1
|
Ullah H, Fordham DA, Nagelkerken I. Climate change negates positive CO 2 effects on marine species biomass and productivity by altering the strength and direction of trophic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149624. [PMID: 34419906 DOI: 10.1016/j.scitotenv.2021.149624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
One of the biggest challenges in more accurately forecasting the effects of climate change on future food web dynamics relates to how climate change affects multi-trophic species interactions, particularly when multiple interacting stressors are considered. Using a dynamic food web model, we investigate the individual and combined effect of ocean warming and acidification on changes in trophic interaction strengths (both direct and indirect) and the consequent effects on biomass structure of food web functional groups. To do this, we mimicked a species-rich multi-trophic-level temperate shallow-water rocky reef food web and integrated empirical data from mesocosm experiments on altered species interactions under warming and acidification, into food-web models. We show that a low number of strong temperature-driven changes in direct trophic interactions (feeding and competition) will largely determine the magnitude of biomass change (either increase or decrease) of high-order consumers, with increasing consumer biomass suppressing that of prey species. Ocean acidification, in contrast, alters a large number of weak indirect interactions (e.g. cascading effects of increased or decreased abundances of other groups), enabling a large increase in consumer and prey biomass. The positive effects of ocean acidification are driven by boosted primary productivity, with energy flowing up to higher trophic levels. We show that warming is a much stronger driver of positive as well as negative modifications of species biomass compared to ocean acidification. Warming affects a much smaller number of existing trophic interactions, though, with direct consumer-resource effects being more important than indirect effects. We conclude that the functional role of consumers in future food webs will be largely regulated by alterations in the strength of direct trophic interactions under ocean warming, with ensuing effects on the biomass structure of marine food webs.
Collapse
Affiliation(s)
- Hadayet Ullah
- Southern Seas Ecology Laboratories, School of Biological Sciences and the Environment Institute, The University of Adelaide, Adelaide, Australia
| | - Damien A Fordham
- School of Biological Sciences and the Environment Institute, The University of Adelaide, Adelaide, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and the Environment Institute, The University of Adelaide, Adelaide, Australia; School of Biological Sciences and the Environment Institute, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
2
|
Halfwerk W, Jerem P. A Systematic Review of Research Investigating the Combined Ecological Impact of Anthropogenic Noise and Artificial Light at Night. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.765950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Levels of anthropogenic noise and artificial light at night (ALAN) are rapidly rising on a global scale. Both sensory pollutants are well known to affect animal behavior and physiology, which can lead to substantial ecological impacts. Most studies on noise or light pollution to date have focused on single stressor impacts, studying both pollutants in isolation despite their high spatial and temporal co-occurrence. However, few studies have addressed their combined impact, known as multisensory pollution, with the specific aim to assess whether the interaction between noise and light pollution leads to predictable, additive effects, or less predictable, synergistic or antagonistic effects. We carried out a systematic review of research investigating multisensory pollution and found 28 studies that simultaneously assessed the impact of anthropogenic noise and ALAN on animal function (e.g., behavior, morphology or life-history), physiology (e.g., stress, oxidative, or immune status), or population demography (e.g., abundance or species richness). Only fifteen of these studies specifically tested for possible interactive effects when both sensory pollutants were combined. Four out of eight experimental studies revealed a significant interaction effect, in contrast to only three out seven observational studies. We discuss the benefits and limitations of experimental vs. observational studies addressing multisensory pollution and call for more specific testing of the diverse ways in which noise and light pollution can interact to affect wildlife.
Collapse
|
3
|
McCormack SA, Melbourne-Thomas J, Trebilco R, Griffith G, Hill SL, Hoover C, Johnston NM, Marina TI, Murphy EJ, Pakhomov EA, Pinkerton M, Plagányi É, Saravia LA, Subramaniam RC, Van de Putte AP, Constable AJ. Southern Ocean Food Web Modelling: Progress, Prognoses, and Future Priorities for Research and Policy Makers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Graphical AbstractGraphical summary of multiple aspects of Southern Ocean food web structure and function including alternative energy pathways through pelagic food webs, climate change and fisheries impacts and the importance of microbial networks and benthic systems.
Collapse
|
4
|
González González C, Mora Van Cauwelaert E, Boyer D, Perfecto I, Vandermeer J, Benítez M. High-order interactions maintain or enhance structural robustness of a coffee agroecosystem network. ECOLOGICAL COMPLEXITY 2021. [DOI: 10.1016/j.ecocom.2021.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Orr JA, Vinebrooke RD, Jackson MC, Kroeker KJ, Kordas RL, Mantyka-Pringle C, Van den Brink PJ, De Laender F, Stoks R, Holmstrup M, Matthaei CD, Monk WA, Penk MR, Leuzinger S, Schäfer RB, Piggott JJ. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc Biol Sci 2020; 287:20200421. [PMID: 32370677 DOI: 10.1098/rspb.2020.0421] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Anthropogenic environmental changes, or 'stressors', increasingly threaten biodiversity and ecosystem functioning worldwide. Multiple-stressor research is a rapidly expanding field of science that seeks to understand and ultimately predict the interactions between stressors. Reviews and meta-analyses of the primary scientific literature have largely been specific to either freshwater, marine or terrestrial ecology, or ecotoxicology. In this cross-disciplinary study, we review the state of knowledge within and among these disciplines to highlight commonality and division in multiple-stressor research. Our review goes beyond a description of previous research by using quantitative bibliometric analysis to identify the division between disciplines and link previously disconnected research communities. Towards a unified research framework, we discuss the shared goal of increased realism through both ecological and temporal complexity, with the overarching aim of improving predictive power. In a rapidly changing world, advancing our understanding of the cumulative ecological impacts of multiple stressors is critical for biodiversity conservation and ecosystem management. Identifying and overcoming the barriers to interdisciplinary knowledge exchange is necessary in rising to this challenge. Division between ecosystem types and disciplines is largely a human creation. Species and stressors cross these borders and so should the scientists who study them.
Collapse
Affiliation(s)
- James A Orr
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Rolf D Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kristy J Kroeker
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Rebecca L Kordas
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
| | - Chrystal Mantyka-Pringle
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Wildlife Conservation Society Canada, Whitehorse, Yukon Territory, Canada
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.,Wageningen Environmental Research, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | | | | | - Wendy A Monk
- Environment and Climate Change Canada at Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Marcin R Penk
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Sebastian Leuzinger
- Institute for Applied Ecology, Auckland University of Technology, Auckland, New Zealand
| | - Ralf B Schäfer
- Quantitative Landscape Ecology, iES-Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Jeremy J Piggott
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Dolbeth M, Crespo D, Leston S, Solan M. Realistic scenarios of environmental disturbance lead to functionally important changes in benthic species-environment interactions. MARINE ENVIRONMENTAL RESEARCH 2019; 150:104770. [PMID: 31421538 DOI: 10.1016/j.marenvres.2019.104770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 05/13/2023]
Abstract
Changes in community structure concurrent with environmental forcing often form a precursor to changes in species diversity, and can have substantive consequences for ecosystem functioning. Here, we assess the effects of altered levels of evenness that are representative of different levels of eutrophication and changes in salinity associated with altered precipitation patterns, on the mediation of nutrient release by sediment-dwelling invertebrate communities. We find that an adjustment towards a more even distribution of species corresponds with an increase in sediment particle reworking that, in general, translates to increased levels of nutrient release. This response, however, is dependent on the functional role of each species in the community and is influenced by concomitant changes in salinity, especially when salinity extends beyond the range typically experienced by the community. Overall, our findings highlight the dynamic nature of species contributions to functioning and reinforce the importance of understanding when, and how, the mechanistic basis of species-environment interactions are modified as the influence of abiotic and biotic factors flex under periods of directional forcing.
Collapse
Affiliation(s)
- M Dolbeth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - D Crespo
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; MARE - Marine and Environmental Sciences Centre, Politécnico de Leiria, Edifício CETEMARES, Av. Porto de Pesca, 2520-630, Peniche, Portugal
| | - S Leston
- CFE - Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; REQUIMTE/LAQV - Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - M Solan
- Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, Waterfront Campus, European, Way, Southampton, SO14 3ZH, United Kingdom
| |
Collapse
|