1
|
Zander KK, Burton M, Pandit R, Gunawardena A, Pannell D, Garnett ST. How public values for threatened species are affected by conservation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115659. [PMID: 35820310 DOI: 10.1016/j.jenvman.2022.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
While the imminent extinction of many species is predicted, prevention is expensive, and decision-makers often have to prioritise funding. In democracies, it can be argued that conservation using public funds should be influenced by the values placed on threatened species by the public, and that community views should also affect the conservation management approaches adopted. We conducted on online survey with 2400 respondents from the general Australian public to determine 1) the relative values placed on a diverse set of 12 threatened Australian animal species and 2) whether those values changed with the approach proposed to conserve them. The survey included a contingent valuation and a choice experiment. Three notable findings emerged: 1) respondents were willing to pay $60/year on average for a species (95% confidence interval: $23 to $105) to avoid extinction in the next 20 years based on the contingent valuation, and $29 to $100 based on the choice experiment, 2) respondents were willing to pay to reduce the impact of feral animals on almost all presented threatened species, 3) for few species and respondents, WTP was lower when genetic modification to reduce inbreeding in the remaining population was proposed.
Collapse
Affiliation(s)
| | - Michael Burton
- School of Agriculture and Environment, University of Western Australia, Australia
| | - Ram Pandit
- School of Agriculture and Environment, University of Western Australia, Australia
| | - Asha Gunawardena
- School of Agriculture and Environment, University of Western Australia, Australia
| | - David Pannell
- School of Agriculture and Environment, University of Western Australia, Australia
| | - Stephen T Garnett
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Australia
| |
Collapse
|
2
|
Marrotte RR, Patterson BR, Northrup JM. Harvest and density-dependent predation drive long-term population decline in a northern ungulate. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2629. [PMID: 35403759 PMCID: PMC9541669 DOI: 10.1002/eap.2629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The relative effect of top-down versus bottom-up forces in regulating and limiting wildlife populations is an important theme in ecology. Untangling these effects is critical for a basic understanding of trophic dynamics and effective management. We examined the drivers of moose (Alces alces) population growth by integrating two independent sources of observations within a hierarchical Bayesian population model. We used one of the largest existing spatiotemporal data sets on ungulate population dynamics globally. We documented a 20% population decline over the period examined. There was negative density-dependent population growth of moose. Although we could not determine the mechanisms producing density-dependent suppression of population growth, the relatively low densities at which we documented moose populations suggested it could be due to density-dependent predation. Predation primarily limited population growth, except at low density, where it was regulating. After we simulated several harvest scenarios, it appeared that harvest was largely additive and likely contributed to population declines. Our results highlight how population dynamics are context dependent and vary strongly across gradients in climate, forest type, and predator abundance. These results help clarify long-standing questions in population ecology and highlight the complex relationships between natural and human-caused mortality in driving ungulate population dynamics.
Collapse
Affiliation(s)
- Robby R. Marrotte
- Ontario Ministry of Natural Resources & Forestry, Wildlife Research & Monitoring SectionTrent UniversityPeterboroughOntarioCanada
| | - Brent R. Patterson
- Ontario Ministry of Natural Resources & Forestry, Wildlife Research & Monitoring SectionTrent UniversityPeterboroughOntarioCanada
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
| | - Joseph M. Northrup
- Ontario Ministry of Natural Resources & Forestry, Wildlife Research & Monitoring SectionTrent UniversityPeterboroughOntarioCanada
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
| |
Collapse
|
3
|
Phukuntsi MA, Dalton DL, Mwale M, Selier J, Cebekhulu T, Sethusa MT. Genetic patterns in three South African specialist antelope species: Threats, conservation management and their implications. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Metlholo Andries Phukuntsi
- South African National Biodiversity Institute Pretoria South Africa
- Department of Environment, Water and Earth Sciences Tshwane University of Technology Pretoria South Africa
| | - Desire Lee Dalton
- South African National Biodiversity Institute Pretoria South Africa
- School of Health and Life Sciences Teesside University Middlesbrough UK
| | - Monica Mwale
- South African National Biodiversity Institute Pretoria South Africa
| | - Jeanetta Selier
- South African National Biodiversity Institute Pretoria South Africa
- School of Life Sciences University of KwaZulu‐Natal Durban South Africa
| | - Thando Cebekhulu
- South African National Biodiversity Institute Pretoria South Africa
| | | |
Collapse
|
4
|
Schulte to Bühne H, Pettorelli N, Hoffmann M. The policy consequences of defining rewilding. AMBIO 2022; 51:93-102. [PMID: 33983560 PMCID: PMC8651963 DOI: 10.1007/s13280-021-01560-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/28/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
More than 30 years after it was first proposed as a biodiversity conservation strategy, rewilding remains a controversial concept. There is currently little agreement about what the goals of rewilding are, and how these are best achieved, limiting the utility of rewilding in mainstream conservation. Achieving consensus about rewilding requires agreeing about what "wild" means, but many different definitions exist, reflecting the diversity of values in conservation. There are three key debates that must be addressed to find a consensual definition of "wild": (1) to which extent can people and "wild" nature co-exist?; (2) how much space does "wild" nature need? and (3) what kinds of "wild" nature do we value? Depending on the kinds of "wild" nature rewilding aims to create, rewilding policy will be faced with managing different opportunities and risks for biodiversity and people.
Collapse
Affiliation(s)
- Henrike Schulte to Bühne
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY UK
- Science and Solutions for a Changing Planet DTP and the Department of Life Sciences, Imperial College London, Buckhurst Road, Ascot, SL5 7PY UK
| | - Nathalie Pettorelli
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY UK
| | - Michael Hoffmann
- Conservation and Policy, Zoological Society of London, Regent’s Park, London, NW1 4RY UK
| |
Collapse
|
7
|
Seymour CL, Gillson L, Child MF, Tolley KA, Curie JC, da Silva JM, Alexander GJ, Anderson P, Downs CT, Egoh BN, Ehlers Smith DA, Ehlers Smith YC, Esler KJ, O’Farrell PJ, Skowno AL, Suleman E, Veldtman R. Horizon scanning for South African biodiversity: A need for social engagement as well as science. AMBIO 2020; 49:1211-1221. [PMID: 31564051 PMCID: PMC7128016 DOI: 10.1007/s13280-019-01252-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
A horizon scan was conducted to identify emerging and intensifying issues for biodiversity conservation in South Africa over the next 5-10 years. South African biodiversity experts submitted 63 issues of which ten were identified as priorities using the Delphi method. These priority issues were then plotted along axes of social agreement and scientific certainty, to ascertain whether issues might be "simple" (amenable to solutions from science alone), "complicated" (socially agreed upon but technically complicated), "complex" (scientifically challenging and significant levels of social disagreement) or "chaotic" (high social disagreement and highly scientifically challenging). Only three of the issues were likely to be resolved by improved science alone, while the remainder require engagement with social, economic and political factors. Fortunately, none of the issues were considered chaotic. Nevertheless, strategic communication, education and engagement with the populace and policy makers were considered vital for addressing emerging issues.
Collapse
Affiliation(s)
- Colleen L. Seymour
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont, 7735 South Africa
- FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Rondebosch, 7701 South Africa
| | - Lindsey Gillson
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, private Bag X3, Rondebosch, 7701 South Africa
| | - Matthew F. Child
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont, 7735 South Africa
- Mammal Research Institute, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0028 South Africa
| | - Krystal A. Tolley
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont, 7735 South Africa
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, P.O. Box 524, Auckland Park, 2000 South Africa
| | - Jock C. Curie
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont, 7735 South Africa
- Institute for Coastal and Marine Research, Nelson Mandela University, PO Box 77000, Port Elizabeth, 6031 South Africa
| | - Jessica M. da Silva
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont, 7735 South Africa
- Department of Botany & Zoology, Stellenbosch University, Private Bag x1, Matieland, 7602 South Africa
| | - Graham J. Alexander
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, 2050 South Africa
| | - Pippin Anderson
- Department of Environmental and Geographical Science, University of Cape Town, Private Bag X3, Rondebosch, 7701 South Africa
| | - Colleen T. Downs
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209 South Africa
| | - Benis N. Egoh
- Department of Earth System Science, University of California, Irvine, CA 92697 USA
| | - David A. Ehlers Smith
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209 South Africa
| | - Yvette C. Ehlers Smith
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209 South Africa
| | - Karen J. Esler
- Centre for Invasion Biology and Department of Conservation Ecology & Entomology, Stellenbosch University, Private Bag x1, Matieland, 7602 South Africa
| | - Patrick J. O’Farrell
- Council for Scientific and Industrial Research, PO Box 320, Stellenbosch, 7599 South Africa
- FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Rondebosch, 7701 South Africa
| | - Andrew L. Skowno
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont, 7735 South Africa
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, private Bag X3, Rondebosch, 7701 South Africa
| | - Essa Suleman
- NextGen Health Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, 0001 South Africa
- National Zoological Garden, South African National Biodiversity Institute (SANBI), 232 Boom Street, Pretoria, 0001 South Africa
| | - Ruan Veldtman
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont, 7735 South Africa
- Department of Conservation Ecology & Entomology, Stellenbosch University, Private Bag x1, Matieland, 7602 South Africa
| |
Collapse
|