1
|
Nie W, Yue Y, Hu J. The role of monocytes and macrophages in the progression of Alzheimer's disease. Front Immunol 2025; 16:1590909. [PMID: 40364847 PMCID: PMC12069055 DOI: 10.3389/fimmu.2025.1590909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles (NFTs), and neuroinflammation. Monocytes and macrophages, particularly microglia, play a dual role in AD pathogenesis. In the early stages, they delay disease progression by phagocytosing Aβ, but chronic activation leads to Aβ accumulation and exacerbated neuroinflammation. Monocyte chemoattractant protein 1 (MCP-1) is a key regulator in neuroinflammation, Aβ deposition, and tau pathology, making it a potential therapeutic target. Moreover, recent breakthroughs in fluid and imaging biomarkers and targeted immunomodulatory agents underscore the growing importance of early diagnostic and therapeutic interventions. This review explores the complex interplay between monocytes, macrophages, and AD pathology, highlighting their roles in neuroinflammation, Aβ metabolism, and tau phosphorylation. Understanding these mechanisms offers new insights into developing effective diagnostic biomarkers and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Wenyi Nie
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yingbin Yue
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Jingqing Hu
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Zhan X, Wang S, Bèchet N, Gouras G, Wen G. Perivascular macrophages in the central nervous system: insights into their roles in health and disease. Cell Death Dis 2025; 16:350. [PMID: 40295513 PMCID: PMC12037809 DOI: 10.1038/s41419-025-07592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Perivascular macrophages (PVMs) are a specialized subset of macrophages situated near blood vessels in the brain. Their strategic positioning around these vessels enables them to perform key functions in immune surveillance and response to inflammation and injury. These cells are crucial for modulating the immune response within the brain, contributing to normal central nervous system (CNS) processes. In pathological conditions, the role of PVMs becomes more complex. Depending on the specific disease or injury, they may contribute to inflammation, blood-brain barrier (BBB) dysfunction, and the clearance of abnormal materials. PVMs are implicated in degenerative diseases, cerebrovascular impairment, and microhemorrhages associated with amyloid-β immunotherapy. Despite their important roles in the CNS, research on PVMs remains limited, and the mechanisms underlying their involvement in both physiological and pathological processes within the brain are not yet fully elucidated. Therefore, this review will focus on the current advancements in PVM research, including their origin, classification, roles in neuroinflammation and neuroprotection, and their potential roles as therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoni Zhan
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Shuying Wang
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Nicholas Bèchet
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Gunnar Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China.
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Fuse H, Zheng Y, Alzoubi I, Graeber MB. TAMing Gliomas: Unraveling the Roles of Iba1 and CD163 in Glioblastoma. Cancers (Basel) 2025; 17:1457. [PMID: 40361384 PMCID: PMC12070867 DOI: 10.3390/cancers17091457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Gliomas, the most common type of primary brain tumor, are a significant cause of morbidity and mortality worldwide. Glioblastoma, a highly malignant subtype, is particularly common, aggressive, and resistant to treatment. The tumor microenvironment (TME) of gliomas, especially glioblastomas, is characterized by a distinct presence of tumor-associated macrophages (TAMs), which densely infiltrate glioblastomas, a hallmark of these tumors. This macrophage population comprises both tissue-resident microglia as well as macrophages derived from the walls of blood vessels and the blood stream. Ionized calcium-binding adapter molecule 1 (Iba1) and CD163 are established cellular markers that enable the identification and functional characterization of these cells within the TME. This review provides an in-depth examination of the roles of Iba1 and CD163 in malignant gliomas, with a focus on TAM activation, migration, and immunomodulatory functions. Additionally, we will discuss how recent advances in AI-enhanced cell identification and visualization techniques have begun to transform the analysis of TAMs, promising unprecedented precision in their characterization and providing new insights into their roles within the TME. Iba1 and CD163 appear to have both unique and shared roles in glioma pathobiology, and both have the potential to be targeted through different molecular and cellular mechanisms. We discuss the therapeutic potential of Iba1 and CD163 based on available preclinical (experimental) and clinical (human tissue-based) evidence.
Collapse
Affiliation(s)
- Haneya Fuse
- School of Medicine, Sydney Campus, University of Notre Dame, 160 Oxford Street, Sydney, NSW 2010, Australia;
| | - Yuqi Zheng
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia;
| | - Islam Alzoubi
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Sydney, NSW 2008, Australia;
| | - Manuel B. Graeber
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia;
- University of Sydney Association of Professors (USAP), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Hattori Y. Microglial colonization routes and their impacts on cellular diversity. Neurosci Res 2025:S0168-0102(25)00078-1. [PMID: 40288616 DOI: 10.1016/j.neures.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Microglia are the resident immune cells of the central nervous system. Unlike other glial cells-such as astrocytes and oligodendrocytes-which originate from neural stem cells alongside neurons, microglia derive from erythromyeloid progenitors that emerge in the yolk sac during early embryonic development. Once they reach the brain, microglia expand their population through proliferation during development. A growing body of research has revealed that microglia play diverse roles throughout life, both in physiological and pathological contexts. With recent advancements in single-cell transcriptomics, it has become increasingly evident that microglia exhibit substantial heterogeneity in their gene expression patterns. While various functions and subtypes of microglia are being uncovered, the mechanisms underlying their diversity remain largely unknown. Two key hypotheses may explain how microglial diversity arises. One possibility is that their diversity is influenced by the different colonization routes they take before settling in the brain. Alternatively, microglia may acquire distinct properties in response to their local environment. This review explores both possibilities, with a particular focus on the first hypothesis, drawing on recent findings that highlight the multiple routes microglia utilize to colonize the brain. It discusses how these processes contribute to the establishment of microglial diversity during brain development.
Collapse
Affiliation(s)
- Yuki Hattori
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan.
| |
Collapse
|
5
|
Wen C, Gan JH, Liu S, Lu H, Wang LC, Wu H, Shi ZH, Ji Y. Enlarged perivascular spaces correlate with blood-brain barrier leakage and cognitive impairment in Alzheimer's disease. J Alzheimers Dis 2025; 104:382-392. [PMID: 39924914 DOI: 10.1177/13872877251317220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
BackgroundThe clinical significance of enlarged perivascular spaces (EPVS) in Alzheimer' s disease (AD) was ambiguous.ObjectiveTo investigate whether EPVS contribute to blood-brain barrier (BBB) leakage and cognition in AD.MethodsThe study included a total of 64 participants (26 healthy controls and 38 patients with AD). The evaluation of EPVS and BBB permeability was performed in specific anatomical locations: the centrum semiovale (CSO), basal ganglia, and hippocampus. The EPVS ratings were performed according to Potter's instructions. BBB permeability was evaluated using dynamic contrast-enhanced-MRI. The relationship between EPVS and global cognition (Mini-Mental State Examination and Montreal Cognitive Assessment), cognitive subdomains, and BBB permeability were examined in both groups. Finally, the relationship between CSO BBB permeability and cognition in AD patients was investigated.ResultsHigh-grade CSO EPVS was found associated with AD (OR: 3.40, 95% CI: 1.11-11.90, p = 0.04). In the AD group, a significant correlation was observed between high-grade CSO EPVS and lower MMSE score (r = -0.36, p = 0.03) and verbal fluency (r = -0.44, p = 0.01). High-grade CSO EPVS positively correlated with BBB leakage (r = 0.58, p < 0.001). The BBB permeability of CSO negatively correlated with verbal fluency (r = -0.52, p < 0.001) and attention (r = -0.40, p = 0.01).ConclusionsHigh-grade CSO EPVS is related to BBB leakage, which contributes to cognitive impairment in AD patients, especially verbal frequency. CSO EPVS can function as a convenient AD marker for intervention and therapy.
Collapse
Affiliation(s)
- Chen Wen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing-Huan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Hao Lu
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Li-Chen Wang
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Zhi-Hong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| | - Yong Ji
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, China
| |
Collapse
|
6
|
Dreier JP, Joerk A, Uchikawa H, Horst V, Lemale CL, Radbruch H, McBride DW, Vajkoczy P, Schneider UC, Xu R. All Three Supersystems-Nervous, Vascular, and Immune-Contribute to the Cortical Infarcts After Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:96-118. [PMID: 38689162 PMCID: PMC11772491 DOI: 10.1007/s12975-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
The recently published DISCHARGE-1 trial supports the observations of earlier autopsy and neuroimaging studies that almost 70% of all focal brain damage after aneurysmal subarachnoid hemorrhage are anemic infarcts of the cortex, often also affecting the white matter immediately below. The infarcts are not limited by the usual vascular territories. About two-fifths of the ischemic damage occurs within ~ 48 h; the remaining three-fifths are delayed (within ~ 3 weeks). Using neuromonitoring technology in combination with longitudinal neuroimaging, the entire sequence of both early and delayed cortical infarct development after subarachnoid hemorrhage has recently been recorded in patients. Characteristically, cortical infarcts are caused by acute severe vasospastic events, so-called spreading ischemia, triggered by spontaneously occurring spreading depolarization. In locations where a spreading depolarization passes through, cerebral blood flow can drastically drop within a few seconds and remain suppressed for minutes or even hours, often followed by high-amplitude, sustained hyperemia. In spreading depolarization, neurons lead the event, and the other cells of the neurovascular unit (endothelium, vascular smooth muscle, pericytes, astrocytes, microglia, oligodendrocytes) follow. However, dysregulation in cells of all three supersystems-nervous, vascular, and immune-is very likely involved in the dysfunction of the neurovascular unit underlying spreading ischemia. It is assumed that subarachnoid blood, which lies directly on the cortex and enters the parenchyma via glymphatic channels, triggers these dysregulations. This review discusses the neuroglial, neurovascular, and neuroimmunological dysregulations in the context of spreading depolarization and spreading ischemia as critical elements in the pathogenesis of cortical infarcts after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Alexander Joerk
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hiroki Uchikawa
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Cantonal Hospital of Lucerne and University of Lucerne, Lucerne, Switzerland
| | - Ran Xu
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| |
Collapse
|
7
|
Pang B, Wu L, Peng Y. In vitro modelling of the neurovascular unit for ischemic stroke research: Emphasis on human cell applications and 3D model design. Exp Neurol 2024; 381:114942. [PMID: 39222766 DOI: 10.1016/j.expneurol.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke has garnered global medical attention as one of the most serious cerebrovascular diseases. The mechanisms involved in both the development and recovery phases of ischemic stroke are complex, involving intricate interactions among different types of cells, each with its own unique functions. To better understand the possible pathogenesis, neurovascular unit (NVU), a concept comprising neurons, endothelial cells, mural cells, glial cells, and extracellular matrix components, has been used in analysing various brain diseases, particularly in ischemic stroke, aiming to depict the interactions between cerebral vasculature and neural cells. While in vivo models often face limitations in terms of reproducibility and the ability to precisely mimic human pathophysiology, it is now important to establish in vitro NVU models for ischemic stroke research. In order to accurately portray the pathological processes occurring within the brain, a diverse array of NVU 2D and 3D in vitro models, each possessing unique characteristics and advantages, have been meticulously developed. This review presents a comprehensive overview of recent advancements in in vitro models specifically tailored for investigating ischemic stroke. Through a systematic categorization of these developments, we elucidate the intricate links between NVU components and the pathogenesis of ischemic stroke. Furthermore, we explore the distinct advantages offered by innovative NVU models, notably 3D models, which closely emulate in vivo conditions. Additionally, an examination of current therapeutic modalities for ischemic stroke developed utilizing in vitro NVU models is provided. Serving as a valuable reference, this review aids in the design and implementation of effective in vitro models for ischemic stroke research.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
8
|
Kim D, Gil J, Bae ON. PM2.5 potentiates oxygen glucose deprivation-induced neurovascular unit damage via inhibition of the Akt/β-catenin pathway and autophagy dysregulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124728. [PMID: 39147226 DOI: 10.1016/j.envpol.2024.124728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Air pollution has recently emerged as a significant risk factor for ischemic stroke. Although there is a robust association between higher concentrations of ambient particulate matter (PM2.5) and increased incidence and mortality rates of ischemic stroke, the precise mechanisms underlying PM2.5-induced ischemic stroke remain to be fully elucidated. The purpose of this study was to examine the synergistic effect of PM2.5 and hypoxic stress using in vivo and in vitro ischemic stroke models. Intravenously administered PM2.5 exacerbated the ischemic brain damage induced by middle cerebral artery occlusion (MCAo) in Sprague Dawley rats. Alterations in autophagy flux and decreased levels of tight junction proteins were observed in the brain of PM2.5-administered rats after MCAo. The underlying mechanism of PM2.5-induced potentiation of ischemic brain damage was investigated in neurons, perivascular macrophages, and brain endothelial cells, which are the major components of the integrated neurovascular unit. Co-treatment with PM2.5 and oxygen-glucose deprivation (OGD) amplified the effects of OGD on the reduction of viability in primary neurons, immortalized murine hippocampal neuron (HT-22), and brain endothelial cells (bEND.3). After co-treatment with PM2.5 and OGD, the Akt/β-catenin and autophagy flux were significantly inhibited in HT-22 cells. Notably, the protein levels of metalloproteinase-9 and cystatin C were elevated in the conditioned media of murine macrophages (RAW264.7) exposed to PM2.5, and tight junction protein expression was significantly decreased after OGD exposure in bEND.3 cells pretreated with the conditioned media. Our findings suggest that perivascular macrophages may mediate PM2.5-induced brain endothelial dysfunction following ischemia and that PM2.5 can exacerbate ischemia-induced neurovascular damage.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Junkyung Gil
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea.
| |
Collapse
|
9
|
Uchikawa H, Uekawa K, Hasegawa Y. Perivascular macrophages in cerebrovascular diseases. Exp Neurol 2024; 374:114680. [PMID: 38185314 DOI: 10.1016/j.expneurol.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cerebrovascular diseases are a major cause of stroke and dementia, both requiring long-term care. These diseases involve multiple pathophysiologies, with mitochondrial dysfunction being a crucial contributor to the initiation of inflammation, apoptosis, and oxidative stress, resulting in injuries to neurovascular units that include neuronal cell death, endothelial cell death, glial activation, and blood-brain barrier disruption. To maintain brain homeostasis against these pathogenic conditions, brain immune cells, including border-associated macrophages and microglia, play significant roles as brain innate immunity cells in the pathophysiology of cerebrovascular injury. Although microglia have long been recognized as significant contributors to neuroinflammation, attention has recently shifted to border-associated macrophages, such as perivascular macrophages (PVMs), which have been studied based on their crucial roles in the brain. These cells are strategically positioned around the walls of brain vessels, where they mainly perform critical functions, such as perivascular drainage, cerebrovascular flexibility, phagocytic activity, antigen presentation, activation of inflammatory responses, and preservation of blood-brain barrier integrity. Although PVMs act as scavenger and surveillant cells under normal conditions, these cells exert harmful effects under pathological conditions. PVMs detect mitochondrial dysfunction in injured cells and implement pathological changes to regulate brain homeostasis. Therefore, PVMs are promising as they play a significant role in mitochondrial dysfunction and, in turn, disrupt the homeostatic condition. Herein, we summarize the significant roles of PVMs in cerebrovascular diseases, especially ischemic and hemorrhagic stroke and dementia, mainly in correlation with inflammation. A better understanding of the biology and pathobiology of PVMs may lead to new insights on and therapeutic strategies for cerebrovascular diseases.
Collapse
Affiliation(s)
- Hiroki Uchikawa
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA; Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Ken Uekawa
- Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Yu Hasegawa
- Department of Pharmaceutical Science, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan.
| |
Collapse
|
10
|
Kaur J, Boyd ED, Ding G, Zhang L, Luo H, Li Q, Li L, Wei M, Landschoot-Ward J, Chopp M, Zhang Z, Jiang Q. The Association between Glymphatic System and Perivascular Macrophages in Brain Waste Clearance. Diagnostics (Basel) 2024; 14:731. [PMID: 38611644 PMCID: PMC11011895 DOI: 10.3390/diagnostics14070731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
The glymphatic system suggests the convective bulk flow of cerebrospinal fluid (CSF) through perivascular spaces and the interstitial spaces of the brain parenchyma for the rapid removal of toxic waste solutes from the brain. However, the presence of convective bulk flow within the brain interstitial spaces is still under debate. We first addressed this argument to determine the involvement of the glymphatic system in brain waste clearance utilizing contrast-enhanced 3D T1-weighted imaging (T1WI), diffusion tensor imaging (DTI), and confocal microscopy imaging. Furthermore, perivascular macrophages (PVMs), which are immune cells located within perivascular spaces, have not been thoroughly explored for their association with the glymphatic system. Therefore, we investigated tracer uptake by PVMs in the perivascular spaces of both the arteries/arterioles and veins/venules and the potential association of PVMs in assisting the glymphatic system for interstitial waste clearance. Our findings demonstrated that both convective bulk flow and diffusion are responsible for the clearance of interstitial waste solutes from the brain parenchyma. Furthermore, our results suggested that PVMs may play an important function in glymphatic system-mediated interstitial waste clearance. The glymphatic system and PVMs could be targeted to enhance interstitial waste clearance in patients with waste-associated neurological conditions and aging.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Edward D. Boyd
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Hao Luo
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
| | - Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
| | - Min Wei
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
| | - Julie Landschoot-Ward
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Neurology, Wayne State University, Detroit, MI 48202, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Neurology, Wayne State University, Detroit, MI 48202, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Neurology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
11
|
Osorio-Valencia S, Zhou B. Roles of Macrophages and Endothelial Cells and Their Crosstalk in Acute Lung Injury. Biomedicines 2024; 12:632. [PMID: 38540245 PMCID: PMC10968255 DOI: 10.3390/biomedicines12030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 11/11/2024] Open
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), present life-threatening conditions characterized by inflammation and endothelial injury, leading to increased vascular permeability and lung edema. Key players in the pathogenesis and resolution of ALI are macrophages (Mφs) and endothelial cells (ECs). The crosstalk between these two cell types has emerged as a significant focus for potential therapeutic interventions in ALI. This review provides a brief overview of the roles of Mφs and ECs and their interplay in ALI/ARDS. Moreover, it highlights the significance of investigating perivascular macrophages (PVMs) and immunomodulatory endothelial cells (IMECs) as crucial participants in the Mφ-EC crosstalk. This sheds light on the pathogenesis of ALI and paves the way for innovative treatment approaches.
Collapse
Affiliation(s)
| | - Bisheng Zhou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|
12
|
García-Culebras A, Cuartero MI, Peña-Martínez C, Moraga A, Vázquez-Reyes S, de Castro-Millán FJ, Cortes-Canteli M, Lizasoain I, Moro MÁ. Myeloid cells in vascular dementia and Alzheimer's disease: Possible therapeutic targets? Br J Pharmacol 2024; 181:777-798. [PMID: 37282844 DOI: 10.1111/bph.16159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Growing evidence supports the suggestion that the peripheral immune system plays a role in different pathologies associated with cognitive impairment, such as vascular dementia (VD) or Alzheimer's disease (AD). The aim of this review is to summarize, within the peripheral immune system, the implications of different types of myeloid cells in AD and VD, with a special focus on post-stroke cognitive impairment and dementia (PSCID). We will review the contributions of the myeloid lineage, from peripheral cells (neutrophils, platelets, monocytes and monocyte-derived macrophages) to central nervous system (CNS)-associated cells (perivascular macrophages and microglia). Finally, we will evaluate different potential strategies for pharmacological modulation of pathological processes mediated by myeloid cell subsets, with an emphasis on neutrophils, their interaction with platelets and the process of immunothrombosis that triggers neutrophil-dependent capillary stall and hypoperfusion, as possible effector mechanisms that may pave the way to novel therapeutic avenues to stop dementia, the epidemic of our time. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Alicia García-Culebras
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - María Isabel Cuartero
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Carolina Peña-Martínez
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Sandra Vázquez-Reyes
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Francisco Javier de Castro-Millán
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Marta Cortes-Canteli
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
13
|
Kaur J, Boyd E, Ding G, Zhang L, Luo H, Li Q, Li L, Wei M, Landschoot-Ward J, Chopp M, Zhang Z, Jiang Q. The Association between Glymphatic System and Perivascular Macrophages in Brain Waste Clearance. RESEARCH SQUARE 2023:rs.3.rs-3390074. [PMID: 37886481 PMCID: PMC10602168 DOI: 10.21203/rs.3.rs-3390074/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The glymphatic system suggests the convective bulk flow of cerebrospinal fluid (CSF) through perivascular spaces and the interstitial spaces of the brain parenchyma for the rapid removal of toxic waste solutes from the brain. However, the presence of convective bulk flow within the brain interstitial spaces is still under debate. We first addressed this argument to determine the involvement of the glymphatic system in brain waste clearance utilizing contrast-enhanced 3D T1-weighted imaging (T1WI), diffusion tensor imaging (DTI), and confocal microscopy imaging. Furthermore, perivascular macrophages (PVMs), which are immune cells located within perivascular spaces, have not been thoroughly explored for their association with the glymphatic system. Therefore, we investigated tracer uptake by PVMs in the perivascular spaces of both the arteries/arterioles and veins/venules and the potential association of PVMs in assisting the glymphatic system for interstitial waste clearance. Our findings demonstrated that both convective bulk flow and diffusion are responsible for the clearance of interstitial waste solutes from the brain parenchyma. Furthermore, our results suggested that PVMs play an important function in glymphatic system-mediated interstitial waste clearance. The glymphatic system and PVMs could be targeted to enhance interstitial waste clearance in patients with waste-associated neurological conditions and aging.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Edward Boyd
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Michigan State University, Lasing, MI, USA
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Michigan State University, Lasing, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
| | - Hao Luo
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Min Wei
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Radiology, Michigan State University, Lasing, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
14
|
Uchikawa H, Kameno K, Kai K, Kajiwara S, Fujimori K, Uekawa K, Fujiwara Y, Mukasa A, Kim-Mitsuyama S, Hasegawa Y. Pretreatment with Clodronate Improved Neurological Function by Preventing Reduction of Posthemorrhagic Cerebral Blood Flow in Experimental Subarachnoid Hemorrhage. Neurocrit Care 2023; 39:207-217. [PMID: 37308726 DOI: 10.1007/s12028-023-01754-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Brain perivascular macrophages (PVMs) are potential treatment targets for subarachnoid hemorrhage (SAH), and previous studies revealed that their depletion by clodronate (CLD) improved outcomes after experimental SAH. However, the underlying mechanisms are not well understood. Therefore, we investigated whether reducing PVMs by CLD pretreatment improves SAH prognosis by inhibiting posthemorrhagic impairment of cerebral blood flow (CBF). METHODS In total, 80 male Sprague-Dawley rats received an intracerebroventricular injection of the vehicle (liposomes) or CLD. Subsequently, the rats were categorized into the prechiasmatic saline injection (sham) and blood injection (SAH) groups after 72 h. We assessed its effects on weak and severe SAH, which were induced by 200- and 300-µL arterial blood injections, respectively. In addition, neurological function at 72 h and CBF changes from before the intervention to 5 min after were assessed in rats after sham/SAH induction as the primary and secondary end points, respectively. RESULTS CLD significantly reduced PVMs before SAH induction. Although pretreatment with CLD in the weak SAH group provided no additive effects on the primary end point, rats in the severe SAH group showed significant improvement in the rotarod test. In the severe SAH group, CLD inhibited acute reduction of CBF and tended to decrease hypoxia-inducible factor 1α expression. Furthermore, CLD reduced the number of PVMs in rats subjected to sham and SAH surgery, although no effects were observed in oxidative stress and inflammation. CONCLUSIONS Our study proposes that pretreatment with CLD-targeting PVMs can improve the prognosis of severe SAH through a candidate mechanism of inhibition of posthemorrhagic CBF reduction.
Collapse
Affiliation(s)
- Hiroki Uchikawa
- Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Koki Kameno
- Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
- Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Keitaro Kai
- Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Sosho Kajiwara
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan
| | - Kana Fujimori
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan
| | - Ken Uekawa
- Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shokei Kim-Mitsuyama
- Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yu Hasegawa
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan.
- Department of Pharmaceutical Science, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Japan.
| |
Collapse
|
15
|
Han S, Oh D, Xie J, Nauwynck HJ. Susceptibility of perivenous macrophages to PRRSV-1 subtype 1 LV and PRRSV-1 subtype 3 Lena using a new vein explant model. Front Cell Infect Microbiol 2023; 13:1223530. [PMID: 37554354 PMCID: PMC10406384 DOI: 10.3389/fcimb.2023.1223530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Vessel pathology such as increased permeability and blue discoloration is frequently observed with highly pathogenic PRRSV strains. However, data concerning the viral replication in the environment of blood vessels are absent. In the present study, ex vivo models with swine ear and hind leg vein explants were established to study the interaction of PRRSV-1 subtype 1 reference strain LV and highly pathogenic subtype 3 strain Lena with perivenous macrophages. The replication characteristics of these two strains were compared in vein explants by immunofluorescence analysis. The explants maintained a good viability during 48 hours of in vitro culture. We found that CD163-positive macrophages were mainly present around the veins and their number gradually decreased with increasing distance from the veins and longer incubation time. More CD163+Sn- cells than CD163+Sn+ cells (6.6 times more) were observed in the vein explants. The Lena strain demonstrated a higher replication level than the LV strain, with approximately 1.4-fold more infected cells in the surrounding areas of the ear vein and 1.1-fold more infected cells in the leg vein explants at 48 hours post inoculation. In both LV and Lena inoculated vein explants, most infected cells were identified as CD163+Sn+ (> 94%). In this study, an ex vivo vein model was successfully established, and our findings will contribute to a better understanding of the vein pathology during viral infections (e.g., PRRS, classical and African swine fever).
Collapse
Affiliation(s)
- Shaojie Han
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | |
Collapse
|
16
|
Wang Y, Du W, Sun Y, Zhang J, Ma C, Jin X. CRTC1 is a potential target to delay aging-induced cognitive deficit by protecting the integrity of the blood-brain barrier via inhibiting inflammation. J Cereb Blood Flow Metab 2023; 43:1042-1059. [PMID: 37086081 PMCID: PMC10291461 DOI: 10.1177/0271678x231169133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Aging can cause attenuation in the functioning of multiple organs, and blood-brain barrier (BBB) breakdown could promote the occurrence of disorders of the central nervous system during aging. Since inflammation is considered to be an important factor underlying BBB injury during aging, vascular endothelial cell senescence serves as a critical pathological basis for the destruction of BBB integrity. In the current review, we have first introduced the concepts related to aging-induced cognitive deficit and BBB integrity damage. Thereafter, we reviewed the potential relationship between disruption of BBB integrity and cognition deficit and the role of inflammation, vascular endothelial cell senescence, and BBB injury. We have also briefly introduced the function of CREB-regulated transcription co-activator 1 (CRTC1) in cognition and aging-induced CRTC1 changes as well as the critical roles of CRTC1/cyclooxygenase-2 (COX-2) in regulating inflammation, endothelial cell senescence, and BBB injury. Finally, the underlying mechanisms have been summarized and we propose that CRTC1 could be a promising target to delay aging-induced cognitive deficit by protecting the integrity of BBB through promoting inhibition of inflammation-mediated endothelial cell senescence.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Hospital of Jiaxing City, Jiaxing, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfang Zhang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Chaolin Ma
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Endothelial Dysfunction in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24032909. [PMID: 36769234 PMCID: PMC9918222 DOI: 10.3390/ijms24032909] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The cerebral vascular system stringently regulates cerebral blood flow (CBF). The components of the blood-brain barrier (BBB) protect the brain from pathogenic infections and harmful substances, efflux waste, and exchange substances; however, diseases develop in cases of blood vessel injuries and BBB dysregulation. Vascular pathology is concurrent with the mechanisms underlying aging, Alzheimer's disease (AD), and vascular dementia (VaD), which suggests its involvement in these mechanisms. Therefore, in the present study, we reviewed the role of vascular dysfunction in aging and neurodegenerative diseases, particularly AD and VaD. During the development of the aforementioned diseases, changes occur in the cerebral blood vessel morphology and local cells, which, in turn, alter CBF, fluid dynamics, and vascular integrity. Chronic vascular inflammation and blood vessel dysregulation further exacerbate vascular dysfunction. Multitudinous pathogenic processes affect the cerebrovascular system, whose dysfunction causes cognitive impairment. Knowledge regarding the pathophysiology of vascular dysfunction in neurodegenerative diseases and the underlying molecular mechanisms may lead to the discovery of clinically relevant vascular biomarkers, which may facilitate vascular imaging for disease prevention and treatment.
Collapse
|