Dalboni da Rocha JL, Lai J, Pandey P, Myat PSM, Loschinskey Z, Bag AK, Sitaram R. Artificial Intelligence for Neuroimaging in Pediatric Cancer.
Cancers (Basel) 2025;
17:622. [PMID:
40002217 PMCID:
PMC11852968 DOI:
10.3390/cancers17040622]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES
Artificial intelligence (AI) is transforming neuroimaging by enhancing diagnostic precision and treatment planning. However, its applications in pediatric cancer neuroimaging remain limited. This review assesses the current state, potential applications, and challenges of AI in pediatric neuroimaging for cancer, emphasizing the unique needs of the pediatric population.
METHODS
A comprehensive literature review was conducted, focusing on AI's impact on pediatric neuroimaging through accelerated image acquisition, reduced radiation, and improved tumor detection. Key methods include convolutional neural networks for tumor segmentation, radiomics for tumor characterization, and several tools for functional imaging. Challenges such as limited pediatric datasets, developmental variability, ethical concerns, and the need for explainable models were analyzed.
RESULTS
AI has shown significant potential to improve imaging quality, reduce scan times, and enhance diagnostic accuracy in pediatric neuroimaging, resulting in improved accuracy in tumor segmentation and outcome prediction for treatment. However, progress is hindered by the scarcity of pediatric datasets, issues with data sharing, and the ethical implications of applying AI in vulnerable populations.
CONCLUSIONS
To overcome current limitations, future research should focus on building robust pediatric datasets, fostering multi-institutional collaborations for data sharing, and developing interpretable AI models that align with clinical practice and ethical standards. These efforts are essential in harnessing the full potential of AI in pediatric neuroimaging and improving outcomes for children with cancer.
Collapse