1
|
Wang X, Zhang Y, Liu H, Wang J, Zhang B, He T, Zhang H, Xiong Z, Liu X, Li J, Zhao W, Liu X, Zhang W, Yang L, Li Q, Zhang H, Qi J, Jia Q. A Novel Compound QO-83 Alleviates Acute and Chronic Epileptic Seizures in Rodents by Modulating K V7 Channel Activity. CNS Neurosci Ther 2025; 31:e70334. [PMID: 40125810 PMCID: PMC11931445 DOI: 10.1111/cns.70334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
AIMS KV7 channels are promising targets for antiepileptic therapy. However, the classic KV7 channel opener retigabine has been withdrawn due to severe adverse reactions. We developed a novel KV7 channel opener, QO-83, with good chemical stability and blood-brain barrier penetration, and sought to evaluate its KV7-opening activity, antiepileptic effects, and mechanisms of action. METHODS We used patch-clamp electrophysiology, electroencephalogram recordings, dynamic simulations, and various epilepsy models to investigate the mechanisms and antiepileptic activity of QO-83. RESULTS Compound QO-83 exhibits greater potency at KV7.2/7.3 channels compared to KV7.4 or KV7.5 channels. It shows superior efficacy for KV7.2 with voltage-dependent opening than retigabine, with W236 identified as the key binding site for the KV7.2 channel. QO-83 significantly inhibited epileptiform discharge and influenced hippocampal sEPSC and sIPSC amplitudes. QO-83 has a more effective dose of 1 mg/kg in acute and chronic epilepsy models smaller than that of retigabine (10 mg/kg). The higher potency of QO-83 may be attributed to its greater stability at the KV7.2 binding pocket compared to retigabine. CONCLUSION QO-83, as a newly developed Kv7.2 opener, has the advantages of stable properties, strong affinity, and high activity compared with retigabine, and is expected to become a new antiepileptic drug.
Collapse
Affiliation(s)
- Xiangyu Wang
- Hebei Medical University, Postdoctoral Mobile Station of Basic MedicalHebei Medical UniversityShijiazhuangChina
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Yang Zhang
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Hui Liu
- Department of NeurobiologyHebei Medical UniversityShijiazhuangChina
| | - Jiahao Wang
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Boxuan Zhang
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Tenghui He
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Huiran Zhang
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Zhumei Xiong
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Xingang Liu
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Jincan Li
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Weidong Zhao
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Xiao Liu
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Wei Zhang
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Le Yang
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Qian Li
- Department of PharmacyShijiazhuang Fifth HospitalShijiazhuangChina
| | - Hailin Zhang
- Hebei Medical University, Postdoctoral Mobile Station of Basic MedicalHebei Medical UniversityShijiazhuangChina
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of Neural and Vascular BiologyMinistry of Education, Hebei Medical UniversityShijiazhuangChina
- Collaborative Innovation Center of Hebei Province for Mechanism, Diagnosis and Treatment of Neuropsychiatric DiseasesHebei Medical UniversityShijiazhuangChina
| | - Jinlong Qi
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyHebei Medical UniversityShijiazhuangChina
| | - Qingzhong Jia
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyHebei Medical UniversityShijiazhuangChina
- National Key Laboratory of New Pharmaceutical Preparations and ExcipientsHebei Medical UniversityShijiazhuangChina
| |
Collapse
|
2
|
Yang X, Zhang J, Wang Z, Yao Z, Yang X, Wang X, Zhao X, Xu S. Mitochondria-related HSDL2 is a potential biomarker in temporal lobe epilepsy by modulating astrocytic lipid metabolism. Neurotherapeutics 2024; 21:e00447. [PMID: 39245623 PMCID: PMC11585875 DOI: 10.1016/j.neurot.2024.e00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is the most prevalent type of focal epilepsy in adults. While comprehensive bioinformatics analyses have facilitated the identification of novel biomarkers in animal models, similar efforts are limited for TLE patients. In the current study, a comprehensive analysis using human transcriptomics datasets GSE205661, GSE190451, and GSE186334 was conducted to reveal differentially expressed genes related to mitochondria (Mito-DEGs). Protein-protein interaction (PPI) network and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses were performed to identify hub genes. Additional GSE127871 and GSE255223 were utilized to establish the association with hippocampal sclerosis (HS) and seizure frequency, respectively. Single-cell RNA analysis, functional investigation, and clinical verification were conducted. Herein, we reported that the Mito-DEGs in human TLE were significantly enriched in metabolic processes. Through PPI and LASSO analysis, HSDL2 was identified as the hub gene, of which diagnostic potential was further confirmed using independent datasets, animal models, and clinical validation. Subsequent single-cell and functional analyses revealed that HSDL2 expression was enriched and upregulated in response to excessive lipid accumulation in astrocytes. Additionally, the diagnostic efficiency of blood HSDL2 was verified in Qilu cohort. Together, our findings highlight the translational potential of HSDL2 as a biomarker and provide a novel therapeutic perspective for human TLE.
Collapse
Affiliation(s)
- Xiaxin Yang
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jianhang Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Zhihao Wang
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhong Yao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Xue Yang
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingbang Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiuhe Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Key Laboratory and Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging and National Medicine-Engineering Interdisciplinary Industry-Education Integration Innovation Platform, Shandong University, Jinan, Shandong, China.
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Ma L, Wu Q, You Y, Zhang P, Tan D, Liang M, Huang Y, Gao Y, Ban Y, Chen Y, Yuan J. Neuronal small extracellular vesicles carrying miR-181c-5p contribute to the pathogenesis of epilepsy by regulating the protein kinase C-δ/glutamate transporter-1 axis in astrocytes. Glia 2024; 72:1082-1095. [PMID: 38385571 DOI: 10.1002/glia.24517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Information exchange between neurons and astrocytes mediated by extracellular vesicles (EVs) is known to play a key role in the pathogenesis of central nervous system diseases. A key driver of epilepsy is the dysregulation of intersynaptic excitatory neurotransmitters mediated by astrocytes. Thus, we investigated the potential association between neuronal EV microRNAs (miRNAs) and astrocyte glutamate uptake ability in epilepsy. Here, we showed that astrocytes were able to engulf epileptogenic neuronal EVs, inducing a significant increase in the glutamate concentration in the extracellular fluid of astrocytes, which was linked to a decrease in glutamate transporter-1 (GLT-1) protein expression. Using sequencing and gene ontology (GO) functional analysis, miR-181c-5p was found to be the most significantly upregulated miRNA in epileptogenic neuronal EVs and was linked to glutamate metabolism. Moreover, we found that neuronal EV-derived miR-181c-5p interacted with protein kinase C-delta (PKCδ), downregulated PKCδ and GLT-1 protein expression and increased glutamate concentrations in astrocytes both in vitro and in vivo. Our findings demonstrated that epileptogenic neuronal EVs carrying miR-181c-5p decrease the glutamate uptake ability of astrocytes, thus promoting susceptibility to epilepsy.
Collapse
Affiliation(s)
- Limin Ma
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yu You
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minxue Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunyi Huang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Gao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuenan Ban
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinxian Yuan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Yakovchik AY, Tolynyova DV, Kashtanova DA, Sutulova ER, Ivanov MV, Mamchur AA, Erema VV, Matkava LR, Terekhov MV, Rumyantseva AM, Blinova OI, Akinshina AI, Mitrofanov SI, Yudin VS, Makarov VV, Keskinov AА, Kraevoy SA, Yudin SM. Genetics of psycho-emotional well-being: genome-wide association study and polygenic risk score analysis. Front Psychiatry 2024; 14:1188427. [PMID: 38328521 PMCID: PMC10847277 DOI: 10.3389/fpsyt.2023.1188427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/28/2023] [Indexed: 02/09/2024] Open
Abstract
Background Psycho-emotional well-being is essential for living a life of satisfaction and fulfillment. However, depression and anxiety have become the leading mental health issues worldwide, according to the World Health Organization. Both disorders have been linked to stress and other psychological factors. Their genetic basis remains understudied. Methods In 2020-2021, the psycho-emotional well-being of 30,063 Russians with no known psychiatric history was assessed using the Hospital Anxiety and Depression Scale (HADS) for general mental health and the HADS subscale A (anxiety) for anxiety. Following the original instructions, an anxiety score of ≥11 points was used as the anxiety threshold. A genome-wide association study was performed to find associations between anxiety and HADS/HADS-A scores using linear and logistic regressions based on HADS/HADS-A scores as binary and continuous variables, respectively. In addition, the links between anxiety, sociodemographic factors (such as age, sex, and employment), lifestyle (such as physical activity, sleep duration, and smoking), and markers of caffeine and alcohol metabolism were analyzed. To assess the risk of anxiety, polygenic risk score modeling was carried out using open-access software and principal component analysis (PCA) to simplify the calculations (ROC AUC = 89.4 ± 2.2% on the test set). Results There was a strong positive association between HADS/HADS-A scores and sociodemographic factors and lifestyle. New single-nucleotide polymorphisms (SNPs) with genome-wide significance were discovered, which had not been associated with anxiety or other stress-related conditions but were located in genes previously associated with bipolar disorder, schizophrenia, or emotional instability. The CACNA1C variant rs1205787230 was associated with clinical anxiety (a HADS-A score of ≥11 points). There was an association between anxiety levels (HADS-A scores) and genes involved in the activity of excitatory neurotransmitters: PTPRN2 (rs3857647), DLGAP4 (rs8114927), and STK24 (rs9517326). Conclusion Our results suggest that calcium channels and monoamine neurotransmitters, as well as SNPs in genes directly or indirectly affecting neurogenesis and synaptic functions, may be involved in the development of increased anxiety. The role of some non-genetic factors and the clinical significance of physiological markers such as lifestyle were also demonstrated.
Collapse
Affiliation(s)
- Anna Yurievna Yakovchik
- Federal State Budgetary Institution Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Amrhein JA, Berger LM, Balourdas DI, Joerger AC, Menge A, Krämer A, Frischkorn JM, Berger BT, Elson L, Kaiser A, Schubert-Zsilavecz M, Müller S, Knapp S, Hanke T. Synthesis of Pyrazole-Based Macrocycles Leads to a Highly Selective Inhibitor for MST3. J Med Chem 2024; 67:674-690. [PMID: 38126712 DOI: 10.1021/acs.jmedchem.3c01980] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
MST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis. We designed a series of 3-aminopyrazole-based macrocycles based on the structure of a promiscuous inhibitor. By varying the moieties targeting the solvent-exposed region and optimizing the linker, macrocycle JA310 (21c) was synthesized. JA310 exhibited high cellular potency for MST3 (EC50 = 106 nM) and excellent kinome-wide selectivity. The crystal structure of the MST3-JA310 complex provided intriguing insights into the binding mode, which is associated with large-scale structural rearrangements. In summary, JA310 demonstrates the utility of macrocyclization for the design of highly selective inhibitors and presents the first chemical probe for MST3.
Collapse
Affiliation(s)
- Jennifer Alisa Amrhein
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lena Marie Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amelie Menge
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz 69120 Heidelberg, Germany
| | - Julia Marie Frischkorn
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz 69120 Heidelberg, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Chen FF, Liu JF, Zhou DM. SIRT3 enhances the protective effect of Xyloketal B on seizure-induced brain injury by regulating AMPK/mTOR signaling-mediated autophagy. Kaohsiung J Med Sci 2024; 40:74-85. [PMID: 37850727 DOI: 10.1002/kjm2.12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
Brain damage in children due to seizures is irreversible and has been a major public health concern. The herbal monomer Xyloketal B (Xyl-B) can be used as a neuroprotective drug because of its antioxidant, antiapoptotic, and anti-inflammatory effects but with few adverse effects. In this article, we constructed a rat developmental convulsion model and a primary hippocampal neuronal cell convulsion model, through which we studied hippocampal neuronal morphology and neuronal apoptosis using H&E staining and TUNEL staining, respectively. Moreover, we measured TNF-α, IL-6, and IL-1β inflammatory factor levels using ELISA, MDA, and SOD kits. The expression of SIRT3 in hippocampal tissues was determined by qPCR and Western blotting. The expression of autophagy-related proteins such as LC3, p62, and Beclin-1 was evaluated by Western blotting or immunohistochemistry. The role of SIRT3 and autophagic activity with Xyl-B in convulsive seizure-induced brain injury was investigated by knocking down SIRT3 expression levels. Our results showed that Xyl-B plays a neuroprotective role in convulsive seizure-induced brain injury by increasing SIRT3 expression and activating the autophagy pathway. The regulatory role of SIRT3 in the autophagy pathway with Xyl-B treatment was explored by knocking down SIRT3 expression and inhibiting autophagy. Our results revealed that SIRT3 enhances the protective effect of Xyl-B against postconvulsive brain injury by regulating AMPK/mTOR signaling-mediated autophagy.
Collapse
Affiliation(s)
- Fen-Fang Chen
- Department of Paediatrics, The Second Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Jian-Feng Liu
- Department of Paediatrics, The Second Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Di-Mi Zhou
- Department of Neurology, The Second Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| |
Collapse
|
7
|
Kang Q, Zhang J, Xie C, Fang S, Chai W. Circular RNA SLC8A1 triggers hippocampal neuronal ferroptosis by regulating FUS-mediated ATF3 mRNA stability in epilepsy. Exp Cell Res 2024; 434:113848. [PMID: 37918704 DOI: 10.1016/j.yexcr.2023.113848] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Epilepsy is a neurological disorder characterized by recurrent seizures and is often unresponsive to current treatment options. Ferroptosis, a recently defined iron-dependent regulated cell death, has been suggested as a potential therapeutic target for epilepsy due to its association with oxidative stress. Additionally, circRNA SLC8A1 (circSLC8A1) has been implicated in various neurological disorders and oxidative stress-related diseases but its involvement in epilepsy progression, particularly in relation to ferroptosis and oxidative stress, remains unclear. METHODS qRT-PCR, Western blot, IHC and ELISA assays were employed to validate the relative expression of targeted genes and proteins. The levels of ROS, iron, LOP and GSH were detected by commercial kits. RNA pull-down and RIP assays were employed to detect the interactions among circSLC8A1, FUS and ATF3. A rat epilepsy model was established for further in vivo confirmation. RESULTS AND CONCLUSION In this study, we investigated the potential involvement of circSLC8A1 in epilepsy progression and its connection to ferroptosis and oxidative stress. Our findings demonstrate that circSLC8A1 triggers neuronal ferroptosis by stabilizing ATF3 mRNA expression through recruitment with FUS. The induced neuronal ferroptosis contributes to epilepsy progression. These results enhance our understanding of epilepsy pathogenesis and may provide insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Qin Kang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Ji Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Chen Xie
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Susu Fang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China.
| |
Collapse
|
8
|
Ma L, Wu Q, Yuan J, Wang Y, Zhang P, Liu Q, Tan D, Liang M, Chen Y. Inhibition of ANXA2 activity attenuates epileptic susceptibility and GluA1 phosphorylation. CNS Neurosci Ther 2023; 29:3644-3656. [PMID: 37302990 PMCID: PMC10580353 DOI: 10.1111/cns.14295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/15/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023] Open
Abstract
INTRODUCTION Annexin A2 (ANXA2) participates in the pathology of a variety of diseases. Nevertheless, the impact of ANXA2 on epilepsy remains to be clarified. AIMS Hence, the study aimed at investigating the underlying role of ANXA2 in epilepsy through behavioral, electrophysiological, and pathological analyses. RESULTS It was found that ANXA2 was markedly upregulated in the cortical tissues of temporal lobe epilepsy patients (TLE), kainic acid (KA)-induced epilepsy mice, and in a seizure-like model in vitro. ANXA2 silencing in mice suppressed first seizure latency, number of seizures, and seizure duration in behavioral analysis. In addition, abnormal brain discharges were less frequent and shorter in the hippocampal local field potential (LFP) record. Furthermore, the results showed that the frequency of miniature excitatory postsynaptic currents was decreased in ANXA2 knockdown mice, indicating that the excitatory synaptic transmission is reduced. Co-immunoprecipitation (COIP) experiments demonstrated that ANXA2 interacted with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit GluA1. Moreover, ANXA2 knockdown decreased GluA1 expression on the cell surface and its phosphorylation onserine 831 and serine 845, related to the decreased phosphorylation levels mediated by protein kinases A and C (PKA and PKC). CONCLUSIONS This study covers a previously unknown and key function of ANXA2 in epilepsy. These findings indicate that ANXA2 can regulate excitatory synaptic activity mediated by AMPAR subunit GluA1 to improve seizure activity, which can provide novel insights for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Limin Ma
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of NeurologyChongqing University Three Gorges HospitalChongqingChina
| | - Qingyuan Wu
- Department of NeurologyChongqing University Three Gorges HospitalChongqingChina
| | - Jinxian Yuan
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - You Wang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Peng Zhang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qiankun Liu
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Dandan Tan
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Minxue Liang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yangmei Chen
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
9
|
Wu X, Xie D, Zheng Q, Peng S, Liu Y, Ma P, Ye L, Mo X, Feng Z. Downregulation of NHE1 expression attenuates apoptosis of primary hippocampal neurons of an epilepsy model through the calpain-1 pathway. Neurosci Lett 2023; 815:137494. [PMID: 37748674 DOI: 10.1016/j.neulet.2023.137494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE Na(+)/H(+) exchanger isoform 1 (NHE1), a membrane protein that regulates intracellular pH, is abundantly expressed in brain tissues. It is associated with pathophysiologies in several brain diseases. The present study aimed to investigate the effects of NHE1 on the apoptosis of primary neurons of an epilepsy model. METHODS Primary hippocampal neurons were cultured in an Mg2+-free medium to establish an epilepsy cell model. Designed shNHE1 lentivirus was used to silence NHE1 level in primary neurons. Nonselective pharmacological inhibitor MDL-28170 (20 μmol/L) was used to inhibit calpain-1 protein in neurons treated with Mg2+-free medium. The expression levels of NHE1 and calpain-1, intracellular Ca2+ (Ca2+i) and H+ (H+i) levels, and the expression levels of apoptosis-related proteins Bcl-2 and Bax were detected in neurons. TUNEL staining was performed to determine apoptosis in different groups. RESULTS NHE1 expression was increased in primary neurons treated with an Mg2+-free medium, and it was correlated with increased expression of calpain-1 and cell apoptosis. Neurons from the in vitro epilepsy model showed significantly decreased Bcl-2 protein expression and significantly increased Bax protein expression. In the presence of LV-shNHE1 and the calpain-1 inhibitor MDL-28170, the changes in the expression of apoptosis-related proteins Bcl-2 and Bax were blocked in the epileptic model, and the percentage of apoptotic neurons among neurons from the in vitro epilepsy model was significantly decreased. The increase in calpain-1 expression was suppressed by LV-shNHE1; however, the inhibition of calpain-1 did not affect NHE1 expression. CONCLUSION These results demonstrate that NHE1 participates in the promotion of neuronal apoptosis of epilepsy model in vitro through the calpain-1 pathway. Downregulation of NHE1 expression could exert a neuroprotective effect on epilepsy.
Collapse
Affiliation(s)
- Xuling Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dongjun Xie
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Zheng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shuang Peng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Liu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pengfei Ma
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lan Ye
- The Medical Science Function Laboratory of Experimental Teaching Center of Basic Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, China.
| | - Xiangang Mo
- Department of Comprehensive Care Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
10
|
Funke JR, Hwang EK, Wunsch AM, Baker R, Engeln KA, Murray CH, Milovanovic M, Caccamise AJ, Wolf ME. Persistent Neuroadaptations in the Nucleus Accumbens Core Accompany Incubation of Methamphetamine Craving in Male and Female Rats. eNeuro 2023; 10:ENEURO.0480-22.2023. [PMID: 36792361 PMCID: PMC10016192 DOI: 10.1523/eneuro.0480-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
Relapse is a major problem in treating methamphetamine use disorder. "Incubation of craving" during abstinence is a rat model for persistence of vulnerability to craving and relapse. While methamphetamine incubation has previously been demonstrated in male and female rats, it has not been demonstrated after withdrawal periods greater than 51 d and most mechanistic work used males. Here, we address both gaps. First, although methamphetamine intake was higher in males during self-administration training (6 h/d × 10 d), incubation was similar in males and females, with "incubated" craving persisting through withdrawal day (WD)100. Second, using whole-cell patch-clamp recordings in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) core, we assessed synaptic levels of calcium-permeable AMPA receptors (CP-AMPARs), as their elevation is required for expression of incubation in males. In both sexes, compared with saline-self-administering controls, CP-AMPAR levels were significantly higher in methamphetamine rats across withdrawal, although this was less pronounced in WD100-135 rats than WD15-35 or WD40-75 methamphetamine rats. We also examined membrane properties and NMDA receptor (NMDAR) transmission. In saline controls, MSNs from males exhibited lower excitability than females. This difference was eliminated after incubation because of increased excitability of MSNs from males. NMDAR transmission did not differ between sexes and was not altered after incubation. In conclusion, incubation persists for longer than previously described and equally persistent CP-AMPAR plasticity in NAc core occurs in both sexes. Thus, abstinence-related synaptic plasticity in NAc is similar in males and females although other methamphetamine-related behaviors and neuroadaptations show differences.
Collapse
Affiliation(s)
- Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Raines Baker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Kimberley A Engeln
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Conor H Murray
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Mike Milovanovic
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Aaron J Caccamise
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| |
Collapse
|
11
|
Serine/threonine-protein kinase STK24 induces tumorigenesis by regulating the STAT3/VEGFA signaling pathway. J Biol Chem 2023; 299:102961. [PMID: 36720310 PMCID: PMC10011487 DOI: 10.1016/j.jbc.2023.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related death. Although anti-angiogenesis therapy has been effective in the treatment of nonsmall cell lung cancer (NSCLC), drug-resistance is a common challenge. Therefore, there is a need to develop new therapeutic strategies for NSCLC. Serine/threonine-protein kinase 24 (STK24), also known as MST3, belongs to the germinal center kinase III subfamily, and the biological function of STK24 in NSCLC tumorigenesis and tumor angiogenesis is still unclear. In this study, we demonstrated that STK24 was overexpressed in lung cancer tissues compared with normal lung tissues, and lung cancer patients with higher STK24 expression levels had shorter overall survival time. In addition, our in vitro assays using A549 and H226 cell lines revealed that the STK24 expression level of cancer cells was positively correlated with cancer cells proliferation, migration, invasion, and tumor angiogenesis ability; in vivo assays also demonstrated that silencing of STK24 dramatically inhibited tumor progress and tumor angiogenesis. To investigate a mechanism, we revealed that STK24 positively regulated the signal transducer and activator of transcription 3 (STAT3)/vascular endothelial growth factor A (VEGFA) signaling pathway by inhibiting polyubiquitin-proteasomal-mediated degradation of STAT3. Furthermore, we performed in vivo assays in BALB/c nude mice and in vitro assays to show that STK24-regulated tumor angiogenesis depends on STAT3. These findings deepened our understanding of tumor angiogenesis, and the STK24/STAT3/VEGFA signaling pathway might be a novel therapeutic target for NSCLC treatment.
Collapse
|
12
|
Liu Y, Wang Y, Yang J, Xu T, Tan C, Zhang P, Liu Q, Chen Y. G-alpha interacting protein interacting protein, C terminus 1 regulates epileptogenesis by increasing the expression of metabotropic glutamate receptor 7. CNS Neurosci Ther 2021; 28:126-138. [PMID: 34676980 PMCID: PMC8673704 DOI: 10.1111/cns.13746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Aims It has been reported that the G‐alpha interacting protein (GAIP) interacting protein, C terminus 1 (GIPC1/GIPC) engages in vesicular trafficking, receptor transport and expression, and endocytosis. However, its role in epilepsy is unclear. Therefore, in this study, we aimed to explore the role of GIPC1 in epilepsy and its possible underlying mechanism. Methods The expression patterns of GIPC1 in patients with temporal lobe epilepsy (TLE) and in mice with kainic acid (KA)‐induced epilepsy were detected. Behavioral video monitoring and hippocampal local field potential (LFP) recordings were carried out to determine the role of GIPC1 in epileptogenesis after overexpression of GIPC1. Coimmunoprecipitation (Co‐IP) assay and high‐resolution immunofluorescence staining were conducted to investigate the relationship between GIPC1 and metabotropic glutamate receptor 7 (mGluR7). In addition, the expression of mGluR7 after overexpression of GIPC1 was measured, and behavioral video monitoring and LFP recordings after antagonism of mGluR7 were performed to explore the possible mechanism mediated by GIPC1. Results GIPC1 was downregulated in the brain tissues of patients with TLE and mice with KA‐induced epilepsy. After overexpression of GIPC1, prolonged latency period, decreased epileptic seizures and reduced seizure severity in behavioral analyses, and fewer and shorter abnormal brain discharges in LFP recordings of KA‐induced epileptic mice were observed. The result of the Co‐IP assay showed the interaction between GIPC1 and mGluR7, and the high‐resolution immunofluorescence staining also showed the colocalization of these two proteins. Additionally, along with GIPC1 overexpression, the total and cell membrane expression levels of mGluR7 were also increased. And after antagonism of mGluR7, increased epileptic seizures and aggravated seizure severity in behavioral analyses and more and longer abnormal brain discharges in LFP recordings were observed. Conclusion GIPC1 regulates epileptogenesis by interacting with mGluR7 and increasing its expression.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - You Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Juan Yang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.,Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Tao Xu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Qiankun Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| |
Collapse
|
13
|
GluN3-Containing NMDA Receptors in the Rat Nucleus Accumbens Core Contribute to Incubation of Cocaine Craving. J Neurosci 2021; 41:8262-8277. [PMID: 34413203 DOI: 10.1523/jneurosci.0406-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Cue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca2+-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (∼1 month after drug self-administration ceases) suggests earlier waves of plasticity. This prompted us to conduct the first study of NMDAR transmission in NAc core during incubation, focusing on the GluN3 subunit, which confers atypical properties when incorporated into NMDARs, including insensitivity to Mg2+ block and Ca2+ impermeability. Whole-cell patch-clamp recordings were conducted in MSNs of adult male rats 1-68 d after discontinuing extended-access saline or cocaine self-administration. NMDAR transmission was enhanced after 5 d of cocaine withdrawal, and this persisted for at least 68 d of withdrawal. The earliest functional alterations were mediated through increased contributions of GluN2B-containing NMDARs, followed by increased contributions of GluN3-containing NMDARs. As predicted by GluN3-NMDAR incorporation, fewer MSN spines exhibited NMDAR-mediated Ca2+ entry. GluN3A knockdown in NAc core was sufficient to prevent incubation of craving, consistent with biotinylation studies showing increased GluN3A surface expression, although array tomography studies suggested that adaptations involving GluN3B also occur. Collectively, our data show that a complex cascade of NMDAR and AMPAR plasticity occurs in NAc core, potentially through a homeostatic mechanism, leading to persistent increases in cocaine cue reactivity and relapse vulnerability. This is a remarkable example of experience-dependent glutamatergic plasticity evolving over a protracted window in the adult brain.SIGNIFICANCE STATEMENT "Incubation of craving" is an animal model for the persistence of vulnerability to cue-induced relapse after prolonged drug abstinence. Incubation also occurs in human drug users. AMPAR plasticity in medium spiny neurons (MSNs) of the NAc core is critical for incubation of cocaine craving but occurs only after a delay. Here we found that AMPAR plasticity is preceded by NMDAR plasticity that is essential for incubation and involves GluN3, an atypical NMDAR subunit that markedly alters NMDAR transmission. Together with AMPAR plasticity, this represents profound remodeling of excitatory synaptic transmission onto MSNs. Given the importance of MSNs for translating motivation into action, this plasticity may explain, at least in part, the profound shifts in motivated behavior that characterize addiction.
Collapse
|
14
|
Brogna C, Milano V, Brogna B, Cristiano L, Rovere G, De Sanctis R, Romeo DM, Mercuri E, Zampino G. De Novo Partial 13q22-q34 Trisomy with Typical Neurological and Immunological Findings: A Case Report with New Genetic Insights. Brain Sci 2020; 11:brainsci11010021. [PMID: 33375380 PMCID: PMC7823677 DOI: 10.3390/brainsci11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
The partial trisomy 13q encompasses an extensive variability of phenotypic and radiological findings including leukoencephalopathy and brain malformations such as holoprosencephaly, callosal dysgenesis, hippocampal hypoplasia, olfactory hypoplasia, and vermian hypoplasia. We report for the first time a case of a 23-year-old patient affected by de novo partial 13q22.1q34 trisomy (41.7 Mb, 72,365,975-114,077,122x3) presenting with hemiparesis related to both ischemic and haemorrhagic cerebral lesions compatible with cerebral vasculitis due to a possible combination of genetic and immunological interaction.
Collapse
Affiliation(s)
- Claudia Brogna
- Pediatric Neurology Unit, Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.D.S.); (D.M.R.); (E.M.)
- Neuropsychiatric Unit, ASL Avellino, 83100 Avellino, Italy
- Correspondence:
| | - Valentina Milano
- Genetic Unit, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Pediatric Unit, Sapienza University, 00100 Rome, Italy
| | - Barbara Brogna
- Radiology Unit, S.G. Moscati Hospital, 83100 Avellino, Italy;
| | - Lara Cristiano
- Pediatric Neurology Unit, Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.D.S.); (D.M.R.); (E.M.)
| | - Giuseppe Rovere
- Orthopedic Unit, Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto De Sanctis
- Pediatric Neurology Unit, Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.D.S.); (D.M.R.); (E.M.)
| | - Domenico M. Romeo
- Pediatric Neurology Unit, Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.D.S.); (D.M.R.); (E.M.)
| | - Eugenio Mercuri
- Pediatric Neurology Unit, Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.D.S.); (D.M.R.); (E.M.)
| | - Giuseppe Zampino
- Pediatric Unit, Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
15
|
Yang J, Jiang Q, Yu X, Xu T, Wang Y, Deng J, Liu Y, Chen Y. STK24 modulates excitatory synaptic transmission in epileptic hippocampal neurons. CNS Neurosci Ther 2020; 26:851-861. [PMID: 32436359 PMCID: PMC7366740 DOI: 10.1111/cns.13391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023] Open
Abstract
Introduction A large amount of literature has indicated that excitatory synaptic transmission plays a crucial role in epilepsy, but the detailed pathogenesis still needs to be clarified. Methods In the present study, we used samples from patients with temporal lobe epilepsy, pentylenetetrazole‐kindled mice, and Mg2+‐free‐induced epileptic cultured hippocampal neurons to detect the expression pattern of STK24. Then, the whole‐cell recording was carried out after STK24 overexpression in the Mg2+‐free‐induced epileptic cultured hippocampal neurons. In addition, coimmunoprecipitation was performed to detect the association between endogenous STK24 and main subunits of NMDARs and AMPARs in the hippocampus of PTZ‐kindled mice. Results Here, we reported that STK24 was specifically located in epileptic neurons of human and pentylenetetrazole‐kindled mice. Meanwhile, the expression of STK24 was significantly down‐regulated in these samples which are mentioned above. Besides, we found that the amplitude of miniature excitatory postsynaptic currents was increased in STK24 overexpressed epileptic hippocampal cultured neurons, which means the excitatory synaptic transmission was changed. Moreover, the coimmunoprecipitation, which further supported the previous experiment, indicated an association between STK24 and the subunits of the NMDA receptor. Conclusion These findings expand our understanding of how STK24 involved in the excitatory synaptic transmission in epilepsy and lay a foundation for exploring the possibility of STK24 as a drug target.
Collapse
Affiliation(s)
- Juan Yang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Jiang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyuan Yu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - You Wang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Deng
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Liu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|