1
|
Chang Y, Chen J, Peng Y, Zhang K, Zhang Y, Zhao X, Wang D, Li L, Zhu J, Liu K, Li Z, Pan S, Huang K. Gut-derived macrophages link intestinal damage to brain injury after cardiac arrest through TREM1 signaling. Cell Mol Immunol 2025; 22:437-455. [PMID: 39984674 PMCID: PMC11955566 DOI: 10.1038/s41423-025-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/19/2024] [Accepted: 01/20/2025] [Indexed: 02/23/2025] Open
Abstract
Brain injury is the leading cause of death and disability in survivors of cardiac arrest, where neuroinflammation triggered by infiltrating macrophages plays a pivotal role. Here, we seek to elucidate the origin of macrophages infiltrating the brain and their mechanism of action after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Wild-type or photoconvertible Cd68-Cre:R26-LSL-KikGR mice were subjected to 10-min CA/CPR, and the migration of gut-derived macrophages into brain was assessed. Transcriptome sequencing was performed to identify the key proinflammatory signal of macrophages infiltrating the brain, triggering receptor expressed on myeloid cells 1 (TREM1). Upon drug intervention, the effects of TREM1 on post-CA/CPR brain injury were further evaluated. 16S rRNA sequencing was used to detect gut dysbiosis after CA/CPR. Through photoconversion experiments, we found that small intestine-derived macrophages infiltrated the brain and played a crucial role in triggering secondary brain injury after CA/CPR. The infiltrating peripheral macrophages showed upregulated TREM1 levels, and we further revealed the crucial role of gut-derived TREM1+ macrophages in post-CA/CPR brain injury through a drug intervention targeting TREM1. Moreover, a close correlation between upregulated TREM1 expression and poor neurological outcomes was observed in CA survivors. Mechanistically, CA/CPR caused a substantial expansion of Enterobacter at the early stage, which ignited intestinal TREM1 signaling via the activation of Toll-like receptor 4 on macrophages through the release of lipopolysaccharide. Our findings reveal essential crosstalk between the gut and brain after CA/CPR and underscore the potential of targeting TREM1+ small intestine-derived macrophages as a novel therapeutic strategy for mitigating post-CA/CPR brain injury.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiancong Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqin Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kunxue Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuzhen Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolin Zhao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Di Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lei Li
- Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhentong Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China.
| |
Collapse
|
2
|
Yi F, Wu H, Zhao HK. Role of triggering receptor expressed on myeloid cells 1/2 in secondary injury after cerebral hemorrhage. World J Clin Cases 2025; 13:100312. [PMID: 40144485 PMCID: PMC11670023 DOI: 10.12998/wjcc.v13.i9.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a common severe emergency in neurosurgery, causing tremendous economic pressure on families and society and devastating effects on patients both physically and psychologically, especially among patients with poor functional outcomes. ICH is often accompanied by decreased consciousness and limb dysfunction. This seriously affects patients' ability to live independently. Although rapid advances in neurosurgery have greatly improved patient survival, there remains insufficient evidence that surgical treatment significantly improves long-term outcomes. With in-depth pathophysiological studies after ICH, increasing evidence has shown that secondary injury after ICH is related to long-term prognosis and that the key to secondary injury is various immune-mediated neuroinflammatory reactions after ICH. In basic and clinical studies of various systemic inflammatory diseases, triggering receptor expressed on myeloid cells 1/2 (TREM-1/2), and the TREM receptor family is closely related to the inflammatory response. Various inflammatory diseases can be upregulated and downregulated through receptor intervention. How the TREM receptor functions after ICH, the types of results from intervention, and whether the outcomes can improve secondary brain injury and the long-term prognosis of patients are unknown. An analysis of relevant research results from basic and clinical trials revealed that the inhibition of TREM-1 and the activation of TREM-2 can alleviate the neuroinflammatory immune response, significantly improve the long-term prognosis of neurological function in patients with cerebral hemorrhage, and thus improve the ability of patients to live independently.
Collapse
Affiliation(s)
- Fan Yi
- Xi’an Medical University, Xi’an 710021, Shaanxi Province, China
| | - Hao Wu
- Xi’an Medical University, Xi’an 710021, Shaanxi Province, China
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an 710038, Shaanxi Province, China
| | - Hai-Kang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an 710038, Shaanxi Province, China
| |
Collapse
|
3
|
Wang C, Cheng F, Han Z, Yan B, Liao P, Yin Z, Ge X, Li D, Zhong R, Liu Q, Chen F, Lei P. Human-induced pluripotent stem cell-derived neural stem cell exosomes improve blood-brain barrier function after intracerebral hemorrhage by activating astrocytes via PI3K/AKT/MCP-1 axis. Neural Regen Res 2025; 20:518-532. [PMID: 38819064 PMCID: PMC11317932 DOI: 10.4103/nrr.nrr-d-23-01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00029/figure1/v/2024-05-28T214302Z/r/image-tiff Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis. Human-induced pluripotent stem cell-derived neural stem cell exosomes (hiPSC-NSC-Exos) have shown potential for brain injury repair in central nervous system diseases. In this study, we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism. Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits, enhanced blood-brain barrier integrity, and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage. Additionally, hiPSC-NSC-Exos decreased immune cell infiltration, activated astrocytes, and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and tumor necrosis factor-α post-intracerebral hemorrhage, thereby improving the inflammatory microenvironment. RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion, thereby improving blood-brain barrier integrity. Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects. In summary, our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity, in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.
Collapse
Affiliation(s)
- Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Pan Liao
- School of Medicine, Nankai University, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Rongrong Zhong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Neurological Institute, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Lapin D, Sharma A, Wang P. Extracellular cold-inducible RNA-binding protein in CNS injury: molecular insights and therapeutic approaches. J Neuroinflammation 2025; 22:12. [PMID: 39838468 PMCID: PMC11752631 DOI: 10.1186/s12974-025-03340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Central nervous system (CNS) injuries, such as ischemic stroke (IS), intracerebral hemorrhage (ICH) and traumatic brain injury (TBI), are a significant global burden. The complex pathophysiology of CNS injury is comprised of primary and secondary injury. Inflammatory secondary injury is incited by damage-associated molecular patterns (DAMPs) which signal a variety of resident CNS cells and infiltrating immune cells. Extracellular cold-inducible RNA-binding protein (eCIRP) is a DAMP which acts through multiple immune and non-immune cells to promote inflammation. Despite the well-established role of eCIRP in systemic and sterile inflammation, its role in CNS injury is less elucidated. Recent literature suggests that eCIRP is a pleiotropic inflammatory mediator in CNS injury. eCIRP is also being evaluated as a clinical biomarker to indicate prognosis in CNS injuries. This review provides a broad overview of CNS injury, with a focus on immune-mediated secondary injury and neuroinflammation. We then review what is known about eCIRP in CNS injury, and its known mechanisms in both CNS and non-CNS cells, identifying opportunities for further study. We also explore eCIRP's potential as a prognostic marker of CNS injury severity and outcome. Next, we provide an overview of eCIRP-targeting therapeutics and suggest strategies to develop these agents to ameliorate CNS injury. Finally, we emphasize exploring novel molecular mechanisms, aside from neuroinflammation, by which eCIRP acts as a critical mediator with significant potential as a therapeutic target and prognostic biomarker in CNS injury.
Collapse
Affiliation(s)
- Dmitriy Lapin
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
5
|
Li H, Yu W, Zheng X, Zhu Z. TREM1-Microglia crosstalk: Neurocognitive disorders. Brain Res Bull 2025; 220:111162. [PMID: 39645047 DOI: 10.1016/j.brainresbull.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Neurocognitive Disorders (NCDs) primarily affect cognitive functions, including learning, memory, perception, and problem-solving. They predominantly arise as pathological sequelae of central nervous system (CNS) disorders. Emerging evidence suggests that microglial inflammatory activation within the hippocampus underlies the pathogenesis of cognitive impairment. Triggering receptor expressed on myeloid cells 1 (TREM1), a pattern-recognition receptor on microglia, becomes upregulated in response to injury and synergistically amplifies inflammatory responses mediated by other pattern-recognition receptors, leading to uncontrolled inflammation. While TREM1 is lowly expressed in the resting state, its upregulation upon exposure to injurious inflammatory stimuli promotes microglial activation and contributes to the development of NCDs. Consequently, TREM1 may serve as a critical receptor in microglia-mediated inflammation. This article reviews the current understanding of TREM1 and its role in NCDs pathogenesis.
Collapse
Affiliation(s)
- Huashan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China.
| | - Wanqiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Xue Zheng
- Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China
| | - Zhaoqiong Zhu
- Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
6
|
Sigalov AB. TREM-1 and TREM-2 as therapeutic targets: clinical challenges and perspectives. Front Immunol 2024; 15:1498993. [PMID: 39737196 PMCID: PMC11682994 DOI: 10.3389/fimmu.2024.1498993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
TREM-1 and TREM-2 as Therapeutic Targets: Clinical Challenges and Perspectives.
Collapse
|
7
|
Zhao T, Zhou Y, Zhang D, Han D, Ma J, Li S, Li T, Hu S, Li Z. Inhibition of TREM-1 alleviates neuroinflammation by modulating microglial polarization via SYK/p38MAPK signaling pathway after traumatic brain injury. Brain Res 2024; 1834:148907. [PMID: 38570153 DOI: 10.1016/j.brainres.2024.148907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI), as a major public health problem, is characterized by high incidence rate, disability rate, and mortality rate. Neuroinflammation plays a crucial role in the pathogenesis of TBI. Triggering receptor expressed on myeloid cells-1 (TREM-1) is recognized as an amplifier of the inflammation in diseases of the central nervous system (CNS). However, the function of TREM-1 remains unclear post-TBI. This study aimed to investigate the function of TREM-1 in neuroinflammation induced by TBI. METHODS Brain water content (BWC), modified neurological severity score (mNSS), and Morris Water Maze (MWM) were measured to evaluate the effect of TREM-1 inhibition on nervous system function and outcome after TBI. TREM-1 expression in vivo was evaluated by Western blotting. The cellular localization of TREM-1 in the damaged region was observed via immunofluorescence staining. We also conducted Western blotting to examine expression of SYK, p-SYK and other downstream proteins. RESULTS We found that inhibition of TREM-1 reduced brain edema, decreased mNSS and improved neurobehavioral outcomes after TBI. It was further determined that TREM-1 was expressed on microglia and modulated subtype transition of microglia. Inhibition of TREM-1 alleviated neuroinflammation, which was associated with SYK/p38MAPK signaling pathway. CONCLUSIONS These findings suggest that TREM-1 can be a potential clinical therapeutic target for alleviating neuroinflammation after TBI.
Collapse
Affiliation(s)
- Tianqi Zhao
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Yuxin Zhou
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Dabing Zhang
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Dong Han
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, Jiangsu, China; Xuzhou Key Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyuan Ma
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Shanshan Li
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Ting Li
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China; School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shuqun Hu
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, Jiangsu, China; Xuzhou Key Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Zhouru Li
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China.
| |
Collapse
|
8
|
Kong Y, Wang D, Jin X, Liu Y, Xu H. Unveiling the significance of TREM1/2 in hemorrhagic stroke: structure, function, and therapeutic implications. Front Neurol 2024; 15:1334786. [PMID: 38385036 PMCID: PMC10879330 DOI: 10.3389/fneur.2024.1334786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Stroke has long been a major threat to human health worldwide. Hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, exhibits a high incidence rate and a high mortality and disability rate, imposing a substantial burden on both public health and the economy and society. In recent years, the triggering receptor expressed on myeloid cells (TREM) family has garnered extensive attention in various pathological conditions, including hemorrhagic stroke. This review comprehensively summarizes the structure and function of TREM1/2, as well as their roles and potential mechanisms in hemorrhagic stroke, with the aim of providing guidance for the development of targeted therapeutic strategies in the future.
Collapse
Affiliation(s)
- Yancheng Kong
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Di Wang
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Xu Jin
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Yi Liu
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Hui Xu
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| |
Collapse
|