1
|
Wang G, Hu H, Liu J, Fei X, Dou Y, Wang L, Ying L, Hu G, Zhang D, Jiang L, Wei J. Atorvastatin Protects Against the Macrophage/Microglia-Related Neuroinflammation via Inhibiting Lipocalin-2 in Mouse Experimental Intracerebral Hemorrhage Model. Cell Mol Neurobiol 2025; 45:47. [PMID: 40394428 PMCID: PMC12092887 DOI: 10.1007/s10571-025-01566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
There are few effective pharmacological interventions for intracerebral hemorrhage (ICH). Atorvastatin (Ato) has been shown to exert a substantial protective effect on ischemic stroke and is effective in alleviating neuroinflammation. Lipocalin-2 (LCN2), an important inflammation-regulating protein, has been demonstrated to play pivotal roles in post-ICH neuroinflammation. However, the exact role of Ato and whether LCN2 is involved after ICH remain largely unknown. In the current study, the BV2 (microglia) cell line, which was transfected with or without LCN2 for overexpression/interference, was co-cultured with primary cultured neurons and received blood infusion from C57BL/6 mice in vitro. For the in vivo study, atorvastatin was injected peritoneally into an ICH mouse model, and LCN2 specific knockout using the flox/cre system was performed in mice for mechanism study. Behavioral tests were conducted before ICH and on days 1, 3, and 7 post-ICH, and the brains and cultured cells were collected for protein, histological, and morphological studies. Our results showed that atorvastatin treatment alleviates neural damage and promotes neurological outcomes after ICH. Moreover, M1 activation and pro-inflammatory polarization are inhibited by atorvastatin. In both in vivo and in vitro models, the upregulation of LCN2 after ICH is substantially inhibited by atorvastatin. Studies on LCN2 transgenic mice and LCN2 overexpression/interference cells demonstrated that the suppression of macrophage/microglia (M/M) LCN2 participates in atorvastatin-mediated anti-neuroinflammation and neural protection effects. Therefore, our study suggests that atorvastatin treatment attenuates M/M-related neuroinflammation and protects neural recovery by down-regulating LCN2 after ICH. This study identified a potential novel therapeutic target for ICH treatment.
Collapse
Affiliation(s)
- Guangming Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Junbin Liu
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Rd, Xi'an, China
| | - Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Rd, Xi'an, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Rd, Xi'an, China
| | - Lin Ying
- College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Guohan Hu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Rd, Xi'an, China.
| |
Collapse
|
2
|
Peng L, Wang Z, Sun Q, Cao C, Li L, Zhang F, Chen G, Bu J, Wang Z, Li H. ATP11C as a key regulator of neuronal loss following intracerebral hemorrhage in mice. Biochem Biophys Res Commun 2025; 756:151531. [PMID: 40086357 DOI: 10.1016/j.bbrc.2025.151531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Intracerebral hemorrhage (ICH) is a severe form of stroke with high rates of mortality and morbidity. Neuronal loss following ICH is a critical factor influencing patient outcomes. Emerging evidence suggests that microglial phagocytic activity is enhanced after ICH, yet its role in neuronal loss remains unclear. In this study, we observed microglia engulfing viable neurons, characterized by high NeuN signals or intact nuclear morphology, in the perihematomal region of a murine autologous blood injection ICH model. This phenomenon was also observed in an in vitro ICH model, where microglia engulfed neurons in a neuron-microglia co-culture system treated with oxyhemoglobin. Furthermore, we found that oxyhemoglobin exposure induced phosphatidylserine (PS) externalization in non-apoptotic (PI-) neurons and led to a downregulation of the PS flippase ATP11C. Notably, lentivirus-mediated overexpression of ATP11C in neurons specifically prevented the ICH-induced decline in ATP11C levels and inhibited microglial engulfment of neurons. Furthermore, ATP11C overexpression significantly improved neurological outcomes in the mouse ICH model. These findings offer new insights into the mechanisms of neuronal loss after ICH, positioning ATP11C as a promising therapeutic target for attenuating brain injury by regulating PS externalization in neurons.
Collapse
Affiliation(s)
- Lu Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Lianxin Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Feiyang Zhang
- Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Jiyuan Bu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
3
|
Solár P, Brázda V, Bareš M, Zamani A, EmamiAref P, Joukal A, Kubíčková L, Kročka E, Hašanová K, Joukal M. Inflammatory changes in the choroid plexus following subarachnoid hemorrhage: the role of innate immune receptors and inflammatory molecules. Front Cell Neurosci 2025; 18:1525415. [PMID: 39839349 PMCID: PMC11747387 DOI: 10.3389/fncel.2024.1525415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction The choroid plexus is located in the cerebral ventricles. It consists of a stromal core and a single layer of cuboidal epithelial cells that forms the blood-cerebrospinal barrier. The main function of the choroid plexus is to produce cerebrospinal fluid. Subarachnoid hemorrhage due to aneurysm rupture is a devastating type of hemorrhagic stroke. Following subarachnoid hemorrhage, blood and the blood degradation products that disperse into the cerebrospinal fluid come in direct contact with choroid plexus epithelial cells. The aim of the current study was to elucidate the pathophysiological cascades responsible for the inflammatory reaction that is seen in the choroid plexus following subarachnoid hemorrhage. Methods Subarachnoid hemorrhage was induced in rats by injecting non-heparinized autologous blood to the cisterna magna. Increased intracranial pressure following subarachnoid hemorrhage was modeled by using artificial cerebrospinal fluid instead of blood. Subarachnoid hemorrhage and artificial cerebrospinal fluid animals were left to survive for 1, 3, 7 and 14 days. Immunohistochemical staining of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β, CCR2 and CX3CR1 was performed on the cryostat sections of choroid plexus tissue. The level of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β was detected by measuring immunofluorescence intensity in randomly selected epithelial cells. The number of CCR2 and CX3CR1 positive cells per choroid plexus area was manually counted. Immunohistochemical changes were confirmed by Western blot analyses. Results Immunohistochemical methods and Western blot showed increased levels of TLR9 and a slight increase in TLR4 and FRP2 following both subarachnoid hemorrhage as well as the application of artificial cerebrospinal fluid over time, although the individual periods were different. The levels of TNFα and IL-1β increased, while CCL2 level decreased slightly. Accumulation of macrophages positive for CCR2 and CX3CR1 was found in all periods after subarachnoid hemorrhage as well as after the application of artificial cerebrospinal fluid. Discussion Our results suggest that the inflammation develops in the choroid plexus and blood-cerebrospinal fluid barrier in response to blood components as well as acutely increased intracranial pressure following subarachnoid hemorrhage. These pro-inflammatory changes include accumulation in the choroid plexus of pro-inflammatory cytokines, innate immune receptors, and monocyte-derived macrophages.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurosurgery, St. Anne’s University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Václav Brázda
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Martin Bareš
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alemeh Zamani
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Parisa EmamiAref
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Andrea Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucie Kubíčková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Erik Kročka
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Klaudia Hašanová
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
4
|
Wang S, Qin M, Fan X, Jiang C, Hou Q, Ye Z, Zhang X, Yang Y, Xiao J, Wallace K, Rastegar-Kashkooli Y, Peng Q, Jin D, Wang J, Wang M, Ding R, Tao J, Kim YT, Bhawal UK, Wang J, Chen X, Wang J. The role of metal ions in stroke: Current evidence and future perspectives. Ageing Res Rev 2024; 101:102498. [PMID: 39243890 DOI: 10.1016/j.arr.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Metal ions play a pivotal role in maintaining optimal brain function within the human body. Nevertheless, the accumulation of these ions can result in irregularities that lead to brain damage and dysfunction. Disruptions of metal ion homeostasis can result in various pathologies, including inflammation, redox dysregulation, and blood-brain barrier disruption. While research on metal ions has chiefly focused on neurodegenerative diseases, little attention has been given to their involvement in the onset and progression of stroke. Recent studies have identified cuproptosis and confirmed ferroptosis as significant factors in stroke pathology, underscoring the importance of metal ions in stroke pathology, including abnormal ion transport, neurotoxicity, blood-brain barrier damage, and cell death. Additionally, it provides an overview of contemporary metal ion chelators and detection techniques, which may offer novel approaches to stroke treatment.
Collapse
Affiliation(s)
- Shaoshuai Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Non-commissioned Officer School of Army Medical University, Shijiazhuang, Hebei 050000, China
| | - Mengzhe Qin
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Qingchuan Hou
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ziyi Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunfan Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingyu Xiao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kevin Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongqi Jin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India; Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
5
|
Fei X, Dou Y, Yang Y, Zheng B, Luo P, Dai S, Zhang J, Peng K, Jiang X, Yu Y, Wei J. Lipocalin-2 inhibition alleviates neural injury by microglia ferroptosis suppression after experimental intracerebral hemorrhage in mice via enhancing ferritin light chain expression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167435. [PMID: 39067535 DOI: 10.1016/j.bbadis.2024.167435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Microglia play pivotal roles in post-intracerebral hemorrhage (ICH) neural injury. Iron metabolism, which is dysregulated after ICH, participates in microglial dysfunction. Previous studies have shown that iron metabolism-related lipocalin-2 (LCN2) is involved in regulating microglial function following ICH. In this study, we investigated the role of LCN2 in microglial function following ICH. METHODS The BV2 (microglia) cell line, transfected with LCN2 for overexpression/interference, received a blood infusion from C57BL/6 mice in vitro. For the in vivo study of LCN2 function, an LCN2 knockout was conducted in mice. Liproxstatin-1 and RSL3 were used to manipulate ferroptosis and to study the effects of LCN2 on microglia after ICH. A BV2 (microglia) cell line, transfected with ferritin light chain (FTL) for overexpression/interference, was co-cultured with primary cultured neurons for a study on the mechanism of LCN2. Behavioral tests were conducted pre-ICH and on days 3, 7, and 28 post-ICH, and the brains and cultured cells were collected for protein, histological, and morphological studies. RESULTS Brain LCN2 expression was upregulated in microglia, astrocytes, and neurons and played hazardous roles after ICH. In microglia, LCN2 promoted ferroptosis, which facilitated neural injury after ICH. LCN2-mediated FTL deficiency was shown to be responsible for microglial ferroptosis-induced neural injury. CONCLUSION Our study suggests that LCN2-enhanced microglial ferroptosis plays a detrimental role by inducing FTL deficiency after ICH. The current study reveals a novel molecular mechanism involved in the pathophysiological progression of ICH.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuefan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Buyi Zheng
- Department of Neurosurgery, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Peng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Health Service, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
6
|
Sun Y, Sun W, Liu J, Zhang B, Zheng L, Zou W. The dual role of microglia in intracerebral hemorrhage. Behav Brain Res 2024; 473:115198. [PMID: 39128628 DOI: 10.1016/j.bbr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Intracerebral hemorrhage has the characteristics of high morbidity, disability and mortality, which has caused a heavy burden to families and society. Microglia are resident immune cells in the central nervous system, and their activation plays a dual role in tissue damage after intracerebral hemorrhage. The damage in cerebral hemorrhage is embodied in the following aspects: releasing inflammatory factors and inflammatory mediators, triggering programmed cell death, producing glutamate induced excitotoxicity, and destroying blood-brain barrier; The protective effect is reflected in the phagocytosis and clearance of harmful substances by microglia, and the secretion of anti-inflammatory and neurotrophic factors. This article summarizes the function of microglia and its dual regulatory mechanism in intracerebral hemorrhage. In the future, drugs, acupuncture and other clinical treatments can be used to intervene in the activation state of microglia, so as to reduce the harm of microglia.
Collapse
Affiliation(s)
- Yue Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Wentao Sun
- Faculty of Chinese Medicine Sciense Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Jiawei Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Baiwen Zhang
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lei Zheng
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
7
|
Zhu L, Shang J, Li Y, Zhang Z, Fu P, Zong Y, Chen S, Wang J, Zhang J, Wang J, Jiang C. Toll-Like Receptors Mediate Opposing Dendritic Cell Effects on Treg/Th17 Balance in Mice With Intracerebral Hemorrhage. Stroke 2024; 55:2126-2138. [PMID: 38920054 DOI: 10.1161/strokeaha.124.046394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Dendritic cells (DCs) regulate the immune response associated with T lymphocytes, but their role in stroke remains unclear. In this study, we investigated the causal relationship between DCs and T-cell response in intracerebral hemorrhage (ICH) by focusing on TLRs (toll-like receptors) that may modulate the function of DCs. METHODS We studied the effects of TLR4, TLR2, and TLR9 on DC-mediated T-cell response and the outcomes of ICH using male C57BL/6 and CD11c-DTx (diphtheria toxin) receptor mice. We administered specific agents intraperitoneally or orally and evaluated the results using flow cytometry, real-time polymerase chain reaction, Western blotting, immunofluorescence staining, histopathology, and behavioral tests. RESULTS TLR4 and TLR2 activation induces DC maturation and reduces the ratio of regulatory T to T-helper 17 cells in the brain and periphery after ICH. When either of these receptors is activated, it can worsen neuroinflammation and exacerbate ICH outcomes. TLR9 also promotes DC maturation, stabilizing the number of DCs, particularly conventional DCs. TLR9 has the opposite effects on regulatory T/T-helper 17 balance, neuroinflammation, and ICH outcomes compared with TLR4 and TLR2. Upon stimulation, TLR4 and TLR9 may achieve these effects through the p38-MAPK (p38-mitogen-activated protein kinase)/MyD88 (myeloid differentiation primary response gene 88) and indoleamine 2,3-dioxygenase 1 (IDO1)/GCN2 (general control nonderepressible 2) signaling pathways, respectively. DCs act as intermediaries for TLR-mediated T-cell response. CONCLUSIONS TLR-mediated opposing effects of DCs on T-cell response may provide novel strategies to treat ICH.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Junkui Shang
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| | - Yinuo Li
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Zhiying Zhang
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Peiji Fu
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Yan Zong
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Shuai Chen
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, China (Junmin Wang, Jian Wang)
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| | - Jian Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, China (Junmin Wang, Jian Wang)
| | - Chao Jiang
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| |
Collapse
|
8
|
Li Q, Wang B, Yang J, Wang Y, Duan F, Luo M, Zhao C, Wei W, Wang L, Liu S. Preliminary Analysis of Aging-Related Genes in Intracerebral Hemorrhage by Integration of Bulk and Single-Cell RNA Sequencing Technology. Int J Gen Med 2024; 17:2719-2740. [PMID: 38883702 PMCID: PMC11180471 DOI: 10.2147/ijgm.s457480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Background Aging is recognized as the key risk for intracerebral hemorrhage (ICH). The detailed mechanisms of aging in ICH warrant exploration. This study aimed to identify potential aging-related genes associated with ICH. Methods ICH-specific aging-related genes were determined by the intersection of differentially expressed genes (DEGs) between perihematomal tissues and corresponding contralateral parts of four patients with ICH (GSE24265) and 349 aging-related genes obtained from the Aging Atlas database. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) analyses were performed to identify the potential biological functions and pathways in which these ICH-specific aging-related genes may be involved. Then, PPI network was established to identify the hub genes of ICH-specific aging-related genes. Meanwhile, miRNA-mRNA and transcription factor (TF)-mRNA regulatory networks were constructed to further explore the ICH-specific aging-related genes regulation. The relationship between these hub genes and immune infiltration was also further explored. Additional single-cell RNA-seq analysis (scRNA-seq, GSE167593) was used to locate the hub genes in different cell types. Besides, expression levels of the hub genes were validated using clinical samples from our institute and another GEO dataset (GSE206971). Results This study identified 24 ICH-specific aging-related genes, including 22 up-regulated and 2 down-regulated genes. The results of GO and KEGG suggested that the ICH-specific aging-related genes mainly enriched in immunity and inflammation-related pathways, suggesting that aging may affect the ich pathogenesis by regulating inflammatory and immune-related pathways. Conclusion Our study revealed 24 ICH-specific aging-related genes and their functions highly pertinent to ICH pathogenesis, providing new insights into the impact of aging on ICH.
Collapse
Affiliation(s)
- Qianfeng Li
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Bo Wang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jun Yang
- Huanggang Central Hospital of Yangtze University, Huanggang, People's Republic of China
| | - Yuan Wang
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Faliang Duan
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Ming Luo
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Chungang Zhao
- Jilin Jianda Modern Agricultural Research Institute, Changchun, People's Republic of China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lei Wang
- Huanggang Central Hospital of Yangtze University, Huanggang, People's Republic of China
| | - Sha Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
9
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
10
|
Jiang T, Wang J, Wang Y, Jiang J, Zhou J, Wang X, Zhang D, Xu J. Mitochondrial protein prohibitin promotes learning memory recovery in mice following intracerebral hemorrhage via CAMKII/CRMP signaling pathway. Neurochem Int 2023; 171:105637. [PMID: 37923298 DOI: 10.1016/j.neuint.2023.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Prohibitin (PHB) is a mitochondrial inner membrane protein with neuroprotective, antioxidant, and apoptosis-reducing effects. This study aimed to explore the role of PHB in pathological symptoms, behavioral deficits, and cognitive impairment in a collagenase-IV-induced intracerebral hemorrhage (ICH) murine model. In this study, mice that received collagenase IV injection were pretreated with PHB or saline 21 days prior to modeling. The role of PHB in memory and learning ability was monitored using the Morris water maze, Y-maze, and rotarod, social, startle, and nest-building tests. The effect of PHB on depression-like symptoms was examined using the forced swimming, tail suspension, and sucrose preference tests. Subsequently, mouse samples were analyzed using immunohistochemistry, western blotting, Perls staining, Nissl staining, and gene sequencing. Results showed that collagenase IV significantly induced behavioral deficits, brain edema, cognitive impairment, and depressive symptoms. PHB overexpression effectively alleviated memory, learning, and motor deficits in mice with ICH. PHB markedly inhibited the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive cells and protein levels of ionized calcium-binding adapter molecule 1, glial fibrillary acidic protein, and interleukin-1β in the perihematomal region of ICH mice. PHB overexpression also remarkably promoted production of neurologin1 (NLGL1), and upregulated levels of Ca2+-calmodulin-dependent kinase II (CaMKII) and collapsin response mediator protein-1 (CRMP1) proteins. In conclusion, PHB overexpression can effectively alleviate the neurological deficits and neurodegeneration around the hematoma region. This may play a protective role by upregulating the expression of NLGL1 and promoting expression of CaMKII and CRMP1.
Collapse
Affiliation(s)
- Tianlin Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Jiahua Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Department of Anesthesia, Affiliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, YangZhou, 225001, China
| | - Xiaohong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, YangZhou, 225001, China.
| | - Deke Zhang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia district, Jinan City, Shandong Province, China.
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Fu P, Zhang M, Wu M, Zhou W, Yin X, Chen Z, Dan C. Research progress of endogenous hematoma absorption after intracerebral hemorrhage. Front Neurol 2023; 14:1115726. [PMID: 36970539 PMCID: PMC10036389 DOI: 10.3389/fneur.2023.1115726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Non-traumatic intraparenchymal brain hemorrhage is referred to as intracerebral hemorrhage (ICH). Although ICH is associated with a high rate of disability and case fatality, active intervention can significantly lower the rate of severe disability. Studies have shown that the speed of hematoma clearance after ICH determines the patient's prognosis. Following ICH, depending on the hematoma volume and mass effect, either surgical- or medication-only conservative treatment is chosen. The goal of promoting endogenous hematoma absorption is more relevant because surgery is only appropriate for a small percentage of patients, and open surgery can cause additional trauma to patients. The primary method of removing hematoma after ICH in the future will involve understanding how to produce and manage macrophage/microglial endogenous phagocytic hematomas. Therefore, it is necessary to elucidate the regulatory mechanisms and key targets for clinical purposes.
Collapse
Affiliation(s)
- Peijie Fu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Manqing Zhang
- Medical College of Jiujiang University, Jiujiang, Jiangxi, China
| | - Moxin Wu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weixin Zhou
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Chuanjun Dan
- Emergency Department, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
12
|
Li G, Wang S, Xiong Y, Gu H, Jiang Y, Yang X, Wang C, Wang C, Li Z, Zhao X. Higher fasting blood glucose was associated with worse in-hospital clinical outcomes in patients with primary intracerebral hemorrhage: From a large-scale nationwide longitudinal registry. CNS Neurosci Ther 2022; 28:2260-2267. [PMID: 36152306 PMCID: PMC9627374 DOI: 10.1111/cns.13972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Studies that investigated the relationship between fasting blood glucose (FBG) and intracerebral hemorrhage (ICH) outcomes were insufficient. AIM We aimed to investigate the association between FBG level and in-hospital clinical outcomes in patients with primary ICH. RESULTS A total of 34,507 patients were enrolled in the final study. Compared with the reference group, the ≥6.1 and <7 mmol/L group showed nonsignificant higher in-hospital mortality (adjusted odds ratio [OR] 1.20, 95% confidence interval [CI] 0.69-2.11, p = 0.52), and a significant higher proportion of intracranial hematoma evacuation (adjusted OR 1.56, 95% CI 1.26-1.92, p < 0.001). The ≥7 mmol/L group showed both significant higher in-hospital mortality (adjusted OR 2.08, 95% CI 1.42-3.04, p = 0.52) and a significant higher proportion of intracranial hematoma evacuation (adjusted OR 2.09, 95% CI 1.78-2.47, p < 0.001). CONCLUSION Higher FBG level was correlated with both higher mortality and proportion of evacuation of intracranial hematoma.
Collapse
Affiliation(s)
- Guangshuo Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shang Wang
- Neurocardiology Center, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yunyun Xiong
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Chinese Institute for Brain ResearchBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Hongqiu Gu
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingyu Jiang
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xin Yang
- China National Clinical Research Center for Neurological DiseasesBeijingChina,National Center for Healthcare Quality Management in Neurological DiseasesBeijingChina
| | - Chunjuan Wang
- China National Clinical Research Center for Neurological DiseasesBeijingChina,National Center for Healthcare Quality Management in Neurological DiseasesBeijingChina
| | - Chuanying Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Chinese Institute for Brain ResearchBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|