1
|
Jiang J, Liu S, Xu Z, Yu S, Wang L, Long S, Ye S, Yan Y, Xu H, Zhang J, Wei W, Zhao Q, Li X. Transcriptome-Wide Profiling of Nascent RNA in Neurons with Enriched H3K27ac Signal Elevates eRNA Identification Efficiency. ACS Chem Neurosci 2024; 15:3626-3639. [PMID: 39377285 PMCID: PMC11487572 DOI: 10.1021/acschemneuro.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Growing evidence suggests that activity-dependent gene expression is crucial for neuronal plasticity and behavioral experience. Enhancer RNAs (eRNAs), a class of long noncoding RNAs, play a key role in these processes. However, eRNAs are highly dynamic and are often present at lower levels than their corresponding mRNAs, making them difficult to detect using total RNA-seq techniques. Nascent RNA sequencing, which separates nascent RNAs from the steady-state RNA population, has been shown to increase the ability to detect activity-induced eRNAs with a higher signal-to-noise ratio. However, there is a lack of bioinformatic tools or pipelines for detecting eRNAs utilizing nascent RNA-seq and other multiomics data sets. In this study, we addressed this gap by developing a novel bioinformatic framework, e-finder, for finding eRNAs and have made it available to the scientific community. Additionally, we reanalyzed our previous nascent RNA sequencing data and compared them with total RNA-seq data to identify activity-regulated RNAs in neuronal cell populations. Using H3K27 acetylome data, we characterized activity-dependent eRNAs that drive the transcriptional activity of the target genes. Our analysis identified a subset of eRNAs involved in mediating synapse organization, which showed increased activity-dependent transcription after the potassium chloride stimulation. Notably, our data suggest that nascent RNA-seq with an enriched H3K27ac signal exhibits high resolution to identify potential eRNAs in response to membrane depolarization. Our findings uncover the role of the eRNA-mediated gene activation network in neuronal systems, providing new insights into the molecular processes characterizing neurological diseases.
Collapse
Affiliation(s)
- Jiazhi Jiang
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | - Sha Liu
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
- Department
of General Practice, Zhongnan Hospital of
Wuhan University, Wuhan 430071, China
| | - Ziyue Xu
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
| | - Shuangqi Yu
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
| | - Lesheng Wang
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
| | - Shengrong Long
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
| | - Shengda Ye
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | - Yu Yan
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | - Hongyu Xu
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
| | - Jianjian Zhang
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | - Wei Wei
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | - Qiongyi Zhao
- Cognitive
Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiang Li
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
- Frontier
Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical
Research
Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian
Ascula Brain Science Joint Laboratory, Zhongnan
Hosptial of Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Jiang Z, Yang H, Ni W, Gao X, Pei X, Jiang H, Su J, Weng R, Fei Y, Gao Y, Gu Y. Attenuation of neuronal ferroptosis in intracerebral hemorrhage by inhibiting HDAC1/2: Microglial heterogenization via the Nrf2/HO1 pathway. CNS Neurosci Ther 2024; 30:e14646. [PMID: 38523117 PMCID: PMC10961428 DOI: 10.1111/cns.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/26/2024] Open
Abstract
AIM The class I histone deacetylases (HDACs) implicate in microglial heterogenization and neuroinflammation following Intracerebral hemorrhage (ICH). Ferroptosis has also been reported in the ICH model. However, the relationship between HDAC1/2's role in microglial heterogenization and neuronal ferroptosis remains unclear. METHODS In both in vivo and in vitro models of ICH, we used Romidepsin (FK228), a selective HDAC1/2 inhibitor, to investigate its effects on microglial heterogenization and neuronal ferroptosis. In the in vitro ICH model using Hemin, a transwell system was utilized to examine how microglia-driven inflammation and ICH-triggered neuronal ferroptosis interact. Immunostaining, Western blotting and RT-qPCR were used to evaluate the microglial heterogenization and neuronal ferroptosis. Microglial heterogenization, neuronal ferroptosis, and neurological dysfunctions were assessed in vivo ICH mice model performed by autologous blood injection. RESULTS HDAC1/2 inhibition altered microglial heterogenization after ICH, as showing the reducing neuroinflammation and shifting microglia towards an anti-inflammatory phenotype by immunostaining and qPCR results. HDAC1/2 inhibition reduced ferroptosis, characterized by high ROS and low GPx4 expression in HT22 cells, and reduced iron and lipid deposition post-ICH in vivo. Additionally, the Nrf2/HO1 signaling pathway, especially acetyl-Nrf2, activated in the in vivo ICH model due to HDAC1/2 inhibition, plays a role in regulating microglial heterogenization. Furthermore, HDAC1/2 inhibition improved sensorimotor and histological outcomes post-ICH, offering a potential mechanism against ICH. CONCLUSION Inhibition of HDAC1/2 reduces neuro-ferroptosis by modifying the heterogeneity of microglia via the Nrf2/HO1 pathway, with a particular focus on acetyl-Nrf2. Additionally, this inhibition aids in the faster removal of hematomas and lessens prolonged neurological impairments, indicating novel approach for treating ICH.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Heng Yang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Wei Ni
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xinjie Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xu Pei
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Hanqiang Jiang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Jiabin Su
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Ruiyuan Weng
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yuchao Fei
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yanqin Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yuxiang Gu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Yao P, Liu X, Miao Q, Li C, Zhou H, Li H, Mao X, Fang X, Li N. Expression mapping of GREM1 and functional contribution of its secreting cells in the brain using transgenic mouse models. Exp Neurol 2024; 373:114649. [PMID: 38072150 DOI: 10.1016/j.expneurol.2023.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024]
Abstract
GREMLIN1 (GREM1) is a secreted protein that antagonizes bone morphogenetic proteins (BMPs). While abnormal GREM1 expression has been reported to cause behavioral defects in postpartum mice, the spatial and cellular distribution of GREM1 in the brain and the influence of the GREM1-secreting cells on brain function and behavior remain unclear. To address this, we designed a genetic cassette incorporating a 3×Flag-TeV-HA-T2A-tdTomato sequence, resulting in the creation of a novel Grem1Tag mouse model, expressing an epitope tag (3×Flag-TeV-HA-T2A) followed by a fluorescent reporter (tdTomato) under the control of the endogenous Grem1 promoter. This design facilitated precise tracking of the cell origin and distribution of GREM1 in the brain using tdTomato and Flag (or HA) markers, respectively. We confirmed that the Grem1Tag mouse exhibited normal motor, cognitive, and social behaviors at postnatal 60 days (P60), compared with C57BL/6J controls. Through immunofluorescence staining, we comprehensively mapped the distribution of GREM1-secreting cells across the central nervous system. Pervasive GREM1 expression was observed in the cerebral cortex (Cx), medulla, pons, and cerebellum, with the highest levels in the Cx region. Notably, within the Cx, GREM1 was predominantly secreted by excitatory neurons, particularly those expressing calcium/calmodulin-dependent protein kinase II alpha (Camk2a), while inhibitory neurons (parvalbumin-positive, PV+) and glial cells (oligodendrocytes, astrocytes, and microglia) showed little or no GREM1 expression. To delineate the functional significance of GREM1-secreting cells, a selective ablation at P42 using a diphtheria toxin A (DTA) system resulted in increased anxiety-like behavior and impaired memory in mice. Altogether, our study harnessing the Grem1Tag mouse model reveals the spatial and cellular localization of GREM1 in the mouse brain, shedding light on the involvement of GREM1-secreting cells in modulating brain function and behavior. Our Grem1Tag mouse serves as a valuable tool for further exploring the precise role of GREM1 in brain development and disease.
Collapse
Affiliation(s)
- Peijia Yao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xueli Liu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Department of Neonatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Qiang Miao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Changxue Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Huaixiang Zhou
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, United Kingdom; China-UK Institute for Frontier Science, Shenzhen 518107, China
| | - Xinliang Mao
- Perfect Life and Health Institute, Zhongshan, 528454, Guangdong, China
| | - Xiaoyi Fang
- Department of Neonatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; China-UK Institute for Frontier Science, Shenzhen 518107, China.
| |
Collapse
|
4
|
Fadoul G, Ikonomovic M, Zhang F, Yang T. The cell-specific roles of Nrf2 in acute and chronic phases of ischemic stroke. CNS Neurosci Ther 2024; 30:e14462. [PMID: 37715557 PMCID: PMC10916447 DOI: 10.1111/cns.14462] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
Ischemic stroke refers to the sudden loss of blood flow in a specific area of the brain. It is the fifth leading cause of mortality and the leading cause of permanent disability. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) controls the production of several antioxidants and protective proteins and it has been investigated as a possible pharmaceutical target for reducing harmful oxidative events in brain ischemia. Each cell type exhibits different roles and behaviors in different phases post-stroke, which is comprehensive yet important to understand to optimize management strategies and goals for care for stroke patients. In this review, we comprehensively summarize the protective effects of Nrf2 in experimental ischemic stroke, emphasizing the role of Nrf2 in different cell types including neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells during acute and chronic phases of stroke and providing insights on the neuroprotective role of Nrf2 on each cell type throughout the long term of stroke care. We also highlight the importance of targeting Nrf2 in clinical settings while considering a variety of important factors such as age, drug dosage, delivery route, and time of administration.
Collapse
Affiliation(s)
- George Fadoul
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Milos Ikonomovic
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Feng Zhang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tuo Yang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Internal MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Bokhari SZ, Aloss K, Leroy Viana PH, Schvarcz CA, Besztercei B, Giunashvili N, Bócsi D, Koós Z, Balogh A, Benyó Z, Hamar P. Digoxin-Mediated Inhibition of Potential Hypoxia-Related Angiogenic Repair in Modulated Electro-Hyperthermia (mEHT)-Treated Murine Triple-Negative Breast Cancer Model. ACS Pharmacol Transl Sci 2024; 7:456-466. [PMID: 38357275 PMCID: PMC10863435 DOI: 10.1021/acsptsci.3c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 02/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer type with no targeted therapy and hence limited treatment options. Modulated electrohyperthermia (mEHT) is a novel complementary therapy where a 13.56 MHz radiofrequency current targets cancer cells selectively, inducing tumor damage by thermal and electromagnetic effects. We observed severe vascular damage in mEHT-treated tumors and investigated the potential synergism between mEHT and inhibition of tumor vasculature recovery in our TNBC mouse model. 4T1/4T07 isografts were orthotopically inoculated and treated three to five times with mEHT. mEHT induced vascular damage 4-12 h after treatment, leading to tissue hypoxia detected at 24 h. Hypoxia in treated tumors induced an angiogenic recovery 24 h after the last treatment. Administration of the cardiac glycoside digoxin with the potential hypoxia-inducible factor 1-α (HIF1-α) and angiogenesis inhibitory effects could synergistically augment mEHT-mediated tumor damage and reduce tissue hypoxia signaling and consequent vascular recovery in mEHT-treated TNBC tumors. Conclusively, repeated mEHT induced vascular damage and hypoxic stress in TNBC that promoted vascular recovery. Inhibiting this hypoxic stress signaling enhanced the effectiveness of mEHT and may potentially enhance other forms of cancer treatment.
Collapse
Affiliation(s)
| | - Kenan Aloss
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | | | - Csaba András Schvarcz
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
- Cerebrovascular
and Neurocognitive Disorders Research Group, Eötvös, Loránd Research Network and Semmelweis
University (ELKH-SE), Tűzoltó utca 37-47, Budapest 1094, Hungary
| | - Balázs Besztercei
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Nino Giunashvili
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Dániel Bócsi
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Zoltán Koós
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Andrea Balogh
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Zoltán Benyó
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| | - Péter Hamar
- Institute
of Translational Medicine, Semmelweis University, Üllői út 26, Budapest 1085, Hungary
| |
Collapse
|
6
|
Li Y, Fan Q, Li F, Pang R, Chen C, Li P, Wang X, Xuan W, Yu W. The multifaceted roles of activating transcription factor 3 (ATF3) in inflammatory responses - Potential target to regulate neuroinflammation in acute brain injury. J Cereb Blood Flow Metab 2023; 43:8-17. [PMID: 37165649 PMCID: PMC10638996 DOI: 10.1177/0271678x231171999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/12/2023]
Abstract
Activating transcription factor 3 (ATF3) is one of the most important transcription factors that respond to and exert dual effects on inflammatory responses. Recently, the involvement of ATF3 in the neuroinflammatory response to acute brain injury (ABI) has been highlighted. It functions by regulating neuroimmune activation and the production of neuroinflammatory mediators. Notably, recent clinical evidence suggests that ATF3 may serve as a potential ideal biomarker of the long-term prognosis of ABI patients. This mini-review describes the essential inflammation modulatory roles of ATF3 in different disease contexts and summarizes the regulatory mechanisms of ATF3 in the ABI-induced neuroinflammation.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyue Fan
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengshi Li
- Department of Neurosurgery, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Molina-Salinas G, Rodríguez-Chávez V, Langley E, Cerbon M. Prolactin-induced neuroprotection against excitotoxicity is mediated via PI3K/AKT and GSK3β/NF-κB in primary cultures of hippocampal neurons. Peptides 2023; 166:171037. [PMID: 37301481 DOI: 10.1016/j.peptides.2023.171037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Prolactin (PRL) is a polypeptide hormone that has been reported to play a significant role in neuroprotection against neuronal excitotoxicity produced by glutamate (Glu) or kainic acid (KA) in both, in vitro and in vivo models. However, the molecular mechanisms involved in PRL's neuroprotective effects in the hippocampus have not been completely elucidated. The aim of the present study was to assess the signaling pathways involved in PRL neuroprotection against excitotoxicity. Primary rat hippocampal neuronal cell cultures were used to assess PRL-induced signaling pathway activation. The effects of PRL on neuronal viability, as well as its effects on activation of key regulatory pathways, phosphoinositide 3-kinases/Protein Kinase B (PI3K/AKT) and glycogen synthase kinase 3β / nuclear factor kappa B (GSK3β/NF-κB), were evaluated under conditions of Glutamate-induced excitotoxicity. Additionally, the effect on downstream regulated genes such as Bcl-2 and Nrf2, was assessed. Here, we show that the PI3K/AKT signaling pathway is activated by PRL treatment during excitotoxicity, promoting neuronal survival through upregulation of active AKT and GSK3β/NF-κB, resulting in induction of Bcl-2 and Nrf2 gene expression. Inhibition of the PI3K/AKT signaling pathway abrogated the protective effect of PRL against Glu-induced neuronal death. Overall, results indicate that the neuroprotective actions of PRL are mediated in part, by the activation of the AKT pathway and survival genes. Our data support the idea that PRL could be useful as a potential neuroprotective agent in different neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- G Molina-Salinas
- Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - V Rodríguez-Chávez
- Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - E Langley
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, CDMX, México 14080, Mexico
| | - M Cerbon
- Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico.
| |
Collapse
|