1
|
Newman KD, Nelson JL, Durkin LK, Cripps JK, McCarthy MA. An analytical solution for optimising detections when accounting for site establishment costs. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Bozzuto C, Canessa S, Koella JC. Exploring artificial habitat fragmentation to control invasion by infectious wildlife diseases. Theor Popul Biol 2021; 141:14-23. [PMID: 34139201 DOI: 10.1016/j.tpb.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
One way to reduce the impacts of invading wildlife diseases is setting up fences that would reduce the spread of pathogens by limiting connectivity, similarly to exclusion fences that are commonly used to conserve threatened species against invasive predators. One of the problems with fences is that, while they may have the short-term benefit of impeding the spread of disease, this benefit may be offset by potential long-term ecological costs of fragmentation by fencing. However, managers facing situations where a pathogen has been detected near the habitat of a (highly) vulnerable species may be willing to explore such a trade-off. To aid such exploration quantitatively, we present a series of models trading off the benefits of fragmentation (potential reduction of disease impacts on susceptible individuals) against its costs (both financial and ecological, i.e. reduced viability in the patches created by fragmentation), and exploring the effects of fragmentation on non-target species richness. For all model variants we derive the optimal number of artificial patches. We show that pre-emptive disease fences may have benefits when the risk of disease exceeds the impacts of fragmentation, when fence failure rates are lower than a specific threshold, and when sufficient resources are available to implement optimal solutions. A useful step to initiate planning is to obtain information about the expected number of initial infection events and on the host's extinction threshold with respect to the focal habitat and management duration. Our approach can assist managers to identify whether the trade-offs support the decision to fence and how intensive fragmentation should be.
Collapse
Affiliation(s)
- Claudio Bozzuto
- Wildlife Analysis GmbH, Oetlisbergstrasse 38, 8053 Zurich, Switzerland.
| | - Stefano Canessa
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jacob C Koella
- Laboratory of ecology and epidemiology of parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
3
|
Butt N, Chauvenet ALM, Adams VM, Beger M, Gallagher RV, Shanahan DF, Ward M, Watson JEM, Possingham HP. Importance of species translocations under rapid climate change. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:775-783. [PMID: 33047846 DOI: 10.1111/cobi.13643] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Species that cannot adapt or keep pace with a changing climate are likely to need human intervention to shift to more suitable climates. While hundreds of articles mention using translocation as a climate-change adaptation tool, in practice, assisted migration as a conservation action remains rare, especially for animals. This is likely due to concern over introducing species to places where they may become invasive. However, there are other barriers to consider, such as time-frame mismatch, sociopolitical, knowledge and uncertainty barriers to conservationists adopting assisted migration as a go-to strategy. We recommend the following to advance assisted migration as a conservation tool: attempt assisted migrations at small scales, translocate species with little invasion risk, adopt robust monitoring protocols that trigger an active response, and promote political and public support.
Collapse
Affiliation(s)
- Nathalie Butt
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alienor L M Chauvenet
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Gold Coast, Southport, QLD, 4222, Australia
| | - Vanessa M Adams
- School of Technology, Environments & Design, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Maria Beger
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, U.K
| | - Rachael V Gallagher
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Danielle F Shanahan
- Zealandia Ecosanctuary, 53 Waiapu Road, Karori, Wellington, 6012, New Zealand
- Victoria University of Wellington, Kelburn, Wellington, 6012, New Zealand
| | - Michelle Ward
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - James E M Watson
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Global Conservation Program, Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, New York, U.S.A
| | - Hugh P Possingham
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
- The Nature Conservancy, South Brisbane, QLD, 4101, Australia
| |
Collapse
|
4
|
Nishimoto M, Miyashita T, Yokomizo H, Matsuda H, Imazu T, Takahashi H, Hasegawa M, Fukasawa K. Spatial optimization of invasive species control informed by management practices. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02261. [PMID: 33219543 PMCID: PMC8047888 DOI: 10.1002/eap.2261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Optimization of spatial resource allocation is crucial for the successful control of invasive species under a limited budget but requires labor-intensive surveys to estimate population parameters. In this study, we devised a novel framework for the spatially explicit optimization of capture effort allocation using state-space population models from past capture records. We applied it to a control program for invasive snapping turtles to determine effort allocation strategies that minimize the population density over the whole area. We found that spatially heterogeneous density dependence and capture pressure limit the abundance of snapping turtles. Optimal effort allocation effectively improved the control effect, but the degree of improvement varied substantially depending on the total effort. The degree of improvement by the spatial optimization of allocation effort was only 3.21% when the total effort was maintained at the 2016 level. However, when the total effort was increased by two, four, and eight times, spatial optimization resulted in improvements of 4.65%, 8.33%, and 20.35%, respectively. To achieve the management goal for snapping turtles in our study area, increasing the current total effort by more than four times was necessary, in addition to optimizing the spatial effort. The snapping turtle population is expected to reach the target density one year after the optimal management strategy is implemented, and this rapid response can be explained by high population growth rate coupled with density-dependent feedback regulation. Our results demonstrated that combining a state-space model with optimization makes it possible to adaptively improve the management of invasive species and decision-making. The method used in this study, based on removal records from an invasive management program, can be easily applied to monitoring data for wildlife and pest control management using traps in a variety of ecosystems.
Collapse
Affiliation(s)
- Makoto Nishimoto
- Graduate School of Agricultural and Life SciencesUniversity of Tokyo1‐1‐1 Yayoi, Bunkyo‐kuTokyo113‐8657Japan
| | - Tadashi Miyashita
- Graduate School of Agricultural and Life SciencesUniversity of Tokyo1‐1‐1 Yayoi, Bunkyo‐kuTokyo113‐8657Japan
| | - Hiroyuki Yokomizo
- National Institute for Environmental StudiesCenter for Health and Environmental Risk Research16‐2 OnogawaTsukubaIbaraki305‐8506Japan
| | - Hiroyuki Matsuda
- Faculty of Environment and Information SciencesYokohama National University79‐7 Tokiwadai, Hodogaya‐kuYokohama240‐8501Japan
| | - Takeshi Imazu
- Environmental and Community Affairs DepartmentNature Conservation DivisionChiba Biodiversity CenterChiba Prefectural Government 955‐2 Aoba‐cho, Chuo‐kuChiba CityChiba260‐8682Japan
| | - Hiroo Takahashi
- Japan Wildlife Research Center3‐3‐7 Kotobashi, Sumida‐kuTokyo130‐8606Japan
| | - Masami Hasegawa
- Faculty of ScienceToho University2‐2‐1 MiyamaFunabashiChiba274‐8510Japan
| | - Keita Fukasawa
- National Institute for Environmental StudiesCenter for Environmental Biology and Ecosystem Studies16‐2 OnogawaTsukubaIbaraki305‐8506Japan
| |
Collapse
|
6
|
Barychka T, Purves DW, Milner-Gulland EJ, Mace GM. Modelling parameter uncertainty reveals bushmeat yields versus survival trade-offs in heavily-hunted duiker Cephalophus spp. PLoS One 2020; 15:e0234595. [PMID: 32986703 PMCID: PMC7521732 DOI: 10.1371/journal.pone.0234595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022] Open
Abstract
Reliably predicting sustainable exploitation levels for many tropical species subject to hunting remains a difficult task, largely because of the inherent uncertainty associated with estimating parameters related to both population dynamics and hunting pressure. Here, we investigate a modelling approach to support decisions in bushmeat management which explicitly considers parameter uncertainty. We apply the approach to duiker Cephalophus spp., assuming either a constant quota-based, or a constant proportional harvesting, strategy. Within each strategy, we evaluate different hunting levels in terms of both average yield and survival probability, over different time horizons. Under quota-based harvesting, considering uncertainty revealed a trade-off between yield and extinction probability that was not evident when ignoring uncertainty. The highest yield was returned by a quota that implied a 40% extinction risk, whereas limiting extinction risk to 10% reduced yield by 50%-70%. By contrast, under proportional harvesting, there was no trade-off between yield and extinction probability. The maximum proportion returned a yield comparable with the maximum possible under quota-based harvesting, but with extinction risk below 10%. However, proportional harvesting can be harder to implement in practice because it depends on an estimate of population size. In both harvesting approaches, predicted yields were highly right-skewed with median yields differing from mean yields, implying that decision outcomes depend on attitude to risk. The analysis shows how an explicit consideration of all available information, including uncertainty, can, as part of a wider process involving multiple stakeholders, help inform harvesting policies.
Collapse
Affiliation(s)
- Tatsiana Barychka
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | | | - E. J. Milner-Gulland
- Department of Zoology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Georgina M. Mace
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
7
|
Baker CM, Bode M. Recent advances of quantitative modeling to support invasive species eradication on islands. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Christopher M. Baker
- School of Mathematics and Statistics, The University of Melbourne Melbourne Victoria Australia
- Melbourne Centre for Data Science, The University of Melbourne Melbourne Victoria Australia
- Centre of Excellence for Biosecurity Risk Analysis The University of Melbourne Melbourne Victoria Australia
| | - Michael Bode
- School of Mathematical Sciences, Queensland University of Technology Brisbane Queensland Australia
| |
Collapse
|