1
|
Kreis BK, Groß J, Pachur T. Real-world estimation taps into basic numeric abilities. Psychon Bull Rev 2024:10.3758/s13423-024-02575-4. [PMID: 39467930 DOI: 10.3758/s13423-024-02575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/30/2024]
Abstract
Accurately estimating and assessing real-world quantities (e.g., how long it will take to get to the train station; the calorie content of a meal) is a central skill for adaptive cognition. To date, theoretical and empirical work on the mental resources recruited by real-world estimation has focused primarily on the role of domain knowledge (e.g., knowledge of the metric and distributional properties of objects in a domain). Here we examined the role of basic numeric abilities - specifically, symbolic-number mapping - in real-world estimation. In Experiment 1 ( N = 286 ) and Experiment 2 ( N = 592 ), participants first completed a country-population estimation task (a task domain commonly used to study real-world estimation) and then completed a number-line task (an approach commonly used to measure symbolic-number mapping). In both experiments, participants with better performance in the number-line task made more accurate estimates in the estimation task. Moreover, Experiment 2 showed that performance in the number-line task predicts estimation accuracy independently of domain knowledge. Further, in Experiment 2 the association between estimation accuracy and symbolic-number mapping did not depend on whether the number-line task involved small numbers (up to 1000) or large numbers that matched the range of the numbers in the estimation task (up to 100,000,000). Our results show for the first time that basic numeric abilities contribute to the estimation of real-world quantities. We discuss implications for theories of real-world estimation and for interventions aiming to improve people's ability to estimate real-world quantities.
Collapse
Affiliation(s)
- Barbara K Kreis
- Department of Psychology, University of Mannheim, Mannheim, Germany.
| | - Julia Groß
- Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Thorsten Pachur
- School of Management, Technical University of Munich, Munich, Germany
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
2
|
Prado J, Knops A. Spatial attention in mental arithmetic: A literature review and meta-analysis. Psychon Bull Rev 2024; 31:2036-2057. [PMID: 38565841 DOI: 10.3758/s13423-024-02499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
We review the evidence for the conceptual association between arithmetic and space and quantify the effect size in meta-analyses. We focus on three effects: (a) the operational momentum effect (OME), which has been defined as participants' tendency to overestimate results of addition problems and underestimate results of subtraction problems; (b) the arithmetic cueing effect, in which arithmetic problems serve as spatial cues in target detection or temporal order judgment tasks; and (c) the associations between arithmetic and space observed with eye- and hand-tracking studies. The OME was consistently found in paradigms that provided the participants with numerical response alternatives. The OME shows a large effect size, driven by an underestimation during subtraction while addition was unbiased. In contrast, paradigms in which participants indicated their estimate by transcoding their final estimate to a spatial reference frame revealed no consistent OME. Arithmetic cueing studies show a reliable small to medium effect size, driven by a rightward bias for addition. Finally, eye- and hand-tracking studies point to replicable associations between arithmetic and eye or hand movements. To account for the complexity of the observed pattern, we introduce the Adaptive Pathways in Mental Arithmetic (APiMA) framework. The model accommodates central notions of numerical and arithmetic processing and helps identifying which pathway a given paradigm operates on. It proposes that the divergence between OME and arithmetic cueing studies comes from the predominant use of non-symbolic versus symbolic stimuli, respectively. Overall, our review and findings clearly support an association between arithmetic and spatial processing.
Collapse
Affiliation(s)
- Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Lyon, France
| | - André Knops
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France.
| |
Collapse
|
3
|
Feder A, Cohen-Gutman S, Lozin M, Pinhas M. Place-value and physical size converge in automatic processing of multi-digit numbers. Mem Cognit 2024; 52:1001-1016. [PMID: 38198105 DOI: 10.3758/s13421-023-01515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Previous research has shown that multi-digit number processing is modulated by both place-value and physical size of the digits. By pitting place-value against physical size, the present study examined whether one of the attributes had a greater impact on the automatic processing of multi-digit numbers. In three experiments, participants were presented with two-digit number pairs that appeared in frames. They were instructed to select the larger frame while ignoring the numbers within the frames. Importantly, we manipulated the physical size of the digits (i.e., both decade/unit digits were physically larger) within the frames, the unit-decade compatibility (i.e., the relationship between the numerical values of both decade and unit digits was consistent or inconsistent), and the congruity between the numerical values of the decade digits and the frames' physical size (i.e., decade-value-frame-size congruity). In Experiment 1, where all pairs were unit-decade compatible, a decade-value-frame-size congruity effect emerged for pairs with physically larger decade, but not unit, digits. However, when adding unit-decade incompatible pairs (Experiments 2-3), in unit-decade compatible pairs, there was a decade-value-frame-size congruity effect regardless of the digits' physical size. In contrast, in unit-decade incompatible pairs, there was no decade-value-frame-size congruity effect, even when the physically larger digit (i.e., unit) contradicted the place-value information, presumably due to the cancellation of the opposing influences of the digits' physical sizes their place-values. Overall, these findings suggest that place-value and physical size are intertwined in the Hindu-Arabic numerical system and are processed as one.
Collapse
Affiliation(s)
- Ami Feder
- Department of Psychology, Ariel University, 4070000, Ariel, Israel
| | | | - Mariya Lozin
- Department of Psychology, Ariel University, 4070000, Ariel, Israel
| | - Michal Pinhas
- Department of Psychology, Ariel University, 4070000, Ariel, Israel.
| |
Collapse
|
4
|
García-Orza J, Gutiérrez-Cordero I, Larios C, Csilinkó A, Álvarez-Montesinos JA. Length is not all that matters: testing the role of number identity and the ratio of fillers in comparisons of multi-digits with different digit length. PSYCHOLOGICAL RESEARCH 2023; 87:176-193. [PMID: 35178620 PMCID: PMC8853871 DOI: 10.1007/s00426-022-01655-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Research in multi-digit number comparison usually considers stimuli with the same number of digits (e.g., 3452 vs. 7831). Surprisingly, there is almost no research on the comparison of numbers that differ in length (e.g., 995 vs. 1000), which demands a focus on the number of digits in each multi-digit, despite the fact that the role of number length has been explicitly acknowledged in componential models of multi-digit processing. Our study explores whether the comparison of pairs of natural numbers that differ in length is affected by the identity of the leftmost digit of each multi-digit, and asks what is the effect of having variable proportions of trials with pairs of numbers of the same-length in the task. Across three studies participants compared numbers in blocks with different proportions of same-length multi-digit pairs (Experiment 1 and 2: 25% vs. 50% vs. 75%; Experiment 3: 0% vs. 50%). Stimuli in the different-length condition were length-digit congruent (the number with more digits starting with a larger digit: 2384 vs. 107) or length-digit incongruent (the number with more digits starting with a smaller number: 2675 vs. 398). Response times were shorter in length-digit congruent pairs than in the incongruent pairs. Unexpectedly, this effect was only slightly modulated by the proportion of same-/different-length multi-digit pairs in the experimental set. Despite its perceptual saliency, length is not the only information considered when comparing different-length numbers. The leftmost-digit is also taken into account, with variable relevance here, depending on the characteristics of the stimuli set.
Collapse
Affiliation(s)
- Javier García-Orza
- Numerical Cognition Lab, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga, Málaga, Spain.
| | - Ismael Gutiérrez-Cordero
- Numerical Cognition Lab, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Carlos Larios
- Numerical Cognition Lab, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | - Anikó Csilinkó
- Numerical Cognition Lab, Facultad de Psicología, Universidad de Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain
| | | |
Collapse
|
5
|
Cheung P, Ansari D. A million is more than a thousand: Children's acquisition of very large number words. Dev Sci 2023; 26:e13246. [PMID: 35170832 DOI: 10.1111/desc.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Very large numbers words such as "hundred," "thousand," "million," "billion," and "trillion" pose a learning problem for children because they are sparse in everyday speech and children's experience with extremely large quantities is scarce. In this study, we examine when children acquire the relative ordering of very large number words as a first step toward understanding their acquisition. In Study 1, a hundred and twenty-five 5-8-year-olds participated in a verbal number comparison task involving very large number words. We found that children can judge which of two very large numbers is more as early as age 6, prior to entering first grade. In Study 2, we provided a descriptive analysis on the usage of very large number words using the CHILDES database. We found that the relative frequency of large number words does not change across the years, with "hundred" uttered more frequently than others by an order of magnitude. We also found that adults were more likely to use large number words to reference units of quantification for money, weight, and time, than for discrete, physical entities. Together, these results show that children construct a numerical scale for large number words prior to learning their precise cardinal meanings, and highlight how frequency and context may support their acquisition. Our results have pedagogical implications and highlight a need to investigate how children acquire meanings for number words that reference quantities beyond our everyday experience.
Collapse
Affiliation(s)
- Pierina Cheung
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Daniel Ansari
- Department of Psychology, Faculty of Education, Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Circling around number: People can accurately extract numeric values from circle area ratios. Psychon Bull Rev 2022; 29:1503-1513. [PMID: 35297020 DOI: 10.3758/s13423-022-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Abstract
It has long been known that people have the ability to estimate numerical quantities without counting. A standard account is that people develop a sense of the size of symbolic numbers by learning to map symbolic numbers (e.g., 6) to their corresponding numerosities (e.g. :::) and concomitant approximate magnitude system (ANS) representations. However, we here demonstrate that adults are capable of extracting fractional numerical quantities from non-symbolic visual ratios (i.e., labeling a ratio of two circle areas with the appropriate symbolic fraction). Not only were adult participants able to perform this task, but they were remarkably accurate: linear regressions on median estimates yielded slopes near 1, and accounted for 97% of the variability. Participants also performed at least as well on line-estimation and ratio-estimation tasks using non-numeric circular stimuli as they did in earlier experiments using non-symbolic numerosities, which are frequently considered to be numeric stimuli. We discuss results as consistent with accounts suggesting that non-symbolic ratios have the potential to act as a reliable and stable ground for symbolic number, even when composed of non-numeric stimuli.
Collapse
|
7
|
Lau NTT, Wilkey ED, Soltanlou M, Lagacé Cusiac R, Peters L, Tremblay P, Goffin C, Alves IS, Ribner AD, Thompson C, Van Hoof J, Bahnmueller J, Alvarez A, Bellon E, Coolen I, Ollivier F, Ansari D. Numeracy and COVID-19: examining interrelationships between numeracy, health numeracy and behaviour. ROYAL SOCIETY OPEN SCIENCE 2022; 9:201303. [PMID: 35308625 PMCID: PMC8924770 DOI: 10.1098/rsos.201303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
During the COVID-19 pandemic, people across the globe have been exposed to large amounts of statistical data. Previous studies have shown that individuals' mathematical understanding of health-related information affects their attitudes and behaviours. Here, we investigate the relation between (i) basic numeracy, (ii) COVID-19 health numeracy, and (iii) COVID-19 health-related attitudes and behaviours. An online survey measuring these three variables was distributed in Canada, the United States (US) and the United Kingdom (UK) (n = 2032). In line with predictions, basic numeracy was positively related to COVID-19 health numeracy. However, predictions, neither basic numeracy nor COVID-19 health numeracy was related to COVID-19 health-related attitudes and behaviours (e.g. follow experts' recommendations on social distancing, wearing masks etc.). Multi-group analysis was used to investigate mean differences and differences in the strength of the correlation across countries. Results indicate there were no between-country differences in the correlations between the main constructs but there were between-country differences in latent means. Overall, results suggest that while basic numeracy is related to one's understanding of data about COVID-19, better numeracy alone is not enough to influence a population's health-related attitudes about disease severity and to increase the likelihood of following public health advice.
Collapse
Affiliation(s)
| | | | | | | | - Lien Peters
- Department of Psychology, Western University, Canada
| | - Paul Tremblay
- Department of Psychology, Western University, Canada
| | - Celia Goffin
- Department of Psychology, Western University, Canada
| | | | - Andrew David Ribner
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clarissa Thompson
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - Jo Van Hoof
- Centre for Instructional Psychology and Technology, KU Leuven, Belgium
| | | | - Aymee Alvarez
- Department of Psychology, Western University, Canada
| | - Elien Bellon
- Parenting and Special Education, KU Leuven, Belgium
| | - Ilse Coolen
- Université de Paris, LaPsyDÉ, CNRS, F-75005 Paris, France
| | - Fanny Ollivier
- Laboratoire de Psychologie, Cognition, Comportement et Communication, Université Rennes 2, France
| | - Daniel Ansari
- Department of Psychology, Western University, Canada
| |
Collapse
|
8
|
Rao VNV, Bye JK, Varma S. Categorical Perception of p-Values. Top Cogn Sci 2021; 14:414-425. [PMID: 34779579 DOI: 10.1111/tops.12589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Traditional statistics instruction emphasizes a .05 significance level for hypothesis tests. Here, we investigate the consequences of this training for researchers' mental representations of probabilities - whether .05 becomes a boundary, that is, a discontinuity of the mental number line, and alters their reasoning about p-values. Graduate students with statistical training (n = 25) viewed pairs of p-values and judged whether they were "similar" or "different." After controlling for several covariates, participants were more likely and faster to judge p-values as "different" when they crossed the .05 boundary (e.g., .046 vs. .052) compared to when they did not (e.g., .026 vs. .032). This result suggests a categorical perception-like effect for the processing of p-values. It may be a consequence of traditional statistical instruction creating a psychologically real divide between so-called statistical "significance" and "nonsignificance." Such a distortion is undesirable given modern approaches to statistical reasoning that de-emphasize dichotomizing the p-value continuum.
Collapse
Affiliation(s)
- V N Vimal Rao
- Department of Educational Psychology, University of Minnesota
| | - Jeffrey K Bye
- Department of Educational Psychology, University of Minnesota
| | - Sashank Varma
- School of Interactive Computing, School of Psychology, Georgia Institute of Technology
| |
Collapse
|
9
|
Range and distribution effects on number line placement. Atten Percept Psychophys 2021; 83:1673-1683. [PMID: 33409900 DOI: 10.3758/s13414-020-02215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 01/29/2023]
Abstract
People's placement of numbers on number lines sometimes shows linear and sometimes compressive scaling. We investigated whether people's placement of numbers was affected by their range and distribution, as indicated by Parducci's (Psychological Review, 72, 407-418, 1965) range-frequency theory. Experiment 1 found large compressive effects when the endpoints were 1 and 1016. Experiment 2 showed compression when 14 logarithmically distributed numbers were placed on a line marked 1-1,000 and close to linear scaling when the numbers were linearly distributed. Thus, we found both range and frequency effects on compression. Where compression arose, it was not as pronounced as that predicted by logarithmic scaling, but analyses of the results from Experiments 1 and 2 indicate this was not explained by participants switching between linear and logarithmic scaling.
Collapse
|
10
|
Roquet A, Michel BF, Lemaire P. Alzheimer's disease disrupts domain-specific and domain-general processes in numerosity estimation. J Clin Exp Neuropsychol 2020; 42:690-709. [PMID: 32757739 DOI: 10.1080/13803395.2020.1798882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION This study investigated how Alzheimer's Disease (AD) affects numerosity estimation abilities (e.g., finding the approximate number of items in a collection). METHOD Across two experiments, performance from HOA (i.e., Healthy Older Adults; N = 48) and AD patients (N = 50) was compared on dot comparison tasks. Participants were presented with two dot arrays and had to select the more numerous dot array in comparison tasks. They also took a Simon task and a number-line tasks (i.e., number-line tasks in which they had to indicate the position of a number on a line 0 to 100 or on a line 0 to 1,000 in the number-line task). RESULTS In Experiment 1, (a) AD patients obtained significantly poorer performance while comparing collections of dots, especially harder (small-ratio) collections, (b) these deficits correlated with poorer performance on the number-line task for larger numerosities (i.e., 0 to 1,000), and (c) AD patients showed poorer performance on incongruent (where numerosity and area occupied by dots mismatched) than on congruent items (where both features matched), while HOA showed no congruency effects. Experiment 2 showed (a) congruency effects in both groups when convex hull was tested as an incongruent feature, and (b) comparable sequential modulations of congruency effects in both groups. CONCLUSIONS Our findings showed that numerosity abilities decline in AD patients, and that this decline results from impaired domain-specific processes (i.e., numerosity processing) and domain-general processes (i.e., inhibition). These findings have important implications to further our understanding of how specific and general cognitive processes contribute to numerosity estimation/comparison performance, and how such contributions change during Alzheimer's disease.
Collapse
Affiliation(s)
- Angélique Roquet
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université & CNRS , Marseille, France
| | | | - Patrick Lemaire
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université & CNRS , Marseille, France
| |
Collapse
|
11
|
Yuan L, Prather R, Mix KS, Smith LB. Number Representations Drive Number-Line Estimates. Child Dev 2019; 91:e952-e967. [PMID: 31657470 DOI: 10.1111/cdev.13333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The number-line task has been extensively used to study the mental representation of numbers in children. However, studies suggest that proportional reasoning provides a better account of children's performance. Ninety 4- to 6-year-olds were given a number-line task with symbolic numbers, with clustered dot arrays that resembled a perceptual scaling task, or with spread-out dot arrays that involved numerical estimation. Children performed well with clustered dot arrays, but poorly with symbolic numbers and spread-out dot arrays. Performances with symbolic numbers and spread-out dot arrays were highly correlated and were related to counting skill; neither was true for clustered dot arrays. Overall, results provide evidence for the role of mental representation of numbers in the symbolic number-line task.
Collapse
|
12
|
Preschoolers and multi-digit numbers: A path to mathematics through the symbols themselves. Cognition 2019; 189:89-104. [PMID: 30933877 DOI: 10.1016/j.cognition.2019.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 01/22/2023]
Abstract
Numerous studies from developmental psychology have suggested that human symbolic representation of numbers is built upon the evolutionally old capacity for representing quantities that is shared with other species. Substantial research from mathematics education also supports the idea that mathematical concepts are best learned through their corresponding physical representations. We argue for an independent pathway to learning "big" multi-digit symbolic numbers that focuses on the symbol system itself. Across five experiments using both between- and within-subject designs, we asked preschoolers to identify written multi-digit numbers with their spoken names in a two-alternative-choice-test or to indicate the larger quantity between two written numbers. Results showed that preschoolers could reliably map spoken number names to written forms and compare the magnitudes of two written multi-digit numbers. Importantly, these abilities were not related to their non-symbolic representation of quantities. These findings have important implications for numerical cognition, symbolic development, teaching, and education.
Collapse
|
13
|
Opfer J, Kim D, Young CJ, Marciani F. Linear Spatial-Numeric Associations Aid Memory for Single Numbers. Front Psychol 2019; 10:146. [PMID: 30778318 PMCID: PMC6369359 DOI: 10.3389/fpsyg.2019.00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/16/2019] [Indexed: 11/29/2022] Open
Abstract
Memory for numbers improves with age. One source of this improvement may be learning linear spatial–numeric associations, but previous evidence for this hypothesis likely confounded memory span with quality of numerical magnitude representations and failed to distinguish spatial–numeric mappings from other numeric abilities, such as counting or number word-cardinality mapping. To obviate the influence of memory span on numerical memory, we examined 39 3- to 5-year-olds’ ability to recall one spontaneously produced number (1–20) after a delay, and the relation between numeric recall (controlling for non-numeric recall) and quality of mapping between symbolic and non-symbolic quantities using number-line estimation, give-a-number estimation, and counting tasks. Consistent with previous reports, mapping of numerals to space, to discrete quantities, and to numbers in memory displayed a logarithmic-to-linear shift. Also, linearity of spatial–numeric mapping correlated strongly with multiple measures of numeric recall (percent correct and percent absolute error), even when controlling for age and non-numeric memory. Results suggest that linear spatial–numeric mappings may aid memory for number over and above children’s other numeric skills.
Collapse
Affiliation(s)
- John Opfer
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Dan Kim
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | | | | |
Collapse
|
14
|
Abstract
When it comes to knowledge of demographic facts, misinformation appears to be the norm. Americans massively overestimate the proportions of their fellow citizens who are immigrants, Muslim, LGBTQ, and Latino, but underestimate those who are White or Christian. Previous explanations of these estimation errors have invoked topic-specific mechanisms such as xenophobia or media bias. We reconsidered this pattern of errors in the light of more than 30 years of research on the psychological processes involved in proportion estimation and decision-making under uncertainty. In two publicly available datasets featuring demographic estimates from 14 countries, we found that proportion estimates of national demographics correspond closely to what is found in laboratory studies of quantitative estimates more generally. Biases in demographic estimation, therefore, are part of a very general pattern of human psychology-independent of the particular topic or demographic under consideration-that explains most of the error in estimates of the size of politically salient populations. By situating demographic estimates within a broader understanding of general quantity estimation, these results demand reevaluation of both topic-specific misinformation about demographic facts and topic-specific explanations of demographic ignorance, such as media bias and xenophobia.
Collapse
|
15
|
Patel P, Varma S. How the Abstract Becomes Concrete: Irrational Numbers Are Understood Relative to Natural Numbers and Perfect Squares. Cogn Sci 2018; 42:1642-1676. [PMID: 29900573 DOI: 10.1111/cogs.12619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022]
Abstract
Mathematical cognition research has largely emphasized concepts that can be directly perceived or grounded in visuospatial referents. These include concrete number systems like natural numbers, integers, and rational numbers. Here, we investigate how a more abstract number system, the irrationals denoted by radical expressions like 2, is understood across three tasks. Performance on a magnitude comparison task suggests that people interpret irrational numbers (specifically, the radicands of radical expressions) as natural numbers. Strategy self-reports during a number line estimation task reveal that the spatial locations of irrationals are determined by referencing neighboring perfect squares. Finally, perfect squares facilitate the evaluation of arithmetic expressions. These converging results align with a constellation of related phenomena spanning tasks and number systems of varying complexity. Accordingly, we propose that the task-specific recruitment of more concrete representations to make sense of more abstract concepts (referential processing) is an important mechanism for teaching and learning mathematics.
Collapse
Affiliation(s)
- Purav Patel
- Department of Educational Psychology, University of Minnesota
| | - Sashank Varma
- Department of Educational Psychology, University of Minnesota
| |
Collapse
|
16
|
Prather R. Neural coding partially accounts for the relationship between children’s number-line estimation and number comparison performance. JOURNAL OF COGNITION AND DEVELOPMENT 2018. [DOI: 10.1080/15248372.2018.1454924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Cipora K, Schroeder PA, Soltanlou M, Nuerk HC. More Space, Better Mathematics: Is Space a Powerful Tool or a Cornerstone for Understanding Arithmetic? VISUALIZING MATHEMATICS 2018. [DOI: 10.1007/978-3-319-98767-5_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|