1
|
Cui Z, Liu X, E T, Lin H, Wang D, Liu Y, Ruan X, Wang P, Liu L, Xue Y. Effect of SNORD113-3/ADAR2 on glycolipid metabolism in glioblastoma via A-to-I editing of PHKA2. Cell Mol Biol Lett 2025; 30:5. [PMID: 39794701 PMCID: PMC11724473 DOI: 10.1186/s11658-024-00680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive brain tumor, characterized by its poor prognosis. Glycolipid metabolism is strongly associated with GBM development and malignant behavior. However, the precise functions of snoRNAs and ADARs in glycolipid metabolism within GBM cells remain elusive. The objective of the present study is to delve into the underlying mechanisms through which snoRNAs and ADARs exert regulatory effects on glycolipid metabolism in GBM cells. METHODS RNA immunoprecipitation and RNA pull-down experiments were conducted to verify the homodimerization of ADAR2 by SNORD113-3, and Sanger sequencing and Western blot experiments were used to detect the A-to-I RNA editing of PHKA2 mRNA by ADAR2. Furthermore, the phosphorylation of EBF1 was measured by in vitro kinase assay. Finally, in vivo studies using nude mice confirmed that SNORD113-3 and ADAR2 overexpression, along with PHKA2 knockdown, could suppress the formation of subcutaneous xenograft tumors and improve the outcome of tumor-bearing nude mice. RESULTS We found that PHKA2 in GBM significantly promoted glycolipid metabolism, while SNORD113-3, ADAR2, and EBF1 significantly inhibited glycolipid metabolism. SNORD113-3 promotes ADAR2 protein expression by promoting ADAR2 homodimer formation. ADAR2 mediates the A-to-I RNA editing of PHKA2 mRNA. Mass spectrometry analysis and in vitro kinase testing revealed that PHKA2 phosphorylates EBF1 on Y256, reducing the stability and expression of EBF1. Furthermore, direct binding of EBF1 to PKM2 and ACLY promoters was observed, suggesting the inhibition of their expression by EBF1. These findings suggest the existence of a SNORD113-3/ADAR2/PHKA2/EBF1 pathway that collectively regulates the metabolism of glycolipid and the growth of GBM cells. Finally, in vivo studies using nude mice confirmed that knockdown of PHKA2, along with overexpression of SNORD113-3 and ADAR2, could obviously suppress GBM subcutaneous xenograft tumor formation and improve the outcome of those tumor-bearing nude mice. CONCLUSIONS Herein, we clarified the underlying mechanism involving the SNORD113-3/ADAR2/PHKA2/EBF1 pathway in the regulation of GBM cell growth and glycolipid metabolism. Our results provide a framework for the development of innovative therapeutic interventions to improve the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China
- Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Tiange E
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Hongda Lin
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Xuelei Ruan
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Ping Wang
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Libo Liu
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Yixue Xue
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Zhou Y, Chen X, Zu X. ZBTB7A as a therapeutic target for cancer. Biochem Biophys Res Commun 2024; 736:150888. [PMID: 39490153 DOI: 10.1016/j.bbrc.2024.150888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
ZBTB7A, alternatively referred to Pokemon, FBI-1, LRF, and OCZF, is classified as a member of POK/ZBTB protein family of transcriptional repressors. ZBTB7A binds to targeted DNA via C-terminal zinc fingers and recruits co-compression complexes through N-terminal BTB ⁄ POZ domain to impede transcription. ZBTB7A regulates a range of fundamental biological processes such as cell proliferation, differentiation and apoptosis, B- and T-lymphocyte fate determination and thymic insulin expression and self-tolerance. Accumulating evidence has demonstrated an important role of ZBTB7A in the initiation and advancement of tumors, thus making ZBTB7A emerge as an appealing target. This review examines the functions and regulatory mechanisms of ZBTB7A in a range of common solid tumors, including hepatocellular carcinoma, breast cancer, prostate cancer and lung cancer, as well as hematological malignancies. Notably, the review concludes with a summary of the recent applications of targeting ZBTB7A in clinical treatments through gene silencing, immunotherapy and chemotherapeutic approaches to halt or slow tumor progression. We focus on the functional role and regulatory mechanisms of ZBTB7A in cancer with the goal of providing new insights for the development of more effective cancer therapeutic strategies.
Collapse
Affiliation(s)
- Ying Zhou
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xisha Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, China.
| |
Collapse
|
3
|
Yang Y, Hong Y, Zhao K, Huang M, Li W, Zhang K, Zhao N. Spatial transcriptomics analysis identifies therapeutic targets in diffuse high-grade gliomas. Front Mol Neurosci 2024; 17:1466302. [PMID: 39530009 PMCID: PMC11552449 DOI: 10.3389/fnmol.2024.1466302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Diffuse high-grade gliomas are the most common malignant adult neuroepithelial tumors in humans and a leading cause of cancer-related death worldwide. The advancement of high throughput transcriptome sequencing technology enables rapid and comprehensive acquisition of transcriptome data from target cells or tissues. This technology aids researchers in understanding and identifying critical therapeutic targets for the prognosis and treatment of diffuse high-grade glioma. Methods Spatial transcriptomics was conducted on two cases of isocitrate dehydrogenase (IDH) wild-type diffuse high-grade glioma (Glio-IDH-wt) and two cases of IDH-mutant diffuse high-grade glioma (Glio-IDH-mut). Gene set enrichment analysis and clustering analysis were employed to pinpoint differentially expressed genes (DEGs) involved in the progression of diffuse high-grade gliomas. The spatial distribution of DEGs in the spatially defined regions of human glioma tissues was overlaid in the t-distributed stochastic neighbor embedding (t-SNE) plots. Results We identified a total of 10,693 DEGs, with 5,677 upregulated and 5,016 downregulated, in spatially defined regions of diffuse high-grade gliomas. Specifically, SPP1, IGFBP2, CALD1, and TMSB4X exhibited high expression in carcinoma regions of both Glio-IDH-wt and Glio-IDH-mut, and 3 upregulated DEGs (SMOC1, APOE, and HIPK2) and 4 upregulated DEGs (PPP1CB, UBA52, S100A6, and CTSB) were only identified in tumor regions of Glio-IDH-wt and Glio-IDH-mut, respectively. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses revealed that upregulated DEGs were closely related to PI3K/Akt signaling pathway, virus infection, and cytokine-cytokine receptor interaction. Importantly, the expression of these DEGs was validated using GEPIA databases. Furthermore, the study identified spatial expression patterns of key regulatory genes, including those involved in protein post-translational modification and RNA binding protein-encoding genes, with spatially defined regions of diffuse high-grade glioma. Discussion Spatial transcriptome analysis is one of the breakthroughs in the field of medical biotechnology as this can map the analytes such as RNA information in their physical location in tissue sections. Our findings illuminate previously unexplored spatial expression profiles of key biomarkers in diffuse high-grade glioma, offering novel insight for the development of therapeutic strategies in glioma.
Collapse
Affiliation(s)
- Yongtao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yingzhou Hong
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Kai Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Minhao Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhu Li
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kui Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Zhu H, Wang J, Miao J, Shen M, Wang H, Huang X, Ni A, Wu H, Chen J, Xiao L, Xie S, Lin W, Han F. SNORD3A Regulates STING Transcription to Promote Ferroptosis in Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400305. [PMID: 38962954 PMCID: PMC11434033 DOI: 10.1002/advs.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Acute kidney injury (AKI) signifies a sudden and prolonged decline in kidney function characterized by tubular cell death and interstitial inflammation. Small nucleolar RNAs (snoRNAs) play pivotal roles in oxidative stress and inflammation, and may play an important role in the AKI process, which remains elusive. an elevated expression of Snord3a is revealed in renal tubules in response to AKI and demonstrates that Snord3a deficiency alleviates renal injury in AKI mouse models. Notably, the deficiency of Snord3a exhibits a mitigating effect on the stimulator of interferon genes (STING)-associated ferroptosis phenotypes and the progression of tubular injury. Mechanistically, Snord3a is shown to regulate the STING signaling axis via promoting STING gene transcription; administration of Snord3a antisense oligonucleotides establishes a significant therapeutic advantage in AKI mouse models. Together, the findings elucidate the transcription regulation mechanism of STING and the crucial roles of the Snord3a-STING axis in ferroptosis during AKI, underscoring Snord3a as a potential prognostic and therapeutic target for AKI.
Collapse
Affiliation(s)
- Huanhuan Zhu
- Kidney Disease CenterThe First Affiliated Hospital, Zhejiang University School of MedicineInstitute of NephrologyZhejiang UniversityKey Laboratory of Kidney Disease Prevention and Control TechnologyZhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Junni Wang
- Kidney Disease CenterThe First Affiliated Hospital, Zhejiang University School of MedicineInstitute of NephrologyZhejiang UniversityKey Laboratory of Kidney Disease Prevention and Control TechnologyZhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Jin Miao
- Kidney Disease CenterThe First Affiliated Hospital, Zhejiang University School of MedicineInstitute of NephrologyZhejiang UniversityKey Laboratory of Kidney Disease Prevention and Control TechnologyZhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Mingdi Shen
- Kidney Disease CenterThe First Affiliated Hospital, Zhejiang University School of MedicineInstitute of NephrologyZhejiang UniversityKey Laboratory of Kidney Disease Prevention and Control TechnologyZhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Huijing Wang
- Kidney Disease CenterThe First Affiliated Hospital, Zhejiang University School of MedicineInstitute of NephrologyZhejiang UniversityKey Laboratory of Kidney Disease Prevention and Control TechnologyZhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Xiaohan Huang
- Kidney Disease CenterThe First Affiliated Hospital, Zhejiang University School of MedicineInstitute of NephrologyZhejiang UniversityKey Laboratory of Kidney Disease Prevention and Control TechnologyZhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Anqi Ni
- Kidney Disease CenterThe First Affiliated Hospital, Zhejiang University School of MedicineInstitute of NephrologyZhejiang UniversityKey Laboratory of Kidney Disease Prevention and Control TechnologyZhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Huijuan Wu
- Department of PathologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Jianghua Chen
- Kidney Disease CenterThe First Affiliated Hospital, Zhejiang University School of MedicineInstitute of NephrologyZhejiang UniversityKey Laboratory of Kidney Disease Prevention and Control TechnologyZhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Liang Xiao
- Kidney Disease CenterThe First Affiliated Hospital, Zhejiang University School of MedicineInstitute of NephrologyZhejiang UniversityKey Laboratory of Kidney Disease Prevention and Control TechnologyZhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| | - Shanshan Xie
- Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiang310052China
| | - Weiqiang Lin
- The Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
| | - Fei Han
- Kidney Disease CenterThe First Affiliated Hospital, Zhejiang University School of MedicineInstitute of NephrologyZhejiang UniversityKey Laboratory of Kidney Disease Prevention and Control TechnologyZhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhou310003China
| |
Collapse
|
5
|
Ni J, Lu X, Gao X, Jin C, Mao J. Demethylase FTO inhibits the occurrence and development of triple-negative breast cancer by blocking m 6A-dependent miR-17-5p maturation-induced ZBTB4 depletion. Acta Biochim Biophys Sin (Shanghai) 2024; 56:114-128. [PMID: 38151999 PMCID: PMC10875348 DOI: 10.3724/abbs.2023267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 12/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer, and its mechanisms of occurrence and development remain unclear. In this study, we aim to investigate the role and molecular mechanisms of the demethylase FTO (fat mass and obesity-associated protein) in TNBC. Through analysis of public databases, we identify that FTO may regulate the maturation of miR-17-5p and subsequently influence the expression of zinc finger and BTB domain-containing protein 4 (ZBTB4), thereby affecting the occurrence and progression of TNBC. We screen for relevant miRNAs and mRNAs from the GEO and TCGA databases and find that the FTO gene may play a crucial role in TNBC. In vitro cell experiments demonstrate that overexpression of FTO can suppress the proliferation, migration, and invasion ability of TNBC cells and can regulate the maturation of miR-17-5p through an m 6A-dependent mechanism. Furthermore, we establish a xenograft nude mouse model and collect clinical samples to further confirm the role and impact of the FTO/miR-17-5p/ZBTB4 regulatory axis in TNBC. Our findings unveil the potential role of FTO and its underlying molecular mechanisms in TNBC, providing new perspectives and strategies for the research and treatment of TNBC.
Collapse
Affiliation(s)
- Jingyi Ni
- Department of OncologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Xiaoyun Lu
- Department of PathologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Xiangxiang Gao
- Department of OncologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Conghui Jin
- Department of OncologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Junfeng Mao
- Department of Breast SurgeryAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| |
Collapse
|