1
|
Perkins NR, Monk J, Wong RHX, Barrett NS. Temporal variability in temperate mesophotic ecosystems revealed with over a decade of monitoring with an autonomous underwater vehicle. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107179. [PMID: 40306043 DOI: 10.1016/j.marenvres.2025.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Rocky reef temperate mesophotic ecosystems (TMEs) are increasingly recognised for their spatial extent and high biodiversity. Platforms such as autonomous underwater vehicles (AUVs) allow large-scale collection of benthic imagery, facilitating descriptions of TMEs, but these efforts currently remain geographically restricted. Furthermore, descriptions of temporal changes in TMEs are extremely rare and typically limited to a single site with few repeated surveys, leaving critical gaps in our understanding of ecosystem variability. Here, we report on temporal changes in abundance and size structure of sessile biota across TMEs in three Australian Marine Parks (AMPs) across decadal time scales, using AUV-collected benthic imagery, enhanced with AI tools for estimating biota size. Our results challenge the common assumption of TME stability, revealing significant fluctuations in key biota over 2-13-year periods. At the phyla-level, cnidaria exhibited threefold changes and bryozoa fivefold changes at individual sites over ∼5 years. Some individual morphospecies also showed more than twofold change over ∼5 years. We found that higher-level taxonomic/morphological groupings could track changes in dominant taxa, but often masked significant trends at the morphospecies level. Size structure data offer important insights into the population dynamics that abundance or cover data alone could not capture, particularly in terms of recruitment events and size shifts. Our findings highlight that mesophotic ecosystems are dynamic and underscore the need for ongoing monitoring to better understand the temporal changes within TMEs and to inform the development of effective indicators. Coupling image-based surveys with physical data collection such as temperature data should be a priority in future monitoring to better link biotic changes to environmental drivers.
Collapse
Affiliation(s)
- Nicholas R Perkins
- Institute for Marine and Antarctic Studies, University of Tasmania, Australia.
| | - Jacquomo Monk
- Institute for Marine and Antarctic Studies, University of Tasmania, Australia
| | - Rachel H X Wong
- Institute for Marine and Antarctic Studies, University of Tasmania, Australia
| | - Neville S Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Australia
| |
Collapse
|
2
|
Radice VZ, Hernández-Agreda A, Pérez-Rosales G, Booker R, Bellworthy J, Broadribb M, Carpenter GE, Diaz C, Eckert RJ, Foster NL, Gijsbers JC, Gress E, Laverick JH, Micaroni V, Pierotti M, Rouzé H, Stevenson A, Sturm AB, Bongaerts P. Recent trends and biases in mesophotic ecosystem research. Biol Lett 2024; 20:20240465. [PMID: 39689854 DOI: 10.1098/rsbl.2024.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Mesophotic ecosystems (approx. 30-150 m) represent a significant proportion of the world's oceans yet have long remained understudied due to challenges in accessing these deeper depths. Owing to advances in underwater technologies and a growing scientific and management interest, there has been a major expansion in research of both (sub)tropical mesophotic coral ecosystems and temperate mesophotic ecosystems. Here, we characterize the recent global trends in mesophotic research through an updated release of the 'mesophotic.org' database (www.mesophotic.org) where we reviewed and catalogued 1500 scientific publications. In doing so, we shed light on four major research biases: a gross imbalance in (a) the geographical spread of research efforts, differences in (b) the focal depth range and (c) research fields associated with study organisms and research platforms, and (d) the lack of temporal studies. Overall, we are optimistic about the future of mesophotic research and hope that by highlighting current trends and imbalances, we can raise awareness and stimulate discussion on the future directions of this emerging field.
Collapse
Affiliation(s)
| | | | - Gonzalo Pérez-Rosales
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Ryan Booker
- Global Underwater Explorers, Queensland, Australia
| | - Jessica Bellworthy
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Manon Broadribb
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gaby E Carpenter
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Clara Diaz
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Ryan J Eckert
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - Nicola L Foster
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Johanna C Gijsbers
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán, Oaxaca, México
| | - Erika Gress
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jack H Laverick
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - Valerio Micaroni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Miriam Pierotti
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | - Angela Stevenson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Marine Biological Association of the UK, Plymouth, UK
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Alexis B Sturm
- National Ocean Service, National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration (NOAA), Silver Spring, MD, USA
| | - Pim Bongaerts
- California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
3
|
Pulido Mantas T, Roveta C, Calcinai B, Campanini C, Coppari M, Falco P, Di Camillo CG, Garrabou J, Lee MC, Memmola F, Cerrano C. Mesophotic zone as buffer for biodiversity protection: A promising opportunity to enhance MPA effectiveness. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106676. [PMID: 39142217 DOI: 10.1016/j.marenvres.2024.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Coastal areas conservation strategies often left deeper habitats, such as mesophotic ones, unprotected and exposed to anthropogenic activities. In this context, an approach for including the mesophotic zone inside protection plans is proposed, considering 27 Italian Marine Protected Areas (MPAs) as a model. MPAs were classified considering their bathymetries, exposure to marine heat waves (MHWs), mass mortality events (MMEs) and, using a local ecological knowledge (LEK) approach, the estimated resilience of certain sessile species after MMEs. Only 8 MPAs contained considerable mesophotic areas, with stronger MHWs mainly occurring in shallower MPAs, and MMEs mostly affecting coralligenous assemblages. Even with only a 10% response rate, the LEK approach provided useful information on the resilience of certain species, allowing us to suggest that the presence of nearby mesophotic areas can help shallower habitats facing climate change, thus making the "deep refugia" hypothesis, usually related to tropical habitats, applicable also for the Mediterranean Sea.
Collapse
Affiliation(s)
- Torcuato Pulido Mantas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Camilla Roveta
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| | - Barbara Calcinai
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Claudia Campanini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Martina Coppari
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Pierpaolo Falco
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Cristina Gioia Di Camillo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Joaquim Garrabou
- Institute of Marine Sciences-CSIC (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Man Chun Lee
- Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Francesco Memmola
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy
| | - Carlo Cerrano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche s.n.c., 60131 Ancona, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy; Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, Via Francesco Caracciolo s.n.c., 80122 Napoli, Italy; Fano Marine Center, Viale Adriatico 1/N, 61032 Fano, Italy
| |
Collapse
|
4
|
Jacquemont J, Brandl SJ, McFarland EP, Claudet J, Baldwin CC, Barrett J, Tornabene L. Vertical structure of Caribbean deep-reef fishes from the altiphotic to deep-sea boundary. Sci Rep 2024; 14:19489. [PMID: 39174608 PMCID: PMC11341716 DOI: 10.1038/s41598-024-69774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
While recent technical breakthroughs have enabled advances in the description of reefs down to 150 m, the structure and depth zonation of deep-reef communities below 150 m remains largely unknown. Here, we present results from over 10 years of deep-reef fish surveys using human-occupied submersibles at four locations across the Caribbean Sea, constituting one of the only continuous reef-fish surveys from 10 to 480 m (1 site) and 40 to 300 m (3 sites). We identify four vertically stratified deep-reef fish communities between 40 and 300 m bordered by an altiphotic (0-10 m) and a deep-sea (300-480 m) community. We found a strong faunal break around 150 m that separates mesophotic and rariphotic zones and secondary breaks at ~ 70 to 90 m and ~ 180 to 200 m subdividing these zones into upper and lower communities. From 300 to 480 m in Roatán, we found a single fish community dominated by deep-sea families, indicating that the lower boundary of the reef-fish realm occurs at 300 m. No differences were found between communities ranging from 20 to 60 m, suggesting that fishes from the lower altiphotic and upper mesophotic form an ecological continuum. While some variability was observed across sites, the overall depth zonation and key species characterizing depth zones were consistent. Most deep-reef species observed were depth specialists restricted to a single depth zone, but many shallow-reef species extended down to mesophotic depths. Depth segregation among species of a genus was found across ten reef-fish genera and likely constitutes one of the mechanisms driving community distinctiveness and thereby fish diversity across depths.
Collapse
Affiliation(s)
- Juliette Jacquemont
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St 98195, Seattle, WA, USA.
| | - Simon J Brandl
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, 750 Channel View Dr, Port Aransas, TX, 78373, USA
| | - Emily P McFarland
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005, Paris, France
| | - Carole C Baldwin
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jenna Barrett
- National Oceanic & Atmospheric Administration SWFSC, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St 98195, Seattle, WA, USA
| |
Collapse
|
5
|
Bell JJ, Micaroni V, Strano F, Ryan KG, Mitchell K, Mitchell P, Wilkinson S, Thomas T, Batchiar R, Smith RO. Marine heatwave-driven mass mortality and microbial community reorganisation in an ecologically important temperate sponge. GLOBAL CHANGE BIOLOGY 2024; 30:e17417. [PMID: 39105285 DOI: 10.1111/gcb.17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 08/07/2024]
Abstract
Marine heatwaves (MHWs) are increasing in frequency, duration and intensity, disrupting global marine ecosystems. While most reported impacts have been in tropical areas, New Zealand experienced its strongest and longest MHW in 2022, profoundly affecting marine sponges. Sponges are vital to rocky benthic marine communities, with their abundance influencing ecosystem functioning. This study examines the impact of this MHW on the photosynthetic sponge Cymbastella lamellata in Fiordland, New Zealand. We describe the extent, physiological responses, mortality, microbial community changes and ecological impact of this MHW on C. lamellata. The Fiordland MHW reached a maximum temperature of 4.4°C above average, lasting for 259 days. Bleaching occurred in >90% of the C. lamellata Fiordland population. The population size exceeded 66 million from 5 to 25 m, making this the largest bleaching event of its kind ever recorded. We identified the photosynthetic symbiont as a diatom, and bleached sponges had reduced photosynthetic efficiency. Post-MHW surveys in 2023 found that over 50% of sponges at sampling sites had died but that the remaining sponges had mostly recovered from earlier bleaching. Using a simulated MHW experiment, we found that temperature stress was a driver of necrosis rather than bleaching, despite necrosis only rarely being observed in the field (<2% of sponges). This suggests that bleaching may not be the cause of the mortality directly. We also identified a microbial community shift in surviving sponges, which we propose represents a microbial-mediated adaptive response to MHWs. We also found that C. lamellata are key contributors of dissolved organic carbon to the water column, with their loss likely impacting ecosystem function. We demonstrate the potential for MHWs to disrupt key marine phyla in temperate regions, highlighting how susceptible temperate sponges globally might be to MHWs.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Ken G Ryan
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ramadian Batchiar
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Robert O Smith
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Vuleta S, Nakagawa S, Ainsworth TD. The global significance of Scleractinian corals without photoendosymbiosis. Sci Rep 2024; 14:10161. [PMID: 38698199 PMCID: PMC11066124 DOI: 10.1038/s41598-024-60794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Globally tropical Scleractinian corals have been a focal point for discussions on the impact of a changing climate on marine ecosystems and biodiversity. Research into tropical Scleractinian corals, particularly the role and breakdown of photoendosymbiosis in response to warming, has been prolific in recent decades. However, research into their subtropical, temperate, cold- and deep-water counterparts, whose number is dominated by corals without photoendosymbiosis, has not been as prolific. Approximately 50% of Scleractinian corals (> 700 species) do not maintain photoendosymbiosis and as such, do not rely upon the products of photosynthesis for homeostasis. Some species also have variable partnerships with photendosymbionts depending on life history and ecological niche. Here we undertake a systematic map of literature on Scleractinian corals without, or with variable, photoendosymbiosis. In doing so we identify 482 publications spanning 5 decades. In mapping research effort, we find publications have been sporadic over time, predominately focusing on a limited number of species, with greater research effort directed towards deep-water species. We find only 141 species have been studied, with approximately 30% of the total identified research effort directed toward a single species, Desmophyllum pertusum, highlighting significant knowledge gaps into Scleractinian diversity. We find similar limitations to studied locations, with 78 identified from the global data, of which only few represent most research outputs. We also identified inconsistencies with terminology used to describe Scleractinia without photoendosymbiosis, likely contributing to difficulties in accounting for their role and contribution to marine ecosystems. We propose that the terminology requires re-evaluation to allow further systematic assessment of literature, and to ensure it's consistent with changes implemented for photoendosymbiotic corals. Finally, we find that knowledge gaps identified over 20 years ago are still present for most aphotoendosymbiotic Scleractinian species, and we show data deficiencies remain regarding their function, biodiversity and the impacts of anthropogenic stressors.
Collapse
Affiliation(s)
- S Vuleta
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), The University of New South Wales, Sydney, NSW, 2033, Australia.
| | - S Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences (BEES), The University of New South Wales, Sydney, NSW, 2033, Australia
| | - T D Ainsworth
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences (BEES), The University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
7
|
Saenz‐Agudelo P, Ramirez P, Beldade R, Campoy AN, Garmendia V, Search FV, Fernández M, Wieters EA, Navarrete SA, Landaeta MF, Pérez‐Matus A. Environmental DNA reveals temporal variation in mesophotic reefs of the Humboldt upwelling ecosystems of central Chile: Toward a baseline for biodiversity monitoring of unexplored marine habitats. Ecol Evol 2024; 14:e10999. [PMID: 38390005 PMCID: PMC10881902 DOI: 10.1002/ece3.10999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Temperate mesophotic reef ecosystems (TMREs) are among the least known marine habitats. Information on their diversity and ecology is geographically and temporally scarce, especially in highly productive large upwelling ecosystems. Lack of information remains an obstacle to understanding the importance of TMREs as habitats, biodiversity reservoirs and their connections with better-studied shallow reefs. Here, we use environmental DNA (eDNA) from water samples to characterize the community composition of TMREs on the central Chilean coast, generating the first baseline for monitoring the biodiversity of these habitats. We analyzed samples from two depths (30 and 60 m) over four seasons (spring, summer, autumn, and winter) and at two locations approximately 16 km apart. We used a panel of three metabarcodes, two that target all eukaryotes (18S rRNA and mitochondrial COI) and one specifically targeting fishes (16S rRNA). All panels combined encompassed eDNA assigned to 42 phyla, 90 classes, 237 orders, and 402 families. The highest family richness was found for the phyla Arthropoda, Bacillariophyta, and Chordata. Overall, family richness was similar between depths but decreased during summer, a pattern consistent at both locations. Our results indicate that the structure (composition) of the mesophotic communities varied predominantly with seasons. We analyzed further the better-resolved fish assemblage and compared eDNA with other visual methods at the same locations and depths. We recovered eDNA from 19 genera of fish, six of these have also been observed on towed underwater videos, while 13 were unique to eDNA. We discuss the potential drivers of seasonal differences in community composition and richness. Our results suggest that eDNA can provide valuable insights for monitoring TMRE communities but highlight the necessity of completing reference DNA databases available for this region.
Collapse
Affiliation(s)
- Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de ChileValdiviaChile
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
| | - Paula Ramirez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de ChileValdiviaChile
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
| | - Ricardo Beldade
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
| | - Ana N. Campoy
- Center of Marine Sciences (CCMAR‐CIMAR)University of the AlgarveFaroPortugal
| | - Vladimir Garmendia
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
| | - Francesca V. Search
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
| | - Miriam Fernández
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
| | - Evie A. Wieters
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
| | - Sergio A. Navarrete
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
- Center for Applied Ecology and Sustainability (CAPES) and Coastal Socio‐Ecological Millennium Institute (SECOS)Pontificia Universidad Católica de ChileSantiagoChile
- Center for Oceanographic Research COASTAL‐COASTALUniversidad de ConcepciónConcepciónChile
| | - Mauricio F. Landaeta
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Laboratorio de Ictiología e Interacciones Biofísicas (LABITI)Instituto de Biología, Facultad de Ciencias, Universidad de ValparaísoValparaísoChile
| | - Alejandro Pérez‐Matus
- Millennium Nucleus for Ecology and Conservation of Temperate Marine Ecosystems, NUTMELas CrucesChile
- Estación Costera de Investigaciones MarinasPontificia Universidad CatólicaLas CrucesChile
| |
Collapse
|
8
|
Hoban ML, Bunce M, Bowen BW. Plumbing the depths with environmental DNA (eDNA): Metabarcoding reveals biodiversity zonation at 45-60 m on mesophotic coral reefs. Mol Ecol 2023; 32:5590-5608. [PMID: 37728237 DOI: 10.1111/mec.17140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Mesophotic coral ecosystems (MCEs) are tropical reefs found at depths of ~30-150 m, below the region most heavily impacted by heat stress and other disturbances. Hence, MCEs may serve as potential refugia for threatened shallow reefs, but they also harbour depth-endemic fauna distinct from shallow reefs. Previous studies have characterized biodiversity patterns along depth gradients, but focussed primarily on conspicuous taxa (fishes, corals, etc.). Environmental DNA (eDNA) metabarcoding offers a more holistic approach to assess biodiversity patterns across the tree of life. Here, we use three metabarcoding assays targeting fishes (16S rRNA), eukaryotes (18S rDNA) and metazoans (COI) to assess biodiversity change from the surface to ~90 m depth across 15-m intervals at three sites within the Hawaiian Archipelago. We observed significant community differences between most depth zones, with distinct zonation centred at 45-60 m for eukaryotes and metazoans, but not for fishes. This finding may be attributable to the higher mobility of reef fishes, although methodological limitations are likely a contributing factor. The possibility for MCEs to serve as refugia is not excluded for fishes, but invertebrate communities >45 m are distinct, indicating limited connectivity for the majority of reef fauna. This study provides a new approach for surveying biodiversity on MCEs, revealing patterns in a much broader context than the limited-taxon studies that comprise the bulk of our present knowledge.
Collapse
Affiliation(s)
- Mykle L Hoban
- Hawai'i Institute of Marine Biology, Kāne'ohe, Hawai'i, USA
| | - Michael Bunce
- Department of Conservation, Wellington, New Zealand
- Trace and Environmental DNA Laboratory, Curtin University, Perth, Western Australia, Australia
| | - Brian W Bowen
- Hawai'i Institute of Marine Biology, Kāne'ohe, Hawai'i, USA
| |
Collapse
|
9
|
Bell JJ, Strano F, Broadribb M, Wood G, Harris B, Resende AC, Novak E, Micaroni V. Sponge functional roles in a changing world. ADVANCES IN MARINE BIOLOGY 2023; 95:27-89. [PMID: 37923539 DOI: 10.1016/bs.amb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Sponges are ecologically important benthic organisms with many important functional roles. However, despite increasing global interest in the functions that sponges perform, there has been limited focus on how such functions will be impacted by different anthropogenic stressors. In this review, we describe the progress that has been made in our understanding of the functional roles of sponges over the last 15 years and consider the impacts of anthropogenic stressors on these roles. We split sponge functional roles into interactions with the water column and associations with other organisms. We found evidence for an increasing focus on functional roles among sponge-focused research articles, with our understanding of sponge-mediated nutrient cycling increasing substantially in recent years. From the information available, many anthropogenic stressors have the potential to negatively impact sponge pumping, and therefore have the potential to cause ecosystem level impacts. While our understanding of the importance of sponges has increased in the last 15 years, much more experimental work is required to fully understand how sponges will contribute to reef ecosystem function in future changing oceans.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Manon Broadribb
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gabriela Wood
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Ben Harris
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Anna Carolina Resende
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Emma Novak
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
10
|
The Hidden Diversity of Temperate Mesophotic Ecosystems from Central Chile (Southeastern Pacific Ocean) Assessed through Towed Underwater Videos. DIVERSITY 2023. [DOI: 10.3390/d15030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The largely unexplored diversity in temperate mesophotic ecosystems (TME, ~30–150 m depth) has attracted much attention over the past years. However, the number of studies and knowledge of TME diversity and ecology remains limited and geographically restricted. The absence of information on how assemblages vary across environmental gradients and with depth for most regions also limits our capacity to delimit conservation areas and devise management plans effectively. This study focuses on TME from central Chile and describes the depth distribution of reef fishes and benthic invertebrates and algae for the first time. Through the analysis of towed underwater video surveys between 4.7–95.5 m in multiple sites, we show that total reef fish density and richness decrease with depth but increase with local topographic complexity. The depth-related density varies among fish species and trophic groups, and it reverses in the case of Sebastes oculatus, which increases in density with depth. Sponges and gorgonians dominate benthic assemblages below 20 m depth, and brachiopods and anemones increase below 40 and 60 m, respectively. Some of these species form animal forests which, to some extent, replace the shallow-water kelp forests as structural habitat providers. Nevertheless, the reef fish and benthic community do not show a clear structure with depth or across studied sites. We highlight the urgency to intensify and expand the quantitative characterization of these communities, through this and other methodologies, to better define ecological patterns and advance towards conservation plans for TME, including the Souteastern Pacific region.
Collapse
|
11
|
Bell JJ, Smith RO, Micaroni V, Strano F, Balemi CA, Caiger PE, Miller KI, Spyksma AJP, Shears NT. Marine heat waves drive bleaching and necrosis of temperate sponges. Curr Biol 2023; 33:158-163.e2. [PMID: 36462506 DOI: 10.1016/j.cub.2022.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
Marine heat waves (MHWs) are extended periods of excessively warm water1 that are increasing in frequency, duration, intensity, and impact, and they likely represent a greater threat to marine ecosystems than the more gradual increases in sea surface temperature.2,3,4 Sponges are major and important components of global benthic marine communities,5,6,7 with earlier studies identifying tropical sponges as potential climate change "winners."8,9,10,11 In contrast, cold-water sponges may be less tolerant to predicted ocean warming and concurrent MHWs. Here, we report how a series of unprecedented MHWs in New Zealand have impacted millions of sponges at a spatial scale far greater than previously reported anywhere in the world. We reported sponge tissue necrosis12 and bleaching (symbiont loss/dysfunction),13 which have been previously associated with temperature stress,6,12,14 for three common sponge species across multiple biogeographical regions, with the severity of impact being correlated with MHW intensity. Given the ecological importance of sponges,15 their loss from these rocky temperate reefs will likely have important ecosystem-level consequences.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand.
| | - Robert O Smith
- Department of Marine Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Celia A Balemi
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, P.O. Box 349, Auckland, New Zealand
| | - Paul E Caiger
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, P.O. Box 349, Auckland, New Zealand
| | - Kelsey I Miller
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, P.O. Box 349, Auckland, New Zealand
| | - Arie J P Spyksma
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, P.O. Box 349, Auckland, New Zealand
| | - Nick T Shears
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, P.O. Box 349, Auckland, New Zealand
| |
Collapse
|