mRS score ≥ 3. Receiver operating characteristic (ROC) curve analysis was used to calculate the optimal cutoff values for patients with acute pontine infarction. risk factors can be predictive factors for an unfavorable outcome after acute pontine infarction. RESULTS Two hundred fifty-six patients with acute pontine infarction were included in this study. The NLR was significantly higher in the unfavorable outcome group than in the favorable outcome group (P < 0.05). Additionally, the infarct size was significantly higher in the high NLR tertile group than in the low NLR tertile group (P < 0.05). Multivariate logistic regression analysis revealed that the baseline National Institutes of Health Stroke Scale (NIHSS) score, NLR, platelet count, and fasting blood glucose (FBG) level were significantly associated with unfavorable outcomes 3 months after acute pontine infarction. The optimal cutoff value of the NLR for predicting the 3-month outcome of acute pontine infarction was 3.055. The negative and positive predictive values of NLR were 85.7% and 61.3%, respectively, and the sensitivity and specificity of NLR were 69.2% and 80.9%. CONCLUSIONS We found that the NLR may be an independent predictive factor for the outcome of acute pontine infarction.
Collapse
Affiliation(s)
- Mingfeng Zhai
- grid.186775.a0000 0000 9490 772XDepartment of Neurology, The Affiliated Fuyang People’s Hospital of Anhui Medical University, The People’s Hospital of Fuyang, Fuyang, 236300 China
| | - Shugang Cao
- grid.186775.a0000 0000 9490 772XDepartment of Neurology, The Affiliated Hefei Hospital of Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, China
| | - Xinlin Wang
- grid.16821.3c0000 0004 0368 8293Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingli Liu
- grid.252957.e0000 0001 1484 5512Department of Neurology, The Affiliated Fuyang Hospital of Bengbu Medical College, Fuyang, China
| | - Feng Tu
- grid.186775.a0000 0000 9490 772XDepartment of Neurology, The Affiliated Fuyang People’s Hospital of Anhui Medical University, The People’s Hospital of Fuyang, Fuyang, 236300 China
| | - Mingwu Xia
- grid.186775.a0000 0000 9490 772XDepartment of Neurology, The Affiliated Hefei Hospital of Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, China
| | - Zongyou Li
- grid.186775.a0000 0000 9490 772XDepartment of Neurology, The Affiliated Fuyang People’s Hospital of Anhui Medical University, The People’s Hospital of Fuyang, Fuyang, 236300 China ,grid.252957.e0000 0001 1484 5512Department of Neurology, The Affiliated Fuyang Hospital of Bengbu Medical College, Fuyang, China
| |
Collapse
|
10
|
Xiufu Z, Ruipeng L, Jun Z, Yonglong L, Yulin W, Jian Z, Xianglin C, Lan S, Zuowen Z. Analysis of influencing factors of early neurological improvement after intravenous rt-PA thrombolysis in acute anterior circulation ischemic stroke. Front Neurol 2022; 13:1037663. [PMID: 36324389 PMCID: PMC9619649 DOI: 10.3389/fneur.2022.1037663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Background and objective It has been widely reported that Early neurological improvement (ENI) after rt-PA intravenous thrombolysis contributes to a good long-term prognosis in patients experiencing acute ischemic stroke (AIS). However, which clinical factors influence after intravenous administration of recombinant tissue-type plasminogen activator (IV-rt PA) in AIS patients ENI is still unclear. This study aimed to evaluate the impact of influencing factors on the benefit of ENI after intravenous thrombolysis neurological improvement after IV-rt PA. Methods The data of 73 patients with acute anterior circulation ischemic stroke who received intravenous thrombolysis with rt-PA in Chongqing University Jiangjin Hospital from January 2021 to July 2022 were retrospectively studied. According to the change rate of 24 h NISHH score, the research subjects were divided into the recovery group, the significant curative effect group, the curative effect group and the no curative effect group, the ENI after intravenous thrombolysis with rt-PA was defined as the improvement rate of National Institutes of Health Stroke Scale (NIHSS)score >46% at 24 h after IV-rt PA, and univariate factor analysis was used Clinical factors associated with ENI after intravenous thrombolysis. Results According to the 24-h NIHSS improvement rate of rt-PA intravenous thrombolysis in patients with acute anterior circulation ischemic stroke, 35 cases (47.95%) of the study population had ENI. There was no statistical difference between the improvement and non-improvement group in general demographic data, stroke TOAST classification, stroke risk factors (history of stroke, heart disease, hyperlipidemia, hypertension), and laboratory test data. There was a statistically significant difference in the random blood glucose levels between the two groups (p < 0.001, t = 3.511). Conclusion The effect of rt-PA intravenous thrombolysis within the time window of patients with acute anterior circulation ischemic stroke is significant, but the ENI after thrombolysis is easily affected by the level of blood glucose; diabetes is the most important factor affecting the acute anterior circulation ischemic stroke patients Clinical factors of ENI after intravenous thrombolysis with rt-PA.
Collapse
Affiliation(s)
- Zhang Xiufu
- Department of Radiology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Liang Ruipeng
- Department of Radiology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Zhou Jun
- Department of Radiology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Li Yonglong
- Department of Radiology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Wang Yulin
- Department of Radiology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Zeng Jian
- Department of Radiology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Chen Xianglin
- Department of Neurology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Shen Lan
- Department of Neurology, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Zhang Zuowen
- Department of Neurology, Chongqing University Jiangjin Hospital, Chongqing, China
- *Correspondence: Zhang Zuowen
| |
Collapse
|
11
|
Li G, Ma X, Zhao H, Fan J, Liu T, Luo Y, Guo Y. Long non-coding RNA H19 promotes leukocyte inflammation in ischemic stroke by targeting the miR-29b/C1QTNF6 axis. CNS Neurosci Ther 2022; 28:953-963. [PMID: 35322553 PMCID: PMC9062541 DOI: 10.1111/cns.13829] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022] Open
Abstract
Aims Inflammatory processes induced by leukocytes are crucially involved in the pathophysiology of acute ischemic stroke. This study aimed to elucidate the inflammatory mechanism of long non‐coding RNA (lncRNA) H19‐mediated regulation of C1q and tumor necrosis factor 6 (C1QTNF6) by sponging miR‐29b in leukocytes during ischemic stroke. Methods H19 and miR‐29b expression in leukocytes of patients with ischemic stroke and rats with middle cerebral artery occlusion were measured by real‐time polymerase chain reaction. H19 siRNA and miR‐29b antagomir were used to knock down H19 and miR‐29b, respectively. We performed in vivo and in vitro experiments to determine the impact of H19 and miR‐29b on C1QTNF6 expression in leukocytes after ischemic injury. Results H19 and C1QTNF6 upregulation, as well as miR‐29b downregulation, was detected in leukocytes of patients with stroke. Moreover, miR‐29b could bind C1QTNF6 mRNA and repress its expression, while H19 could sponge miR‐29b to maintain C1QTNF6 expression. C1QTNF6 overexpression promoted the release of IL‐1β and TNF‐α in leukocytes, further exacerbated blood‐brain barrier disruption, and aggravated the cerebral ischemic injury. Conclusions Our findings confirm that H19 promotes leukocyte inflammation by targeting the miR‐29b/C1QTNF6 axis in cerebral ischemic injury.
Collapse
Affiliation(s)
- Guangwen Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoqing Ma
- Institute of Integrative Medicine, Qingdao University, Qingdao, China
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Junfen Fan
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tianwei Liu
- Institute of Cerebrovascular Diseases, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Shan W, Xu L, Xu Y, Qiu Z, Feng J, Zhao J, Wang J. Leukoaraiosis Mediates the Association of Total White Blood Cell Count With Post-Stroke Cognitive Impairment. Front Neurol 2022; 12:793435. [PMID: 35185753 PMCID: PMC8852802 DOI: 10.3389/fneur.2021.793435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 12/02/2022] Open
Abstract
Background and Purpose The inflammatory response could play a key role in cognitive impairment. However, there has been limited research into the association between total white blood cell (WBC) count and post-stroke cognitive impairment (PSCI), and the significance of leukoaraiosis (LA) in this relationship is unknown. We aimed to examine the total WBC count in relation to PSCI and whether this association was mediated by LA. Methods Consecutive patients with first-ever ischemic stroke were prospectively enrolled from October 2020 to June 2021. The total WBC count was measured after admission. Cognitive function evaluations were performed at the 3-month follow-up using Mini-mental State Examination (MMSE). We defined the PSCI as an MMSE score <27. Results A total of 276 patients (mean age, 66.5 years; 54.7% male) were included in this analysis. Among them, 137 (49.6%) patients experienced PSCI. After adjustment for potential confounders, higher total WBC count was significantly correlated with an increased risk of LA [per 1-SD increase, odds ratio (OR), 1.39; 95% CI 1.06–1.82; p = 0.017] and PSCI (per 1-SD increase, OR, 1.51; 95% CI 1.12–2.04; p = 0.006). Furthermore, mediation analysis demonstrated that the association between total WBC count and PSCI was partly mediated by LA (the regression coefficient was changed by 9.7% for PSCI, and 12.4% for PSCI severity, respectively). Conclusion Increased total WBC count is a risk factor for PSCI. The presence of LA was partially responsible for the PSCI in patients who had a higher total WBC count.
Collapse
Affiliation(s)
- Wanying Shan
- Department of Neurology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, China
| | - Liang Xu
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, China
| | - Zhuoyin Qiu
- Department of Neurology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, China
| | - Jie Feng
- Department of Neurology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, China
| | - Jie Zhao
- Department of Gerontology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, China
- Jie Zhao
| | - Jingwen Wang
- Department of Neurology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, China
- *Correspondence: Jingwen Wang
| |
Collapse
|
13
|
Liu F, Chen C, Hong W, Bai Z, Wang S, Lu H, Lin Q, Zhao Z, Tang C. Selectively disrupted sensorimotor circuits in chronic stroke with hand dysfunction. CNS Neurosci Ther 2022; 28:677-689. [PMID: 35005843 PMCID: PMC8981435 DOI: 10.1111/cns.13799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Aim To investigate the directional and selective disconnection of the sensorimotor cortex (SMC) subregions in chronic stroke patients with hand dysfunction. Methods We mapped the resting‐state fMRI effective connectivity (EC) patterns for seven SMC subregions in each hemisphere of 65 chronic stroke patients and 40 healthy participants and correlated these patterns with paretic hand performance. Results Compared with controls, patients demonstrated disrupted EC in the ipsilesional primary motor cortex_4p, ipsilesional primary somatosensory cortex_2 (PSC_2), and contralesional PSC_3a. Moreover, we found that EC values of the contralesional PSC_1 to contralesional precuneus, the ipsilesional inferior temporal gyrus to ipsilesional PSC_1, and the ipsilesional PSC_1 to contralesional postcentral gyrus were correlated with paretic hand performance across all patients. We further divided patients into partially (PPH) and completely (CPH) paretic hand subgroups. Compared with CPH patients, PPH patients demonstrated decreased EC in the ipsilesional premotor_6 and ipsilesional PSC_1. Interestingly, we found that paretic hand performance was positively correlated with seven sensorimotor circuits in PPH patients, while it was negatively correlated with five sensorimotor circuits in CPH patients. Conclusion SMC neurocircuitry was selectively disrupted after chronic stroke and associated with diverse hand outcomes, which deepens the understanding of SMC reorganization.
Collapse
Affiliation(s)
- FeiWen Liu
- Department of Rehabilitation Medicine, Chengdu Second People's Hospital, Chengdu, China
| | - ChangCheng Chen
- Department of Rehabilitation Medicine, Qingtian People's Hospital, Lishui, China
| | - WenJun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - ZhongFei Bai
- Yangzhi Rehabilitation Hospital Affiliated to Tongji University (Shanghai Sunshine Rehabilitation Center), Shanghai, China
| | - SiZhong Wang
- Centre for Health, Activity and Rehabilitation Research (CHARR), School of Physiotherapy, The University of Otago, Dunedin, New Zealand
| | - HanNa Lu
- Neuromodulation Laboratory, Department of Psychiatry, School of Medicine, The Chinese University of Hong Kong, HKSAR, China.,Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - QiXiang Lin
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - ZhiYong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - ChaoZheng Tang
- Capacity Building and Continuing Education Center, National Health Commission of the People's Republic of China, Beijing, China
| |
Collapse
|
14
|
Wang C, Shi Z, Yang M, Huang L, Fang W, Jiang L, Ding J, Wang H. Deep learning-based identification of acute ischemic core and deficit from non-contrast CT and CTA. J Cereb Blood Flow Metab 2021; 41:3028-3038. [PMID: 34102912 PMCID: PMC8756471 DOI: 10.1177/0271678x211023660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The accurate identification of irreversible infarction and salvageable tissue is important in planning the treatments for acute ischemic stroke (AIS) patients. Computed tomographic perfusion (CTP) can be used to evaluate the ischemic core and deficit, covering most of the territories of anterior circulation, but many community hospitals and primary stroke centers do not have the capability to perform CTP scan in emergency situation. This study aimed to identify AIS lesions from widely available non-contrast computed tomography (NCCT) and CT angiography (CTA) using deep learning. A total of 345AIS patients from our emergency department were included. A multi-scale 3D convolutional neural network (CNN) was used as the predictive model with inputs of NCCT, CTA, and CTA+ (8 s delay after CTA) images. An external cohort with 108 patients was included to further validate the generalization performance of the proposed model. Strong correlations with CTP-RAPID segmentations (r = 0.84 for core, r = 0.83 for deficit) were observed when NCCT, CTA, and CTA+ images were all used in the model. The diagnostic decisions according to DEFUSE3 showed high accuracy when using NCCT, CTA, and CTA+ (0.90±0.04), followed by the combination of NCCT and CTA (0.87±0.04), CTA-alone (0.76±0.06), and NCCT-alone (0.53±0.09).
Collapse
Affiliation(s)
- Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Zhang Shi
- Department of Radiology, Changhai Hospital, Shanghai, China
| | - Ming Yang
- NeuroBlem Ltd. Co., Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Lixiang Huang
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | | | - Li Jiang
- NeuroBlem Ltd. Co., Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Wang
- Human Phenome Institute, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| |
Collapse
|
15
|
Li W, Hou M, Ding Z, Liu X, Shao Y, Li X. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Stroke: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:686983. [PMID: 34630275 PMCID: PMC8497704 DOI: 10.3389/fneur.2021.686983] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/23/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Stroke has become a major problem around the world, which is one of the main causes of long-term disability. Therefore, it is important to seek a biomarker to predict the prognosis of patients with stroke. This meta-analysis aims to clarify the relationship between the neutrophil-to-lymphocyte ratio (NLR) and the prognosis of stroke patients. Methods: This study was pre-registered in PROSPERO (CRD42020186544). We performed systematic research in PubMed, Web of Science, and EMBASE databases for studies investigating the prognostic value of NLR. Based on the enrolled studies, patients were divided into the low-NLR cohort and the high-NLR cohort. Odds ratios (ORs) with 95% confidence intervals (CIs) were extracted and analyzed by the Review Manager 5.3 and Stata 12.0 software. Heterogeneity was estimated by using Cochran's Q test and I2 value. Sensitivity analyses and subgroup analyses were also performed to explore the potential sources of heterogeneity. Publication bias was assessed with funnel plots and assessed by Egger's tests. Results: Forty-one studies with 27,124 patients were included. In the overall analysis, elevated NLR was associated with an increased mortality in acute ischemic stroke (AIS) patients (OR = 1.12, 95% CI = 1.07–1.16) and in acute hemorrhagic stroke (AHS) patients (OR = 1.23, 95% CI = 1.09–1.39), poorer outcomes in AIS patients (OR = 1.29, 95% CI = 1.16–1.44), and in AHS patients (OR = 1.11, 95% CI = 1.03–1.20). While in terms of hemorrhagic transformation (HT), elevated NLR was associated with an increased incidence of HT in AIS patients (OR = 1.15, 95% CI = 1.08–1.23). Conclusions: This study demonstrated that elevated NLR was significantly associated with poor prognosis of stroke patients. High NLR is associated with a 1.1- to 1.3-fold increased risk of poor outcomes of AIS/AHS patients. NLR could be helpful as a potential prognostic biomarker to guide clinical decision making. Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020186544.
Collapse
Affiliation(s)
- Wenxia Li
- Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Miaomiao Hou
- Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhibin Ding
- Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaolei Liu
- Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan Shao
- Shanxi Medical University, Taiyuan, China
| | - Xinyi Li
- Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Chen C, Huang T, Zhai X, Ma Y, Xie L, Lu B, Zhang Y, Li Y, Chen Z, Yin J, Li P. Targeting neutrophils as a novel therapeutic strategy after stroke. J Cereb Blood Flow Metab 2021; 41:2150-2161. [PMID: 33691513 PMCID: PMC8393299 DOI: 10.1177/0271678x211000137] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stroke is followed by an intricate immune interaction involving the engagement of multiple immune cells, including neutrophils. As one of the first responders recruited to the brain, the crucial roles of neutrophils in the ischemic brain damage are receiving increasing attention in recent years. Notably, neutrophils are not homogenous, and yet there is still a lack of full knowledge about the extent and impact of neutrophil heterogeneity. The biological understanding of the neutrophil response to both innate and pathological conditions is rapidly evolving as single-cell-RNA sequencing uncovers overall neutrophil profiling across maturation and differentiation contexts. In this review, we scrutinize the latest research that points to the multifaceted role of neutrophils in different conditions and summarize the regulatory signals that may determine neutrophil diversity. In addition, we list several potential targets or therapeutic strategies targeting neutrophils to limit brain damage following ischemic stroke.
Collapse
Affiliation(s)
- Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhu Zhai
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yezhi Ma
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingwei Lu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengai Chen
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiemin Yin
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Li S, Huang Y, Liu Y, Rocha M, Li X, Wei P, Misilimu D, Luo Y, Zhao J, Gao Y. Change and predictive ability of circulating immunoregulatory lymphocytes in long-term outcomes of acute ischemic stroke. J Cereb Blood Flow Metab 2021; 41:2280-2294. [PMID: 33641517 PMCID: PMC8393304 DOI: 10.1177/0271678x21995694] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lymphocytes play an important role in the immune response after stroke. However, our knowledge of the circulating lymphocytes in ischemic stroke is limited. Herein, we collected the blood samples of clinical ischemic stroke patients to detect the change of lymphocytes from admission to 3 months after ischemic stroke by flow cytometry. A total of 87 healthy controls and 210 patients were enrolled, and the percentages of circulating T cells, CD4+ T cells, CD8+ T cells, double negative T cells (DNTs), CD4+ regulatory T cells (Tregs), CD8+ Tregs, B cells and regulatory B cells (Bregs) were measured. Among patients, B cells, Bregs and CD8+ Tregs increased significantly, while CD4+ Tregs dropped and soon reversed after ischemic stroke. CD4+ Tregs, CD8+ Tregs, and DNTs also showed high correlations with the infarct volume and neurological scores of patients. Moreover, these lymphocytes enhanced the predictive ability of long-term prognosis of neurological scores when added to basic clinical information. The percentage of CD4+ Tregs within lymphocytes showed high correlations with both acute and long-term neurological outcomes, which exhibited a great independent predictive ability. These findings suggest that CD4+ Tregs can be a biomarker to predict stroke outcomes and improve existing therapeutic strategies of immunoregulatory lymphocytes.
Collapse
Affiliation(s)
- Sicheng Li
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yang Liu
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Marcelo Rocha
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaofan Li
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Dilidaer Misilimu
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yunhe Luo
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Zhu F, Pan Z, Tang Y, Fu P, Cheng S, Hou W, Zhang Q, Huang H, Sun Y. Machine learning models predict coagulopathy in spontaneous intracerebral hemorrhage patients in ER. CNS Neurosci Ther 2021; 27:92-100. [PMID: 33249760 PMCID: PMC7804781 DOI: 10.1111/cns.13509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/25/2020] [Accepted: 10/25/2020] [Indexed: 01/01/2023] Open
Abstract
AIMS Coagulation abnormality is one of the primary concerns for patients with spontaneous intracerebral hemorrhage admitted to ER. Conventional laboratory indicators require hours for coagulopathy diagnosis, which brings difficulties for appropriate intervention within the optimal window. This study evaluates the possibility of building efficient coagulopathy prediction models using data mining and machine learning algorithms. METHODS A retrospective cohort enrolled 1668 cases with acute spontaneous intracerebral hemorrhage from three medical centers, excluding those under antithrombotic therapies. Coagulopathy-related clinical parameters were initially screened by univariate analysis. Two machine learning algorithms, the random forest and the support vector machine, were deployed via an approach of four-fold cross-validation to screen out the most important parameters contributing to the occurrence of coagulopathy. Model discrimination was assessed using metrics, including accuracy, precision, recall, and F1 score. RESULTS Albumin/globulin ratio, neutrophil count, lymphocyte percentage, aspartate transaminase, alanine transaminase, hemoglobin, platelet count, white blood cell count, neutrophil percentage, systolic and diastolic pressure were identified as major predictors to the occurrence of acute coagulopathy. Compared to support vector machine, the model based on the random forest algorithm showed better accuracy (93.1%, 95% confidence interval [CI]: 0.913-0.950), precision (92.4%, 95% CI: 0.897-0.951), F1 score (91.5%, 95% CI: 0.889-0.964), and recall score (93.6%, 95% CI: 0.909-0.964), and yielded higher area under the receiver operating characteristic curve (AU-ROC) (0.962, 95% CI: 0.942-0.982). CONCLUSION The constructed models exhibit good prediction accuracy and efficiency. It might be used in clinical practice to facilitate target intervention for acute coagulopathy in patients with spontaneous intracerebral hemorrhage.
Collapse
Affiliation(s)
- Fengping Zhu
- Department of NeurosurgeryHuahsan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Zhiguang Pan
- Department of NeurosurgeryHuahsan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Ying Tang
- Department of NursingHuahsan HospitalFudan UniversityShanghaiChina
| | - Pengfei Fu
- Department of NeurosurgeryHuahsan HospitalFudan UniversityShanghaiChina
| | - Sijie Cheng
- Information CenterHuahsan HospitalFudan UniversityShanghaiChina
| | - Wenzhong Hou
- Information CenterHuahsan HospitalFudan UniversityShanghaiChina
| | - Qi Zhang
- Information CenterHuahsan HospitalFudan UniversityShanghaiChina
| | - Hong Huang
- Information CenterHuahsan HospitalFudan UniversityShanghaiChina
| | - Yirui Sun
- Department of NeurosurgeryHuahsan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| |
Collapse
|
19
|
Chang Z, Zou H, Xie Z, Deng B, Que R, Huang Z, Weng G, Wu Z, Pan Y, Wang Y, Li M, Xie H, Zhu S, Xiong L, Ct Mok V, Jin K, Yenari MA, Wei X, Wang Q. Cystatin C is a potential predictor of unfavorable outcomes for cerebral ischemia with intravenous tissue plasminogen activator treatment: A multicenter prospective nested case-control study. Eur J Neurol 2020; 28:1265-1274. [PMID: 33277774 DOI: 10.1111/ene.14663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to explore whether cystatin C (CysC) could be used as a potential predictor of clinical outcomes in acute ischemic stroke (AIS) patients treated with intravenous tissue plasminogen activator (IV-tPA). METHODS We performed an observational study including a retrospective analysis of data from 125 AIS patients with intravenous thrombolysis. General linear models were applied to compare CysC levels between groups with different outcomes; logistic regression analysis and receiver-operating characteristic curves were adopted to identify the association between CysC and the therapeutic effects. RESULTS Compared with the "good and sustained benefit" (GSB) outcome group (defined as ≥4-point reduction in National Institutes of Health Stroke Scale or a score of 0-1 at 24 h and 7 days) and the "good functional outcome" (GFO) group (modified Rankin Scale score 0-2 at 90 days), serum CysC baseline levels were increased in the non-GSB and non-GFO groups. Logistic regression analysis found that CysC was an independent negative prognostic factor for GSB (odds ratio [OR] 0.010; p = 0.005) and GFO (OR 0.011; p = 0.021) after adjustment for potential influencing factors. Receiver-operating characteristic curves showed the CysC-involved combined models provided credible efficacy for predicting post-90-day favorable clinical outcome (area under the curve 0.86; p < 0.001). CONCLUSIONS Elevated serum CysC is independently associated with unfavorable clinical outcomes after IV-tPA therapy in AIS. Our findings provide new insights into discovering potential mediators for neuropathological process or treatment in stroke.
Collapse
Affiliation(s)
- Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Haiqiang Zou
- Department of Neurology, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Guomei Weng
- Department of Neurology, 1st People Hospital of Zhaoqing, Zhaoqing, China
| | - Zhihuan Wu
- Department of Neurology, 1st People Hospital of Zhaoqing, Zhaoqing, China
| | - Ying Pan
- Department of Neurology, the 2nd Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanping Wang
- Department of Neurology, the 2nd Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengyan Li
- Department of Neurology, Guangzhou First People's Hospital, Guangzhou, China
| | - Huifang Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Li Xiong
- Department of Medicine and Therapeutics, Faculty of Medicine, Gerald Choa Neuroscience Centre, Prince of Wales hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, Gerald Choa Neuroscience Centre, Prince of Wales hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kunlin Jin
- Department of Neurology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Midori A Yenari
- Department of Neurology, San Francisco & the San Francisco Veterans Affairs Medical Center, University of California, San Francisco, CA, USA
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Zhang N, Zhang L, Wang Q, Zhao J, Liu J, Wang G. Cerebrovascular risk factors associated with ischemic stroke in a young non-diabetic and non-hypertensive population: a retrospective case-control study. BMC Neurol 2020; 20:424. [PMID: 33225904 PMCID: PMC7681954 DOI: 10.1186/s12883-020-02005-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Globally, rates of ischemic stroke (IS) have been rising among young adults. This study was designed to identify risk factors associated with IS incidence in young adults unaffected by hypertension or diabetes. Methods This was a retrospective case-control study of early-onset IS patients without diabetes and hypertension. Control patients were matched with healthy individuals based upon sex, age (±2 years), and BMI (±3 kg/m2) at a 1:3 ratio. Sociodemographic, clinical, and risk factor-related data pertaining to these patients was collected. The association between these risk factors and IS incidence was then assessed using conditional logistic regression models. Results We recruited 60 IS patients and 180 controls with mean ages of 44.37 ± 4.68 and 44.31 ± 4.71 years, respectively, for this study. Relative to controls, IS patients had significantly higher total cholesterol (TG), homocysteine (HCY), white blood cell (WBC), absolute neutrophil count (ANC), systolic blood pressure (SBP), and diastolic blood pressure (DBP) levels, and significantly lower high-density lipoprotein cholesterol (HDL-C) and triglyceride cholesterol (TC), free triiodothyronine (FT3), and free thyroxine (FT4) levels (all P < 0.05). After controlling for potential confounding factors, HCY and ANC were found to be significantly positively associated with IS incidence (OR 1.518, 95%CI 1.165–1.977, P = 0.002 and OR 2.418, 95%CI 1.061–5.511, P = 0.036, respectively), whereas HDL-C and FT3 levels were negatively correlated with IS incidence (OR 0.001, 95%CI 0.000–0.083, P = 0.003 and OR 0.053, 95%CI 0.008–0.326, P = 0.002, respectively). Conclusions In young non-diabetic and non-hypertensive patients, lower HDL-C and FT3 levels and higher HCY and ANC levels may be associated with an elevated risk of IS. Additional prospective studies of large patient cohorts will be essential to validate these findings.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lin Zhang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiu Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jingwei Zhao
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
21
|
Cui LL, Zhang Y, Chen ZY, Su YY, Liu Y, Boltze J. Early neutrophil count relates to infarct size and fatal outcome after large hemispheric infarction. CNS Neurosci Ther 2020; 26:829-836. [PMID: 32374521 PMCID: PMC7366744 DOI: 10.1111/cns.13381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/02/2023] Open
Abstract
AIMS To investigate the relationship between peripheral leukocyte dynamics and the outcome of large hemispheric infarction (LHI) patients. METHODS Patients with acute LHI admitted to the neuro-intensive care unit of Xuanwu Hospital from 2013 to 2017 were prospectively enrolled and followed up for 6 months after LHI. RESULTS A total of 84 LHI patients were included, 38 patients suffered brain herniation and 20 patients died from stroke. Compared to patients with benign course, LHI patients with fatal outcome showed larger infarcts and more severe brain edema (P < .01), as well as increased WBC and neutrophil counts throughout the first week after stroke (P < .05). Correlation analysis revealed that neutrophil counts on D2 after LHI positively correlated with infarct and edema volumes measured from CT/MRI (R2 = 0.22 and R2 = 0.15, P < .01) and negatively correlated with Glasgow Coma Scale (ρ = -0.234, P < .05). Patients with D2 neutrophils > 7.14 × 109 /L had higher risk of brain herniation [odds ratio (OR) = 7.5, 95% CI: 2.0-28.1, P = .001], and patients with D2 neutrophils > 7.79 × 109 /L had a higher risk of death (OR = 5.8, 95% CI: 1.2-27.0, P = .015). CONCLUSION Early peripheral neutrophil count after stroke relates to infarct size and the fatal outcome of LHI patients, which might help guiding acute LHI management such as reduction of intracranial pressure and potential antiinflammatory therapy in the future.
Collapse
Affiliation(s)
- Li-Li Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhong-Yun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ying-Ying Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yawu Liu
- Department of Neurology and Clinical Radiology, University of Eastern Finland, Kuopio, Finland
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|