1
|
Xu C, Gu T, Liu B, Qu H, Liu Q, Zhang L, Yin A. Astrocytic N-myc downstream-regulated gene 2 is involved in neural injury induced by sepsis-associated encephalopathy. Exp Neurol 2025; 389:115229. [PMID: 40169107 DOI: 10.1016/j.expneurol.2025.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
SAE is a systemic inflammatory response syndrome resulting from severe infection, which can progress to multiorgan dysfunction and mortality. Astrocytic-specific NDRG2, a stress response gene, has been implicated in regulating astrocyte reactivity and glutamate homeostasis in various neurological disorders. In this study, we initially investigated the expression and functional role of NDRG2 in SAE. Our results demonstrated that the upregulation of NDRG2 primarily inhibited Na+/K+-ATPase β1 and EAAT2, subsequently leading to glutamate toxicity and then induced astrocyte activation, neuronal dysfunction, and cellular apoptosis, ultimately leading to cognitive impairment. The deficiency of NDRG2 significantly mitigated these detrimental changes, including astrocytic activation, impaired glutamate clearance, and cognitive deficits in SAE, partly through the modulation of Na+/K+-ATPase β1. Our findings may provide new strategies for the intervention and treatment of patients with SAE in the future.
Collapse
Affiliation(s)
- Chang Xu
- From the Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tingting Gu
- From the Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bingjie Liu
- From the Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haoran Qu
- From the Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingzhen Liu
- From the Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lidong Zhang
- From the Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Anqi Yin
- From the Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Wei S, Dai Z, Wu L, Xiang Z, Yang X, Jiang L, Du Z. Lactate-induced macrophage HMGB1 lactylation promotes neutrophil extracellular trap formation in sepsis-associated acute kidney injury. Cell Biol Toxicol 2025; 41:78. [PMID: 40304798 PMCID: PMC12043764 DOI: 10.1007/s10565-025-10026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/13/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Neutrophils play a key role in sepsis-associated acute kidney injury (SAKI), a common and life-threatening complication of organ failure. High mobility group box 1 (HMGB1) modulates inflammatory responses and the formation of neutrophil extracellular traps (NETs). The present work aimed to explore whether HMGB1 lactylation promotes NET formation and exacerbates SAKI. METHODS Venous blood samples were collected from healthy volunteers and SAKI patients. A SAKI mouse model was established using the cecal ligation and puncture method. A coculture system of macrophage-derived exosomes and neutrophils was established. Macrophage-derived exosomes were isolated and identified. ELISAs, immunofluorescence staining, coimmunoprecipitation, and Western blotting were utilized to determine protein levels. RESULTS Elevated blood lactate levels were associated with increased HMGB1 levels in patients with SAKI. In mouse models, lactate increased HMGB1 expression, promoted NET formation, and exacerbated SAKI. Lactate stimulated M1 macrophages to secrete exosomes, leading to the accumulation and release of HMGB1 in the cytoplasm. Additionally, lactate promoted HMGB1 lactylation in macrophages, triggering the release of mitochondrial DNA from neutrophils and activating the cyclic GMP‒AMP synthase/stimulator of interferon genes pathway. CONCLUSION This study revealed that lactate-induced HMGB1 lactylation in macrophages plays a role in promoting NET formation in SAKI through the cGAS/STING pathway. These findings suggest that HMGB1 could be a potential target for therapeutic intervention in SAKI.
Collapse
Affiliation(s)
- Siwei Wei
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China
| | - Zijuan Dai
- Department of Anesthesiology, The Fourth Hospital of Changsha (Affiliated Changsha Hospital of Hunan Normal University), Changsha City, Hunan Province, China
| | - Lei Wu
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China
| | - Zhen Xiang
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China
| | - Xiaoxiao Yang
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China
| | - Liubing Jiang
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China
| | - Zhen Du
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China.
| |
Collapse
|
3
|
Jiang F, Dong J, Han Y. Apelin-13 Ameliorates Sepsis-induced Brain Injury by Activating Phosphatase and Tensin Homolog-induced Putative Kinase 1/Parkin-mediated Mitophagy and Modulating Nucleotide-binding Oligomerization Domain-like Receptor Pyrin Domain-Containing 3-driven Pyroptosis in Rats. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025; 68:31-42. [PMID: 39774002 DOI: 10.4103/ejpi.ejpi-d-24-00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025]
Abstract
ABSTRACT Sepsis is a life-threatening condition that often results in severe brain injury, primarily due to excessive inflammation and mitochondrial dysfunction. This study aims to investigate the neuroprotective effects of Apelin-13, a bioactive peptide, in a rat model of sepsis-induced brain injury (SBI). Specifically, we examined the role of Apelin-13 in regulating mitophagy through the phosphatase and tensin homolog-induced putative kinase 1 (PINK1)/Parkin pathway and its impact on nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome-mediated pyroptosis and oxidative stress. A sepsis model was induced in male Sprague-Dawley rats ( n = 110, 200-230 g, 12 weeks old) through cecal ligation and puncture (CLP). The septic rats received Apelin-13 (20 μg/kg, intravenously), either alone or combined with mitochondrial division inhibitor-1 (Mdv-1), a mitophagy inhibitor, before undergoing CLP surgery. Survival rates were assessed over a 72-h period, while the cognitive function was evaluated using the Morris water maze over 5 days. Western blotting and immunohistochemistry were utilized to measure the expression levels of NLRP3, cleaved caspase-1, N-terminal fragment of gasdermin D, PINK1, and Parkin in the brains of the rats. In addition, enzyme-linked immunosorbent assays were conducted to evaluate markers of oxidative stress and inflammatory responses in brain samples. Apelin-13 significantly improved survival rates and cognitive function and mitigated brain injury in septic rats. The treatment enhanced PINK1/Parkin-mediated mitophagy and suppressed NLRP3 inflammasome activation, leading to a reduction in pyroptosis, inflammation, and oxidative stress. Inhibition of mitophagy by Mdv-1 significantly reversed the protective effects of Apelin-13 in septic rats. Our findings suggest that Apelin-13 provides neuroprotection in sepsis by modulating mitophagy and inhibiting pyroptosis. These results highlight the potential of Apelin-13 as a therapeutic strategy for SBI.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Emergency ICU, Jingdezhen Hospital of Traditional Chinese Medicine, Jingdezhen, China
| | - Junxia Dong
- Healthcare Clinic, Qingdao Municipal Hospital, Qingdao, China
| | - Yi Han
- Department of Emergency, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| |
Collapse
|
4
|
Liu Y, Guo L, Zhang G, Sun W, Yang X, Liu Y. Nogo-A exacerbates sepsis-associated encephalopathy by modulating microglial SHP-2/NLRP3 balance and inducing ROS and M1 polarization. BIOMOLECULES & BIOMEDICINE 2024; 25:210-225. [PMID: 39151100 PMCID: PMC11647263 DOI: 10.17305/bb.2024.10822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/18/2024]
Abstract
Sepsis, a systemic inflammatory response caused by infection, can lead to sepsis-associated encephalopathy (SAE), characterized by brain dysfunction without direct central nervous system infection. The pathogenesis of SAE involves blood-brain barrier disruption, neuroinflammation and neuronal death, with neuroinflammation being the core process. Nogo-A, a neurite growth-inhibitory protein in the central nervous system, is not well understood in sepsis. This study explores Nogo-A's mechanisms in sepsis, focusing on SAE. Using in vivo and in vitro methods, healthy SPF C57BL/6J male mice were divided into Sham, Nogo-A-NC-Model, and Nogo-A-KD-Model groups, with sepsis induced by abdominal ligation and puncture. Morris water maze tests assessed learning and memory, and brain tissues underwent hematoxylin-eosin (HE) staining, Nissl staining, and Western blot analysis. In vitro, Nogo-A gene knockdown models were constructed using BV-2 microglia cells to study inflammation and oxidative stress. Results showed Nogo-A expression affected learning and memory in septic mice, with knockdown reducing neuronal damage. Bioinformatics analysis suggested Nogo-A may activate reactive oxygen species (ROS) to inhibit p-SHP2, activating mitochondrial autophagy and promoting neuronal apoptosis. Western blot results confirmed that Nogo-A affects mitochondrial autophagy and neuronal survival by inhibiting SHP2 and activating ROS. Nogo-A's role in neuroinflammation and neuroprotection was emphasized, revealing its impact on endoplasmic reticulum (ER) stress, mitochondrial autophagy, and NLRP3 inflammasome activation. This study provides a theoretical basis for SAE treatment, suggesting further multi-gene and multi-pathway analyses and validation in clinical samples. Developing gene therapy and drug interventions targeting Nogo-A pathways will offer more effective treatment strategies.
Collapse
Affiliation(s)
- Ying Liu
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, China
| | - Lei Guo
- Department of Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Guoan Zhang
- University Nanobody Application Technology Research and Development Center of Hebei Provice, Cangzhou, China
| | - Wenjie Sun
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, China
| | - Xiaohui Yang
- University Nanobody Application Technology Research and Development Center of Hebei Provice, Cangzhou, China
| | - Yingfu Liu
- University Nanobody Application Technology Research and Development Center of Hebei Provice, Cangzhou, China
| |
Collapse
|
5
|
Noruzi M, Behmadi H, Sabzevari O, Foroumadi A, Ghahremani MH, Pourahmad J, Hassani S, Baeeri M, Gholami M, Ghahremanian A, Seyfi S, Taghizadeh G, Sharifzadeh M. Liraglutide alleviated alpha-pyrrolidinovalerophenone (α-PVP) induced cognitive deficits in rats by modifying brain mitochondrial impairment. Eur J Pharmacol 2024; 978:176776. [PMID: 38936451 DOI: 10.1016/j.ejphar.2024.176776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The use of NPS compounds is increasing, and impairment in spatial learning and memory is a growing concern. Alpha-pyrrolidinovalerophenone (α-PVP) consumption, as a commonly used NPS, can impair spatial learning and memory via the brain mitochondrial dysfunction mechanism. Liraglutide isone of the most well-known Glucagon-Like Peptide 1 (GLP-1) agonists that is used as an anti-diabetic and anti-obesity drug. According to current research, Liraglutide likely ameliorates cognitive impairment in neurodegenerative conditions and substance use disorders. Hence, the purpose of this study is examining the effect of Liraglutide on α-PVP-induced spatial learning and memory problems due to brain mitochondrial dysfunction. Wistar rats (8 in each group) received α-PVP (20 mg/kg/d for 10 consecutive days, intraperitoneally (I.P.)). Then, Liraglutide was administered at 47 and 94 μg/kg/d, I.P., for 4 weeks following the α-PVP administration. The Morris Water Maze (MWM) task evaluated spatial learning and memory 24 h after Liraglutide treatment. Bedside, brain mitochondrial activity parameters, including reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), cytochrome c release, mitochondrial outer membrane damage and swelling, and brain ADP/ATP ratio, were studied. Our results showed that Liraglutide ameliorated α-PVP-induced spatial learning and memory impairments through alleviating brain mitochondrial dysfunction (which is indicated by increasing ROS formation, collapsed MMP, mitochondrial outer membrane damage, cytochrome c release, mitochondrial swelling, and increased brain ADP/ATP ratio). This study could be used as a starting point for future studies about the possible role of Liraglutide in ameliorating mitochondrial dysfunction leading to substance use disorder- induced cognitive impairment.
Collapse
Affiliation(s)
- Marzieh Noruzi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Homayoon Behmadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, and Toxicology & Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, and Toxicology & Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhosein Ghahremanian
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Drug and Poision Information Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Seyfi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and Functional Alterations in the Cerebral Microvasculature in an Optimized Mouse Model of Sepsis-Associated Cognitive Dysfunction. eNeuro 2024; 11:ENEURO.0426-23.2024. [PMID: 39266325 PMCID: PMC11439565 DOI: 10.1523/eneuro.0426-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 09/14/2024] Open
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in sepsis-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammation. In the acute phase, we identified novel molecular (e.g., upregulation of plasmalemma vesicle-associated protein, PLVAP, a driver of endothelial permeability, and the procoagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small-molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small-molecule BBB permeability, elevated levels of PAI-1, intra-/perivascular fibrin/fibrinogen deposition, and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor, suggesting diffuse axonal injury, synapse degeneration, and impaired neurotrophism. Our study serves as a standardized mouse model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition.
Collapse
Affiliation(s)
- Paulo Ávila-Gómez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Yuto Shingai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Catherine Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Keri Callegari
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Heidi Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Anne Khodarkovskaya
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Daiki Aburakawa
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Giuseppe Faraco
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Lidia Garcia-Bonilla
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Josef Anrather
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Costantino Iadecola
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
7
|
Jin YY, Liang YP, Wei ZY, Sui WJ, Chen JH. Hippocampal adenosine-to-inosine RNA editing in sepsis: dynamic changes and influencing factors. Brain Commun 2024; 6:fcae260. [PMID: 39135964 PMCID: PMC11317967 DOI: 10.1093/braincomms/fcae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Sepsis-associated encephalopathy is a diffuse brain dysfunction secondary to infection. It has been established that factors such as age and sex can significantly contribute to the development of sepsis-associated encephalopathy. Our recent study implicated a possible link between adenosine-to-inosine RNA editing and sepsis-associated encephalopathy, yet the dynamics of adenosine-to-inosine RNA editing during sepsis-associated encephalopathy and how it could be influenced by factors such as age, sex and antidepressants remain uninvestigated. Our current study analysed and validated transcriptome-wide changes in adenosine-to-inosine RNA editing in the hippocampus of different septic mouse models. Seventy-four sites in 64 genes showed significant differential RNA editing over time in septic mice induced by caecal ligation and perforation. The differential RNA editing might contribute to the RNA expression regulation of the edited genes, with 42.2% differentially expressed. These differentially edited genes, especially those with missense editing, such as glutamate receptor, ionotropic, kainate 2 (Grik2, p.M620V), filamin A (Flna, p.S2331G) and capicua transcriptional repressor (Cic, p.E2270G), were mainly involved in abnormal social behaviour and neurodevelopmental and psychiatric disorders. Significant effects of age and sex were also observed on sepsis-associated RNA editing. Further comparison highlighted 40 common differential RNA editing sites that caecal ligation and perforation-induced and lipopolysaccharide-induced septic mouse models shared. Interestingly, these findings demonstrate temporal dynamics of adenosine-to-inosine RNA editing in the mouse hippocampus during sepsis, add to the understanding of age and sex differences in the disease and underscore the role of the epigenetic process in sepsis-associated encephalopathy.
Collapse
Affiliation(s)
- Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Jia Sui
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University Brain Institute, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and functional alterations in the cerebral microvasculature in an optimized mouse model of sepsis-associated cognitive dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596050. [PMID: 38853992 PMCID: PMC11160628 DOI: 10.1101/2024.05.28.596050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in systemic inflammation-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammatory response. In the acute phase, we identified novel molecular (e.g. upregulation of plasmalemma vesicle associated protein, a driver of endothelial permeability, and the pro-coagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small molecule BBB permeability, elevated levels of PAI-1, intra/perivascular fibrin/fibrinogen deposition and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor suggesting diffuse axonal injury, synapse degeneration and impaired neurotrophism. Our study serves as a standardized model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition. SIGNIFICANCE The limited knowledge of how systemic inflammation contributes to cognitive decline is a major obstacle to the development of novel therapies for dementia and other neurodegenerative diseases. Clinical evidence supports a role for the cerebral microvasculature in sepsis-induced neurocognitive dysfunction, but the investigation of the underlying mechanisms has been limited by the lack of standardized experimental models. Herein, we optimized a mouse model that recapitulates important pathophysiological aspects of systemic inflammation-induced cognitive decline and identified key alterations in the cerebral microvasculature associated with cognitive dysfunction. Our study provides a reliable experimental model for mechanistic studies and therapeutic discovery of the impact of systemic inflammation on cerebral microvascular function and the development and progression of cognitive impairment.
Collapse
|
9
|
Zhang J, Chen S, Hu X, Huang L, Loh P, Yuan X, Liu Z, Lian J, Geng L, Chen Z, Guo Y, Chen B. The role of the peripheral system dysfunction in the pathogenesis of sepsis-associated encephalopathy. Front Microbiol 2024; 15:1337994. [PMID: 38298892 PMCID: PMC10828041 DOI: 10.3389/fmicb.2024.1337994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Sepsis is a condition that greatly impacts the brain, leading to neurological dysfunction and heightened mortality rates, making it one of the primary organs affected. Injury to the central nervous system can be attributed to dysfunction of various organs throughout the entire body and imbalances within the peripheral immune system. Furthermore, central nervous system injury can create a vicious circle with infection-induced peripheral immune disorders. We collate the pathogenesis of septic encephalopathy, which involves microglial activation, programmed cell death, mitochondrial dysfunction, endoplasmic reticulum stress, neurotransmitter imbalance, and blood-brain barrier disruption. We also spotlight the effects of intestinal flora and its metabolites, enterocyte-derived exosomes, cholinergic anti-inflammatory pathway, peripheral T cells and their cytokines on septic encephalopathy.
Collapse
Affiliation(s)
- Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lihong Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - PeiYong Loh
- School of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinru Yuan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinyu Lian
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lianqi Geng
- Binhai New Area Hospital of TCM, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Binhai New Area Hospital of TCM, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
10
|
Bai Q, Wang S, Rao D, Zhou Z, Wang J, Wang Q, Qin Y, Chu Z, Zhao S, Yu D, Xu Y. RIPK3 activation promotes DAXX-dependent neuronal necroptosis after intracerebral hemorrhage in mice. CNS Neurosci Ther 2024; 30:e14397. [PMID: 37553782 PMCID: PMC10805394 DOI: 10.1111/cns.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Necroptosis induced by receptor-interacting protein kinase 3 (RIPK3) is engaged in intracerebral hemorrhage (ICH) pathology. In this study, we explored the impact of RIPK3 activation on neuronal necroptosis and the mechanism of the death domain-associated protein (DAXX)-mediated nuclear necroptosis pathway after ICH. METHODS Potential molecules linked to the progression of ICH were discovered using RNA sequencing. The level of DAXX was assessed by quantitative real-time PCR, ELISA, and western blotting. DAXX localization was determined by immunofluorescence and immunoprecipitation assays. The RIPK3 inhibitor GSK872 and DAXX knockdown with shRNA-DAXX were used to examine the nuclear necroptosis pathway associated with ICH. Neurobehavioral deficit assessments were performed. RESULTS DAXX was increased in patients and mice after ICH. In an ICH mouse model, shRNA-DAXX reduced brain water content and alleviated neurologic impairments. GSK872 administration reduced the expression of DAXX. shRNA-DAXX inhibited the expression of p-MLKL. Immunofluorescence and immunoprecipitation assays showed that RIPK3 and AIF translocated into the nucleus and then bound with nuclear DAXX. CONCLUSIONS RIPK3 revitalization promoted neuronal necroptosis in ICH mice, partially through the DAXX signaling pathway. RIPK3 and AIF interacted with nuclear DAXX to aggravate ICH injury.
Collapse
Affiliation(s)
- Qingqing Bai
- Department of NeurologyFirst Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical TransformationWannan Medical CollegeWuhuAnhuiChina
| | - Shuoyang Wang
- Department of NeurologyFirst Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuAnhuiChina
| | - Dongmei Rao
- Department of NeurologyFirst Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuAnhuiChina
| | - Zhiming Zhou
- Department of NeurologyFirst Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuAnhuiChina
| | - Jianfei Wang
- Department of NeurologyFirst Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuAnhuiChina
| | - Qi Wang
- Department of NeurologyFirst Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuAnhuiChina
| | - Yu Qin
- Department of NeurologyFirst Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuAnhuiChina
| | - Zhaohu Chu
- Department of NeurologyFirst Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuAnhuiChina
| | - Shoucai Zhao
- Department of NeurologyFirst Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuAnhuiChina
| | - Dijing Yu
- Department of OphthalmologyWuhu Eye HospitalWuhuAnhuiChina
| | - Yang Xu
- Department of NeurologyFirst Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical TransformationWannan Medical CollegeWuhuAnhuiChina
| |
Collapse
|
11
|
Huang X, Ye C, Zhao X, Tong Y, Lin W, Huang Q, Zheng Y, Wang J, Zhang A, Mo Y. TRIM45 aggravates microglia pyroptosis via Atg5/NLRP3 axis in septic encephalopathy. J Neuroinflammation 2023; 20:284. [PMID: 38037161 PMCID: PMC10688018 DOI: 10.1186/s12974-023-02959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Neuroinflammation mediated by microglial pyroptosis is an important pathogenic mechanism of septic encephalopathy (SAE). It has been reported that TRIM45 is associated with tumours and inflammatory diseases. However, the role of TRIM45 in SAE and the relationship between TRIM45 and microglial pyroptosis are unknown. In this study, we found that TRIM45 played an important role in regulating microglial pyroptosis and the molecular mechanism. METHODS SAE was induced by intraperitoneal injection of LPS in WT and AAV-shTRIM45 mice. BV2 cells were treated with LPS/ATP in vitro. Cognitive function was assessed by the Morris water maze. Nissl staining was used to evaluate histological and structural lesions. ELISA was used to dectect neuroinflammation. qPCR was used to detect the mRNA levels of inflammatory cytokines, NLRP3, and autophagy genes. Western blotting and immunofluorescence analysis were used to analyse the expression of the proteins. Changes in reactive oxygen species (ROS) in cells were observed by flow cytometry. Changes in mitochondrial membrane potential in BV2 cells were detected by JC-1 staining. Peripheral blood mononuclear cells were extracted from blood by density gradient centrifugation and then used for qPCR, western blotting and flow detection. To further explore the mechanism, we used the overexpression plasmids TRIM45 and Atg5 as well as siRNA-TRIM45 and siRNA-Atg5 to analyse the downstream pathway of NLRP3. The protein and mRNA levels of TRIM45 in peripheral blood mononuclear cells from sepsis patients were examined. RESULTS Knocking down TRIM45 protected against neuronal damage and cognitive impairment in septic mice. TRIM45 knockdown inhibited microglial pyroptosis and the secretion of inflammatory cytokines in vivo and in vitro, which was mediated by NLRP3/Gsdmd-N activation. Overexpression of TRIM45 could activate NLRP3 and downstream proteins. Further examination showed that TRIM45 regulated the activation of NLRP3 by altering Atg5 and regulating autophagic flux. It was also found that overexpression and knockdown of TRIM45 affected the changes in ROS and mitochondrial membrane potential. Thus, knocking down TRIM45 could reduce microglial pyroptosis, the secretion of proinflammatory cytokines, and neuronal damage and improve cognitive function. In addition, the level of TRIM45 protein in septic patients was increased. There was a positive linear correlation between APACHE II score and TRIM45, between SOFA score and TRIM45. Compared to group GCS > 9, level of TRIM45 were increased in group GCS ≤ 8. CONCLUSION TRIM45 plays a key role in neuroinflammation caused by LPS, and the mechanism may involve TRIM45-mediated exacerbation of microglial pyroptosis via the Atg5/NLRP3 axis.
Collapse
Affiliation(s)
- Xuliang Huang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changzhou Ye
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Zhao
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Tong
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen Lin
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Huang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuhao Zheng
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Junlu Wang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anqi Zhang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yunchang Mo
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
12
|
Tan S, Chen W, Kong G, Wei L, Xie Y. Peripheral inflammation and neurocognitive impairment: correlations, underlying mechanisms, and therapeutic implications. Front Aging Neurosci 2023; 15:1305790. [PMID: 38094503 PMCID: PMC10716308 DOI: 10.3389/fnagi.2023.1305790] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 08/22/2024] Open
Abstract
Cognitive impairments, such as learning and memory deficits, may occur in susceptible populations including the elderly and patients who are chronically ill or have experienced stressful events, including surgery, infection, and trauma. Accumulating lines of evidence suggested that peripheral inflammation featured by the recruitment of peripheral immune cells and the release of pro-inflammatory cytokines may be activated during aging and these conditions, participating in peripheral immune system-brain communication. Lots of progress has been achieved in deciphering the core bridging mechanism connecting peripheral inflammation and cognitive impairments, which may be helpful in developing early diagnosis, prognosis evaluation, and prevention methods based on peripheral blood circulation system sampling and intervention. In this review, we summarized the evolving evidence on the prevalence of peripheral inflammation-associated neurocognitive impairments and discussed the research advances in the underlying mechanisms. We also highlighted the prevention and treatment strategies against peripheral inflammation-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Siyou Tan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wenyan Chen
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Gaoyin Kong
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lai Wei
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Jo D, Arjunan A, Choi S, Jung YS, Park J, Jo J, Kim OY, Song J. Oligonol ameliorates liver function and brain function in the 5 × FAD mouse model: transcriptional and cellular analysis. Food Funct 2023; 14:9650-9670. [PMID: 37843873 DOI: 10.1039/d3fo03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease worldwide and is accompanied by memory deficits, personality changes, anxiety, depression, and social difficulties. For treatment of AD, many researchers have attempted to find medicinal resources with high effectiveness and without side effects. Oligonol is a low molecular weight polypeptide derived from lychee fruit extract. We investigated the effects of oligonol in 5 × FAD transgenic AD mice, which developed severe amyloid pathology, through behavioral tests (Barnes maze, marble burying, and nestle shredding) and molecular experiments. Oligonol treatment attenuated blood glucose levels and increased the antioxidant response in the livers of 5 × FAD mice. Moreover, the behavioral score data showed improvements in anxiety, depressive behavior, and cognitive impairment following a 2-month course of orally administered oligonol. Oligonol treatment not only altered the circulating levels of cytokines and adipokines in 5 × FAD mice, but also significantly enhanced the mRNA and protein levels of antioxidant enzymes and synaptic plasticity in the brain cortex and hippocampus. Therefore, we highlight the therapeutic potential of oligonol to attenuate neuropsychiatric problems and improve memory deficits in the early stage of AD.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Seoyoon Choi
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Jihyun Park
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Science, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| |
Collapse
|
14
|
Hill A, Johnston C, Agranoff I, Gavade S, Spencer-Segal J. Corticosterone enhances formation of non-fear but not fear memory during infectious illness. Front Behav Neurosci 2023; 17:1144173. [PMID: 37091592 PMCID: PMC10118046 DOI: 10.3389/fnbeh.2023.1144173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Survivors of critical illness are at high risk of developing post-traumatic stress disorder (PTSD) but administration of glucocorticoids during the illness can lower that risk. The mechanism is not known but may involve glucocorticoid modulation of hippocampal- and amygdala-dependent memory formation. In this study, we sought to determine whether glucocorticoids given during an acute illness influence the formation and persistence of fear and non-fear memories from the time of the illness. Methods We performed cecal ligation and puncture in male and female mice to induce an acute infectious illness. During the illness, mice were introduced to a neutral object in their home cage and separately underwent contextual fear conditioning. We then tested the persistence of object and fear memories after recovery. Results Glucocorticoid treatment enhanced object discrimination but did not alter the expression of contextual fear memory. During context re-exposure, neural activity was elevated in the dentate gyrus irrespective of fear conditioning. Conclusions Our results suggest that glucocorticoids given during illness enhance hippocampal-dependent non-fear memory processes. This indicates that PTSD outcomes in critically ill patients may be improved by enhancing non-fear memories from the time of their illness.
Collapse
Affiliation(s)
- Alice Hill
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Colin Johnston
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Isaac Agranoff
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Swapnil Gavade
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Joanna Spencer-Segal
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|