1
|
Bell-James J, Watson JEM. Ambitions in national plans do not yet match bold international protection and restoration commitments. Nat Ecol Evol 2025; 9:417-424. [PMID: 39962303 DOI: 10.1038/s41559-025-02636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/06/2025] [Indexed: 03/12/2025]
Abstract
Almost 200 nations have made bold commitments to halt biodiversity loss as signatories to the Kunming-Montreal Global Biodiversity Framework (GBF). The effective achievement of the GBF relies on domestic targets and actions, reflected in National Biodiversity Strategies and Action Plans (NBSAPs). NBSAPS are an integral feature of the Convention on Biological Diversity (CBD) framework and signatory nations were requested to submit revised NBSAPs before the 16th Conference of the Parties (COP-16) incorporating the GBF goals and targets. Here we review NBSAPs of the 36 nations that submitted before COP-16 and assess their commitments to implementing target 2 (the 30% restoration target) and target 3 (the 30 × 30 protection target). By first breaking these targets into their constituent elements and assessing the detailed wording of each NBSAP we discover that no nation has created a plan that meets all the requirements-and overall ambitions-of these two targets. With 5 years remaining until the intended realization of the GBF, countries will need to increase both their ambition and action if the biodiversity crisis of the Earth is to be abated.
Collapse
Affiliation(s)
- Justine Bell-James
- TC Beirne School of Law, University of Queensland, Brisbane, Queensland, Australia.
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia.
| | - James E M Watson
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Seal S, Bayyana S, Pande A, Ghanekar C, Hatkar PS, Pathan S, Patel S, Rajpurkar S, Prajapati S, Gole S, Iyer S, Nair A, Prabakaran N, Sivakumar K, Johnson JA. Spatial prioritization of dugong habitats in India can contribute towards achieving the 30 × 30 global biodiversity target. Sci Rep 2024; 14:13984. [PMID: 38886526 PMCID: PMC11183059 DOI: 10.1038/s41598-024-64760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Indian coastal waters are critical for dugong populations in the western Indian Ocean. Systematic spatial planning of dugong habitats can help to achieve biodiversity conservation and area-based protection targets in the region. In this study, we employed environmental niche modelling to predict suitable dugong habitats and identify influencing factors along its entire distribution range in Indian waters. We examined data on fishing pressures collected through systematic interview surveys, citizen-science data, and field surveys to demarcate dugong habitats with varying risks. Seagrass presence was the primary factor in determining dugong habitat suitability across the study sites. Other variables such as depth, bathymetric slope, and Euclidean distance from the shore were significant factors, particularly in predicting seasonal suitability. Predicted suitable habitats showed a remarkable shift from pre-monsoon in Palk Bay to post-monsoon in the Gulf of Mannar, indicating the potential of seasonal dugong movement. The entire coastline along the Palk Bay-Gulf of Mannar region was observed to be at high to moderate risk, including the Gulf of Mannar Marine National Park, a high-risk area. The Andaman Islands exhibited high suitability during pre- and post-monsoon season, whereas the Nicobar Islands were highly suitable for monsoon season. Risk assessment of modelled suitable areas revealed that < 15% of high-risk areas across Andaman and Nicobar Islands and Palk Bay and Gulf of Mannar, Tamil Nadu, fall within the existing protected areas. A few offshore reef islands are identified under high-risk zones in the Gulf of Kutch, Gujarat. We highlight the utility of citizen science and secondary data in performing large-scale spatial ecological analysis. Overall, identifying synoptic scale 'Critical Dugong Habitats' has positive implications for the country's progress towards achieving the global 30 × 30 target through systematic conservation planning.
Collapse
Affiliation(s)
- Sohom Seal
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
| | - Sharad Bayyana
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
- Centre for Biodiversity and Conservation Science, School of Environment, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Anant Pande
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
- Marine Program, Wildlife Conservation Society - India, Bengaluru, Karnataka, 560 097, India
| | - Chinmaya Ghanekar
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
| | - Prachi Sachchidanand Hatkar
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
| | - Sameeha Pathan
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
| | - Shivani Patel
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
| | - Sagar Rajpurkar
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
| | - Sumit Prajapati
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
| | - Swapnali Gole
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
| | - Sweta Iyer
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
| | - Aditi Nair
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
| | - Nehru Prabakaran
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
| | - Kuppusamy Sivakumar
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India
- Department of Ecology and Environment, Pondicherry University, Puducherry, India
| | - Jeyaraj Antony Johnson
- Department of Habitat Ecology, Wildlife Institute of India, P.O. Chandrabani, Dehradun, Uttarakhand, 248 001, India.
| |
Collapse
|
3
|
Carroll C, Hoban S, Ray JC. Lessons from COP15 on effective scientific engagement in biodiversity policy processes. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14192. [PMID: 37768193 DOI: 10.1111/cobi.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The Kunming-Montreal Global Biodiversity Framework was adopted by parties to the Convention on Biological Diversity in December 2022. The aftermath of these negotiations provides an opportunity to draw lessons as to how ecological and evolutionary science can more effectively inform policy. We examined key challenges that limit effective engagement by scientists in the biodiversity policy process, drawing parallels with analogous challenges within global climate negotiations. Biodiversity is multifaceted, yet represents only one framing for nature's contributions to people, complicating the nexus between evidence and values in development of the framework's targets. Processes generating biodiversity and driving its loss are multiscalar, challenging development of an evidence base for globally standardized targets. We illustrated these challenges by contrasting development of 2 key elements of the framework. The genetic diversity element of the framework's target 4 is directly related to the framework's primary goals, but its complexity required development of novel engagement skills. The target for protected areas was easily communicated but more indirectly related to biodiversity outcomes; evidence from ecological and social science was essential to communicating the context and limitations of this relationship. Scientists can strengthen the effectiveness of global agreements and address challenges arising from complexity, scaling, capacity limitations, and the interplay of science and values, if they can prioritize communication, consensus-building, and networking skills and engage throughout the process, from development of an evidence base to implementation.
Collapse
Affiliation(s)
- Carlos Carroll
- Klamath Center for Conservation Research, Orleans, California, USA
| | - Sean Hoban
- Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| | - Justina C Ray
- Wildlife Conservation Society Canada, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Singh AP, De K, Uniyal VP, Sathyakumar S. Unveiling of climate change-driven decline of suitable habitat for Himalayan bumblebees. Sci Rep 2024; 14:4983. [PMID: 38424143 PMCID: PMC10904386 DOI: 10.1038/s41598-024-52340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Insect pollinators, especially bumblebees are rapidly declining from their natural habitat in the mountain and temperate regions of the world due to climate change and other anthropogenic activities. We still lack reliable information about the current and future habitat conditions of bumblebees in the Himalaya. In this study, we used the maximum entropy algorithm for SDM to look at current and future (in 2050 and 2070) suitable habitats for bumblebees in the Himalaya. We found that the habitat conditions in the Himalayan mountain range do not have a very promising future as suitable habitat for most species will decrease over the next 50 years. By 2050, less than 10% of the Himalayan area will remain a suitable habitat for about 72% of species, and by 2070 this number will be raised to 75%. During this time period, the existing suitable habitat of bumblebees will be declined but some species will find new suitable habitat which clearly indicates possibility of habitat range shift by Himalayan bumblebees. Overall, about 15% of the Himalayan region is currently highly suitable for bumblebees, which should be considered as priority areas for the conservation of these pollinators. Since suitable habitats for bumblebees lie between several countries, nations that share international borders in the Himalayan region should have international agreements for comprehensive pollinator diversity conservation to protect these indispensable ecosystem service providers.
Collapse
Affiliation(s)
- Amar Paul Singh
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India.
| | - Kritish De
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India
- Department of Life Sciences, Sri Sathya Sai University for Human Excellence, Navanihal, Okali Post, Kamalapur, Kalaburagi, Karnataka, 585313, India
| | - Virendra Prasad Uniyal
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India
- Graphic Era (Deemed to be) University, Bell Road, Clement Town, Dehradun, Uttarakhand, 248002, India
| | | |
Collapse
|
5
|
Eckert I, Brown A, Caron D, Riva F, Pollock LJ. 30×30 biodiversity gains rely on national coordination. Nat Commun 2023; 14:7113. [PMID: 37932316 PMCID: PMC10628259 DOI: 10.1038/s41467-023-42737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Global commitments to protect 30% of land by 2030 present an opportunity to combat the biodiversity crisis, but reducing extinction risk will depend on where countries expand protection. Here, we explore a range of 30×30 conservation scenarios that vary what dimension of biodiversity is prioritized (taxonomic groups, species-at-risk, biodiversity facets) and how protection is coordinated (transnational, national, or regional approaches) to test which decisions influence our ability to capture biodiversity in spatial planning. Using Canada as a model nation, we evaluate how well each scenario captures biodiversity using scalable indicators while accounting for climate change, data bias, and uncertainty. We find that only 15% of all terrestrial vertebrates, plants, and butterflies (representing only 6.6% of species-at-risk) are adequately represented in existing protected land. However, a nationally coordinated approach to 30×30 could protect 65% of all species representing 40% of all species-at-risk. How protection is coordinated has the largest impact, with regional approaches protecting up to 38% fewer species and 65% fewer species-at-risk, while the choice of biodiversity incurs much smaller trade-offs. These results demonstrate the potential of 30×30 while highlighting the critical importance of biodiversity-informed national strategies.
Collapse
Affiliation(s)
- Isaac Eckert
- Dept. of Biology, McGill University, H3A 1B1, Montreal, QC, Canada.
- Quebec Center for Biodiversity Science, Montreal, QC, Canada.
| | - Andrea Brown
- Dept. of Biology, McGill University, H3A 1B1, Montreal, QC, Canada
- Quebec Center for Biodiversity Science, Montreal, QC, Canada
| | - Dominique Caron
- Dept. of Biology, McGill University, H3A 1B1, Montreal, QC, Canada
- Quebec Center for Biodiversity Science, Montreal, QC, Canada
| | - Federico Riva
- Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Laura J Pollock
- Dept. of Biology, McGill University, H3A 1B1, Montreal, QC, Canada.
- Quebec Center for Biodiversity Science, Montreal, QC, Canada.
| |
Collapse
|
6
|
Rana AK, Kumar N. Current wildlife crime (Indian scenario): major challenges and prevention approaches. BIODIVERSITY AND CONSERVATION 2023; 32:1473-1491. [PMID: 37063172 PMCID: PMC10025790 DOI: 10.1007/s10531-023-02577-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/11/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED The constant depletion of wild flora and fauna in India due to uncontrolled human activities, natural habitat destruction and covert poaching activities is threatening the ecological balance. The poaching and trafficking of wild species in the lure of money as well as fashion has wiped out a range of wildlife species that call for critical attention to tackle this menace. There are many transit routes through the states of Uttar Pradesh, Karnataka, West Bengal, Rajasthan, Madhya Pradesh, and Assam, which are major hubs for wildlife trafficking in India, in both domestic and international markets. The poaching of wild animals and plants slowly erases biodiversity, which in turn affects the survival of humans and other living species. Therefore, there is an urgent need to check ongoing wildlife crimes, raise the number of endangered species, rehabilitate exotic/extinct species and restore natural ecosystems. In this article, we collected wildlife crime data from web portals of various stakeholders, government agencies and authentic news sources, and discuss the current crime trends, challenges, and prevention approaches required to control and restore wildlife biodiversity in India. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10531-023-02577-z.
Collapse
Affiliation(s)
- Ajay Kumar Rana
- Division of Biology, Central Forensic Science Laboratory Hyderabad, Ministry of Home Affairs, Government of India, Amberpet post, Ramanthapur, Hyderabad, Telangana 500013 India
| | - Nishant Kumar
- Quality Control, Bihar, Patna, Department of Agriculture, Government of Bihar, Patna, 800001 India
| |
Collapse
|
7
|
Vijay V, Fisher JRB, Armsworth PR. Co‐benefits for terrestrial biodiversity and ecosystem services available from contrasting land protection policies in the contiguous United States. Conserv Lett 2022. [DOI: 10.1111/conl.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Varsha Vijay
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee USA
- Science Based Targets Network Global Commons Alliance New York New York USA
| | | | - Paul R. Armsworth
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee USA
| |
Collapse
|
8
|
Carroll C, Rohlf DJ, Epstein Y. Mainstreaming the Ambition, Coherence, and Comprehensiveness of the Post-2020 Global Biodiversity Framework Into Conservation Policy. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.906699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parties to the Convention on Biological Diversity are finalizing a new Global Biodiversity Framework (GBF) to more effectively guide efforts by the world’s nations to address global loss of biodiversity and ecosystem services. Each party is required to mainstream the new framework and its component targets into national conservation strategies. To date, such strategies have been criticized as largely aspirational and lacking clear linkages to national policy mechanisms, which has contributed to the world’s general failure to meet the Convention’s previous targets. We use the United States and European Union as examples to compare and contrast opportunities and barriers for mainstreaming the GBF more effectively into policy. The European Union and United States have unique relationships to the Convention, the former being the only supranational party and the latter, having signed but never ratified the treaty, adopting Convention targets on an ad hoc basis. The contrasting conservation policy frameworks of these two polities illustrate several conceptual issues central to biodiversity conservation and demonstrate how insights from the GBF can strengthen biodiversity policy even in atypical contexts. We focus on three characteristics of the GBF which are essential if policy is to effectively motivate and guide efforts to halt and reverse biodiversity loss: comprehensiveness, coherence, and ambition. Statutes in both the United States and European Union provide a strong foundation for mainstreaming the GBF’s comprehensiveness, coherence, and ambition, but policy development and implementation falls short. We identify six common themes among the reforms needed to successfully achieve targets for reversing biodiversity loss: broadening conservation focus to all levels of biodiversity, better coordinating conservation strategies that protect sites and landscapes with those focused on biodiversity elements (e.g., species), coordinating biodiversity conservation with efforts to safeguard ecosystem services including ecosystem-based climate mitigation and adaptation, more coherent scaling of targets from global to local extents, adoption of a more ambitious vision for recovery of biodiversity, and development of effective tracking and accountability mechanisms.
Collapse
|