1
|
Cresswell AK, Haller-Bull V, Gonzalez-Rivero M, Gilmour JP, Bozec YM, Barneche DR, Robson B, Anthony KRN, Doropoulos C, Roelfsema C, Lyons M, Mumby PJ, Condie S, Lago V, Ortiz JC. Capturing fine-scale coral dynamics with a metacommunity modelling framework. Sci Rep 2024; 14:24733. [PMID: 39433778 PMCID: PMC11494194 DOI: 10.1038/s41598-024-73464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Natural systems exhibit high spatial variability across multiple scales. Models that can capture ecosystem dynamics across space and time by explicitly incorporating major biological mechanisms are crucial, both for management and for ecological insight. In the case of coral reef systems, much focus has been on modelling variability between reefs, despite substantial variability also existing within reefs. We developed C~scape, a coral metacommunity modelling framework that integrates the demography of corals with population-level responses to physical and environmental spatial layers, to facilitate spatiotemporal predictions of coral dynamics across reefs at fine (100s of metres to kilometres) scales. We used satellite-derived habitat maps to modulate community growth spatially, as a proxy for the many interacting physical and environmental factors-e.g., depth, light, wave exposure, temperature, and substrate type-that drive within-reef variability in coral demography. With a case study from the Great Barrier Reef, we demonstrate the model's capability for producing hindcasts of coral cover dynamics and show that overlooking within-reef variability may lead to misleading conclusions about metacommunity dynamics. C~scape provides a valuable framework for exploring a range of management and restoration scenarios at relevant spatial scales.
Collapse
Affiliation(s)
- Anna K Cresswell
- Australian Institute of Marine Science, Perth, WA, 6009, Australia.
- Oceans Institute, University of Western Australia, Perth, WA, 6009, Australia.
| | | | | | - James P Gilmour
- Australian Institute of Marine Science, Perth, WA, 6009, Australia
- Oceans Institute, University of Western Australia, Perth, WA, 6009, Australia
| | - Yves-Marie Bozec
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Diego R Barneche
- Australian Institute of Marine Science, Perth, WA, 6009, Australia
- Oceans Institute, University of Western Australia, Perth, WA, 6009, Australia
| | - Barbara Robson
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
- AIMS@JCU , Townsville, Queensland, Australia
| | | | | | - Chris Roelfsema
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mitchell Lyons
- University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peter J Mumby
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Veronique Lago
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
- University of New South Wales, Sydney, NSW, 2052, Australia
| | - Juan-Carlos Ortiz
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| |
Collapse
|
2
|
Muenzel D, Bani A, De Brauwer M, Stewart E, Djakiman C, Halwi, Purnama R, Yusuf S, Santoso P, Hukom FD, Struebig M, Jompa J, Limmon G, Dumbrell A, Beger M. Combining environmental DNA and visual surveys can inform conservation planning for coral reefs. Proc Natl Acad Sci U S A 2024; 121:e2307214121. [PMID: 38621123 PMCID: PMC11047114 DOI: 10.1073/pnas.2307214121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/14/2023] [Indexed: 04/17/2024] Open
Abstract
Environmental DNA (eDNA) metabarcoding has the potential to revolutionize conservation planning by providing spatially and taxonomically comprehensive data on biodiversity and ecosystem conditions, but its utility to inform the design of protected areas remains untested. Here, we quantify whether and how identifying conservation priority areas within coral reef ecosystems differs when biodiversity information is collected via eDNA analyses or traditional visual census records. We focus on 147 coral reefs in Indonesia's hyper-diverse Wallacea region and show large discrepancies in the allocation and spatial design of conservation priority areas when coral reef species were surveyed with underwater visual techniques (fishes, corals, and algae) or eDNA metabarcoding (eukaryotes and metazoans). Specifically, incidental protection occurred for 55% of eDNA species when targets were set for species detected by visual surveys and 71% vice versa. This finding is supported by generally low overlap in detection between visual census and eDNA methods at species level, with more overlap at higher taxonomic ranks. Incomplete taxonomic reference databases for the highly diverse Wallacea reefs, and the complementary detection of species by the two methods, underscore the current need to combine different biodiversity data sources to maximize species representation in conservation planning.
Collapse
Affiliation(s)
- Dominic Muenzel
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| | - Alessia Bani
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
- School of Life Sciences, University of Essex, ColchesterCO4 3SQ, United Kingdom
- College of Science and Engineering, School of Built and Natural Environment,University of Derby, DerbyDE22 1 GB, United Kingdom
| | - Maarten De Brauwer
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
- Commonwealth Scientific and Industrial Research Organisation Oceans & Atmosphere, Battery Point, Hobart, TAS7004, Australia
| | - Eleanor Stewart
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| | - Cilun Djakiman
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
- Maritime and Marine Science Center of Excellence, Pattimura University, Ambon85XW+H66, Indonesia
| | - Halwi
- Graduate School, Universitas Hasanuddin, Makassar90245, Indonesia
| | - Ray Purnama
- Maritime and Marine Science Center of Excellence, Pattimura University, Ambon85XW+H66, Indonesia
| | - Syafyuddin Yusuf
- Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar90245, Indonesia
| | - Prakas Santoso
- Department of Marine Science and Technology, Institut Pertanian Bogor, Bogor16680, Indonesia
| | - Frensly D. Hukom
- Research Centre for Oceanography, Badan Riset dan Inovasi Nasional, Jakarta14430, Indonesia
- The Center for Collaborative Research on Aquatic Ecosystem in Eastern Indonesia, Pattimura University, Ambon97234, Indonesia
| | - Matthew Struebig
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| | - Jamaluddin Jompa
- Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar90245, Indonesia
| | - Gino Limmon
- Maritime and Marine Science Center of Excellence, Pattimura University, Ambon85XW+H66, Indonesia
- The Center for Collaborative Research on Aquatic Ecosystem in Eastern Indonesia, Pattimura University, Ambon97234, Indonesia
| | - Alex Dumbrell
- School of Life Sciences, University of Essex, ColchesterCO4 3SQ, United Kingdom
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|