1
|
Lai BQ, Wu RJ, Wu CR, Yu HY, Xu J, Yang SB, Chen ZH, Li X, Guo YN, Yang Y, Che MT, Wu TT, Fu GT, Yang YH, Chen Z, Hua N, Liu R, Zheng QJ, Chen YF. DON-Apt19S bioactive scaffold transplantation promotes in situ spinal cord repair in rats with transected spinal cord injury by effectively recruiting endogenous neural stem cells and mesenchymal stem cells. Mater Today Bio 2025; 32:101753. [PMID: 40275960 PMCID: PMC12019207 DOI: 10.1016/j.mtbio.2025.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
The spinal cord's limited regeneration is attributed to the scarcity of endogenous stem cells and a poor post-injury microenvironment in adult mammals. To overcome these challenges, we transplanted a DNA aptamer 19S (Apt19S) sustained-release decellularized optic nerve (DON) scaffold (DON-A) into completely transected spinal cord injury (SCI) site in rats and investigated its effect on endogenous stem cell recruitment and differentiation, which subsequently contributed to in situ SCI repair. It has been demonstrated that Apt19S specifically binds to the membrane receptor alkaline phosphatase highly expressed on neural stem cells (NSCs) and mesenchymal stem cells (MSCs), and our study further proved that Apt19S can simultaneously recruit endogenous NSCs and MSCs to the lesion of SCI. In our study, the DON-A promoted stem cell proliferation in the early stage of the injury, followed by the rapid neurogenesis through NSCs and revascularization via MSCs. Synaptic connections between corticospinal tracts and calcitonin gene-related peptide positive nerve fibers with newborn neurons confirmed the formation of endogenous neuronal relays at the injury site, which improved the rats' motor and sensory functions. This study offers a new strategy for recruiting both NSCs and MSCs to synergistically overcome low spinal cord self-repair ability, holding a high potential for clinical translation.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
| | - Rong-Jie Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Chuang-Ran Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hai-Yang Yu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Xu
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Shang-Bin Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Zheng-Hong Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- Rehabilitation Medicine Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Nan Guo
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Yue Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Ming-Tian Che
- Cedars Sinai Biobank & Research Pathology Resource, Cedars-Sinai, Los Angeles, CA, 90048, USA
| | - Ting-Ting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Guang-Tao Fu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yu-Hui Yang
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhen Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan Hua
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Rui Liu
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Qiu-Jian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuan-Feng Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Wu Y, Zhang Z, Sun X, Wang J, Shen H, Sun X, Wang Z. Stromal cell-derived factor-1 downregulation contributes to neuroprotection mediated by CXC chemokine receptor 4 interactions after intracerebral hemorrhage in rats. CNS Neurosci Ther 2024; 30:e14400. [PMID: 37614198 PMCID: PMC10848108 DOI: 10.1111/cns.14400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
AIM Stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) have a substantial role in neuronal formation, differentiation, remodeling, and maturation and participate in multiple physiological and pathological events. In this study, we investigated the role of SDF-1/CXCR4 in neural functional injury and neuroprotection after intracerebral hemorrhage (ICH). METHODS Western blot, immunofluorescence and immunoprecipitation were used to detect SDF-1/CXCR4 expression and combination respectively after ICH. TUNEL staining, Lactate dehydrogenase assay, Reactive oxygen species assay, and Enzyme-linked immunosorbent assay to study neuronal damage; Brain water content to assay brain edema, Neurological scores to assess short-term neurological deficits. Pharmacological inhibition and genetic intervention of SDF-1/CXCR4 signaling were also used in this study. RESULTS ICH induced upregulation of SDF-1/CXCR4 and increased their complex formation, whereas AMD3100 significantly reduced it. The levels of TNF-α and IL-1β were significantly reduced after AMD3100 treatment. Additionally, AMD3100 treatment can alleviate neurobehavioral dysfunction of ICH rats. Conversely, simultaneous SDF-1/CXCR4 overexpression induced the opposite effect. Moreover, immunoprecipitation confirmed that SDF-1/CXCR4 combined to initiate neurodamage effects. CONCLUSION This study indicated that inhibition of SDF-1/CXCR4 complex formation can rescue the inflammatory response and alleviate neurobehavioral dysfunction after ICH. SDF-1/CXCR4 may have applications as a therapeutic target after ICH.
Collapse
Affiliation(s)
- Yu Wu
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| | - Zhuwei Zhang
- Department of NeurosurgeryLinyi People's HospitalLinyiChina
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| | - Jing Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| | - Xue Sun
- Department of Emergency MedicineThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| |
Collapse
|