1
|
Lu J, Du L, Zhang P, Ma N, Zhang Q, Guo X, Li X, Lei X, Qu B. CKS1B regulates the radiosensitivity of lung cancer via activating the PI3K/AKT signaling pathway. Cell Signal 2025; 132:111828. [PMID: 40262716 DOI: 10.1016/j.cellsig.2025.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Radiotherapy is the mainstay and first-line treatment for non-small-cell lung cancer (NSCLC). However, there are no effective strategies for regulating tumor radiosensitivity. This study aimed to examine whether CDC28 protein kinase regulatory subunit 1B (CKS1B) knockdown can radiosensitize NSCLC cells. The results indicated that CKS1B overexpression promoted the proliferation, migration, and invasion of NSCLC cells following exposure to ionizing radiation (IR). In addition, A549 cell xenografts with CKS1B knockdown exhibited significantly enhanced radiosensitivity compared to wild-type xenografts. Mechanistically, it was observed that CKS1B silencing stimulated apoptosis, inhibited cell cycle progression, and weakened DNA damage repair, thereby increasing the sensitivity of NSCLC cells to IR treatment. Moreover, the CKS1B-induced radioresistance was mediated by the PI3K/AKT signaling pathway. These findings demonstrate that CKS1B influences the NSCLC treatment, suggesting that it is a potential prognostic marker for predicting the radiosensitivity of NSCLC cells.
Collapse
Affiliation(s)
- Jiangyue Lu
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China; Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Lehui Du
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Pei Zhang
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Na Ma
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Qian Zhang
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xingdong Guo
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xianwen Li
- School of Nursing, Nanjing Medical University, No.101 Long Mian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China.
| | - Xiao Lei
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Baolin Qu
- Department of Radiation Oncology, The First Medical Center of Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing 100853, China.
| |
Collapse
|
2
|
Zhao Z, Liu H, Liu Y, Wen J, Yuan J. LAMB1 downregulation suppresses glioma progression by inhibiting aerobic glycolysis through regulation of the NF-κB/HK2 axis. Discov Oncol 2025; 16:131. [PMID: 39920513 PMCID: PMC11806178 DOI: 10.1007/s12672-025-01818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Laminin subunit beta 1 (LAMB1) has regulatory functions on the proliferation, attachment, and migration of tumor cells, with increased levels linked to different cancers. OBJECTIVE This study aims at investigating the effects and mechanisms of LAMB1 in glioma. METHODS AND MATERIAL Glioma cell models with LAMB1 overexpression or downregulation were constructed. Cell viability, proliferation, and invasion were evaluated. Glucose uptake and lactate production were examined, and Seahorse was used to assess the extracellular acidification rate (ECAR). The EC50 of temozolomide (TMZ) in glioma cells was tested. Western blotting was conducted to monitor the expression of HK1, HK2, PDHA, and PKM. Bioinformatic analysis was employed to investigate the downstream mechanism of LAMB1. In addition, a subcutaneous tumor model was constructed to determine the influence of LAMB1 on GBM cell growth in vivo. RESULTS LAMB1 overexpression enhanced cell viability, proliferation, and invasion and promoted glioma cell growth. LAMB1 upregulation enhanced cellular glycolysis and repressed the sensitivity of cells to TMZ. LAMB1 activated the NF-κB pathway. Downregulation of LAMB1 or mitigating of the NF-κB pathway by Bay 11-7082 inhibited glioma cell proliferation, growth, and glycolysis and enhanced TMZ sensitivity. CONCLUSIONS LAMB1 downregulation exerted antitumor effects on glioma cells by regulating the NF-κB/HK2 axis.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Haiying Liu
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Yingzi Liu
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Junpeng Wen
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Jiangwei Yuan
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
3
|
Yadav P, Jain R, Yadav RK. Emerging roles of cancer-associated histone mutations in genomic instabilities. Front Cell Dev Biol 2024; 12:1455572. [PMID: 39439908 PMCID: PMC11494296 DOI: 10.3389/fcell.2024.1455572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic mechanisms often fuel the quick evolution of cancer cells from normal cells. Mutations or aberrant expressions in the enzymes of DNA methylation, histone post-translational modifications, and chromatin remodellers have been extensively investigated in cancer pathogenesis; however, cancer-associated histone mutants have gained momentum in recent decades. Next-generation sequencing of cancer cells has identified somatic recurrent mutations in all the histones (H3, H4, H2A, H2B, and H1) with different frequencies for various tumour types. Importantly, the well-characterised H3K27M, H3G34R/V, and H3K36M mutations are termed as oncohistone mutants because of their wide roles, from defects in cellular differentiation, transcriptional dysregulation, and perturbed epigenomic profiles to genomic instabilities. Mechanistically, these histone mutants impart their effects on histone modifications and/or on irregular distributions of chromatin complexes. Recent studies have identified the crucial roles of the H3K27M and H3G34R/V mutants in the DNA damage response pathway, but their impacts on chemotherapy and tumour progression remain elusive. In this review, we summarise the recent developments in their functions toward genomic instabilities and tumour progression. Finally, we discuss how such a mechanistic understanding can be harnessed toward the potential treatment of tumours harbouring the H3K27M, H3G34R/V, and H3K36M mutations.
Collapse
|
4
|
Zhang H, Zhu W, Pan W, Wan X, Li N, Tang B. Recent advances in spatio-temporally controllable systems for management of glioma. Asian J Pharm Sci 2024; 19:100954. [PMID: 39483717 PMCID: PMC11525460 DOI: 10.1016/j.ajps.2024.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches, including surgery and chemotherapy. Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance, including spatio-temporal adjustability, minimally invasive, repetitive properties, etc. External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues. It is worth noting that the removability of external stimuli allows for on-demand treatment, which effectively reduces the occurrence of side effects. In this review, we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma, focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies. Moreover, the potential challenges regarding spatio-temporally controllable therapy for glioma are also described, aiming to provide insights into future advancements in this field and their potential clinical applications.
Collapse
Affiliation(s)
- Huiwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
5
|
Batsios G, Udutha S, Taglang C, Gillespie AM, Lau B, Ji S, Phoenix T, Mueller S, Venneti S, Koschmann C, Viswanath P. GABA production induced by imipridones is a targetable and imageable metabolic alteration in diffuse midline gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597982. [PMID: 38915617 PMCID: PMC11195108 DOI: 10.1101/2024.06.07.597982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Diffuse midline gliomas (DMGs) are lethal primary brain tumors in children. The imipridones ONC201 and ONC206 induce mitochondrial dysfunction and have emerged as promising therapies for DMG patients. However, efficacy as monotherapy is limited, identifying a need for strategies that enhance response. Another hurdle is the lack of biomarkers that report on drug-target engagement at an early timepoint after treatment onset. Here, using 1 H-magnetic resonance spectroscopy, which is a non-invasive method of quantifying metabolite pool sizes, we show that accumulation of ψ-aminobutyric acid (GABA) is an early metabolic biomarker that can be detected within a week of ONC206 treatment, when anatomical alterations are absent, in mice bearing orthotopic xenografts. Mechanistically, imipridones activate the mitochondrial protease ClpP and upregulate the stress-responsive transcription factor ATF4. ATF4, in turn, upregulates glutamate decarboxylase, which synthesizes GABA, and downregulates ABAT , which degrades GABA, leading to GABA accumulation in DMG cells and tumors. Functionally, GABA secreted by imipridone-treated cells acts in an autocrine manner via the GABAB receptor to induce expression of superoxide dismutase (SOD1), which mitigates imipridone-induced oxidative stress and, thereby, curbs apoptosis. Importantly, blocking autocrine GABA signaling using the clinical stage GABAB receptor antagonist SGS-742 exacerbates oxidative stress and synergistically induces apoptosis in combination with imipridones in DMG cells and orthotopic tumor xenografts. Collectively, we identify GABA as a unique metabolic adaptation to imipridones that can be leveraged for non-invasive assessment of drug-target engagement and therapy. Clinical translation of our studies has the potential to enable precision metabolic therapy and imaging for DMG patients. One Sentence Summary Imipridones induce GABA accumulation in diffuse midline gliomas, an effect that can be leveraged for therapy and non-invasive imaging.
Collapse
|
6
|
Liu C, Kuang S, Huang T, Wu J, Zhang L, Gong X. Radiotherapy plus temozolomide with or without anlotinib in H3K27M-mutant diffuse midline glioma: A retrospective cohort study. CNS Neurosci Ther 2024; 30:e14730. [PMID: 38644565 PMCID: PMC11033330 DOI: 10.1111/cns.14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 03/31/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Besides the hallmark of H3K27M mutation, aberrant amplifications of receptor tyrosine kinases (RTKs) are commonly observed in diffuse midline glioma (DMG), a highly malignant brain tumor with dismal prognosis. Here, we intended to evaluate the efficacy and safety of a multitarget RTK inhibitor anlotinib in patients with H3K27M-DMG. METHODS A total of 40 newly diagnosed H3K27M-DMG patients including 15 with anlotinib and 25 without anlotinib treatment were retrospectively enrolled in this cohort. Progression-free survival (PFS), overall survival (OS), and toxicities were assessed and compared. RESULTS The median PFS and OS of all patients in this cohort were 8.5 months (95% CI, 6.5-11.3) and 15.5 months (95% CI, 12.6-17.1), respectively. According to the Response Assessment in Neuro-Oncology (RANO) criteria, the disease control rate in the anlotinib group [93.3%, 95% confidence interval (CI), 70.2-98.8] was significantly higher than those without anlotinib (64%, 95% CI: 40.5-79.8, p = 0.039). The median PFS of patients with and without anlotinib was 11.6 months (95% CI, 7.8-14.3) and 6.4 months (95% CI, 4.3-10.3), respectively. Both the median PFS and OS of DMG patients treated with anlotinib were longer than those without anlotinib in the infratentorial patients (PFS: 10.3 vs. 5.4 months, p = 0.006; OS: 16.6 vs. 8.7 months, p = 0.016). Multivariate analysis also indicated anlotinib (HR: 0.243, 95% CI: 0.066-0.896, p = 0.034) was an independent prognosticator for longer OS in the infratentorial subgroup. In addition, the adverse events of anlotinib administration were tolerable in the whole cohort. CONCLUSIONS This study first reported that anlotinib combined with Stupp regimen is a safe and feasible regimen for newly diagnosed patients with H3K27M-DMG. Further, anlotinib showed significant efficacy for H3K27M-DMG located in the infratentorial region.
Collapse
Affiliation(s)
- Chao Liu
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Shuwen Kuang
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Tianxiang Huang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Jun Wu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Longbo Zhang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Xuan Gong
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|