1
|
Sousa AR, Gonçalves DC, Neves BG, Santos‐Coquillat A, Oliveira MB, Mano JF. Encapsulated Mesenchymal Stromal Cells as Cyclic Providers of Immunomodulatory Secretomes: A Living on-Demand Delivery System. Adv Healthc Mater 2024; 13:e2304012. [PMID: 38545848 PMCID: PMC11468815 DOI: 10.1002/adhm.202304012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Indexed: 04/09/2024]
Abstract
The stimulation of mesenchymal stromal cells (MSCs) with inflammatory molecules is often used to boost their therapeutic effect. Prolonged exposure to inflammatory molecules has been explored to improve their action because MSCs therapies seem to be improved transiently with such stimuli. However, the possibility of cyclically stimulating MSCs to recover their optimized therapeutic potential is still to be elucidated, although the efficacy of cell-based therapies may be dependent on the ability to readapt to the relapse pathological conditions. Here, the response of MSCs, encapsulated in alginate hydrogels and cultured for 22 d, is explored using three different regimes: single, continuous, and intermittent stimulation with IFNγ. Exposure to IFNγ leads to a decrease in the secretion of IL-10, which is cyclically countered by IFNγ weaning. Conditioned media collected at different stages of pulsatile stimulation show an immunomodulatory potential toward macrophages, which directly correlates with IL-10 concentration in media. To understand whether the correlation between cyclic stimulation of MSCs and other biological actions can be observed, the effect on endothelial cells is studied, showcasing an overall modest influence on tube formation. Overall, the results describe the response of encapsulated MSCs to unusual pulsatile simulation regimens, exploring encapsulated MSCs as a living on-demand release system of tailored secretomes with recoverable immunomodulatory action.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Diana C. Gonçalves
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Beatriz Guapo Neves
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Ana Santos‐Coquillat
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Mariana B. Oliveira
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| |
Collapse
|
2
|
Dutta Gupta S, Ta M. ADAMTS13 regulates angiogenic markers via Ephrin/Eph signaling in human mesenchymal stem cells under serum-deprivation stress. Sci Rep 2024; 14:560. [PMID: 38177376 PMCID: PMC10766954 DOI: 10.1038/s41598-023-51079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are known to facilitate angiogenesis and promote neo-vascularization via secretion of trophic factors. Here, we explored the molecular mechanism adopted by ADAMTS13 in modulating the expression of some key angiogenic markers in human umbilical cord-derived MSCs under serum-deprivation stress. Wharton's jelly MSCs (WJ-MSCs) were isolated from the perivascular region of human umbilical cords by explant culture. ADAMTS13 was upregulated at both mRNA and protein levels in WJ-MSCs under serum-deprivation stress. Correspondingly, some key angiogenic markers were also seen to be upregulated. By screening signaling pathways, p38 and JNK pathways were identified as negative and positive regulators for expression of ADAMTS13, and the angiogenic markers, respectively. Our results also indicated the Notch pathway and p53 as other probable partners modulating the expression of ADAMTS13 and the angiogenic markers. Knockdown of ADAMTS13 using siRNA led to reversal in the expression of these angiogenic markers. Further, ADAMTS13 was shown to act via the EphrinB2/EphB4 axis followed by ERK signaling to control expression of the angiogenic markers. Interestingly, stronger expression levels were noted for ADAMTS13, VEGF and PDGF under a more stringent nutrient stress condition. Thus, we highlight a novel role of ADAMTS13 in WJ-MSCs under nutrient stress condition.
Collapse
Affiliation(s)
- Srishti Dutta Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), Mohanpur Campus, Dist: Nadia, Kolkata, West Bengal, 741246, India
| | - Malancha Ta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), Mohanpur Campus, Dist: Nadia, Kolkata, West Bengal, 741246, India.
| |
Collapse
|
3
|
Cai Y, Zhang F, Feng J, Wu B, Li H, Xiao S, Lu F, Wei Z, Deng C. Long-term follow-up and exploration of the mechanism of stromal vascular fraction gel in chronic wounds. Stem Cell Res Ther 2023; 14:163. [PMID: 37337292 DOI: 10.1186/s13287-023-03389-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Chronic refractory wounds easily relapse and seriously affect the patients' quality of life. Previous studies have shown that stromal vascular fraction gel (SVF-gel) significantly promotes the early healing of chronic wounds; however, the mechanisms of SVF-gel function per se remain unclear, and a long-term follow-up is lacking. This study aims to explore the mechanisms of SVF-gel promoting the healing of chronic wounds and follow up the long-term efficacy of SVF-gel. METHODS Autologous SVF-gel transplantation was performed in 20 patients with chronic wounds (from March 2016 to September 2019), and the size of the wound before and after SVF-gel transplantation was observed. The conditioned medium (CM) was harvested from SVF-gel under serum-free, serum-deprivation and 10% fetal bovine serum (FBS) microenvironment in vitro, respectively. The concentration of the growth factors in the two kinds of gel-CM was tested, and their effects on the proliferation and migration of human dermal fibroblasts (HDFs) were detected. RESULTS All patients had 100% wound closure eventually, and the average time to complete closure was 28.3 ± 9.7 days. The time of follow-up ranged from 2 to 6 years, and there was no wound recurrence. Interestingly, the concentrations of epidermal growth factor and transforming growth factor β1 of the CM were higher in serum-free and serum-deprivation condition than in 10% FBS microenvironment (p < 0.05). Correspondingly, the proliferation and migration ability of HDFs treated with gel-CM from serum-free condition were stronger than those treated with gel-CM from serum-deprivation (2% FBS) or 10% FBS microenvironment (p < 0.05). CONCLUSION These results indicate that it is safe, effective, and lasting in effect to treat chronic wounds with SVF-gel and mechanisms of action that include secreting various cytokines and promoting cell proliferation and migration ability. TRIAL REGISTRATION Chinese Clinical Trail Registry, ChiCTR2000034624. Registered 12 July 2020-Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=56058.
Collapse
Affiliation(s)
- Yuan Cai
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Fang Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bihua Wu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Hai Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China.
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
4
|
Vitronectin acts as a key regulator of adhesion and migration in human umbilical cord-derived MSCs under different stress conditions. Exp Cell Res 2023; 423:113467. [PMID: 36634744 DOI: 10.1016/j.yexcr.2023.113467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
To improve mesenchymal stem cell (MSC)-based therapy efficacy, it is critical to identify factors involved in regulating migration and adhesion of MSCs under microenvironmental stress conditions. We observed that human Wharton's jelly-derived MSCs (WJ-MSCs) exhibited increase in cell spread area and adhesion, with reduction in cellular migration under serum starvation stress. The changes in adhesion and migration characteristics were accompanied by formation of large number of super mature focal adhesions along with extensive stress fibres and altered ECM gene expression with notable induction in vitronectin (VTN) expression. NF-κβ was found to be a positive regulator of VTN expression while ERK pathway regulated it negatively. Inhibition of these signalling pathways or knocking down of VTN under serum starvation established the correlation between increase in VTN expression and increased cellular adhesion with corresponding reduction in cell migration. VTN knockdown also resulted in reduction of super mature focal adhesions and extensive stress fibres, formed under serum starvation stress. Additionally, VTN induction was not detected in hypoxia-treated WJ-MSCs, and the MSCs showed no significant change in the adhesion or migration properties under hypoxia. VTN is established as a key player which possibly regulates the adhesion and migration properties of WJ-MSCs via focal adhesion signalling.
Collapse
|
5
|
Li L, Liu X, Zhao M, Guo P, Zhang H. Effects of serum starvation and vascular endothelial growth factor stimulation on the expression of Notch signalling pathway components. Sci Prog 2021; 104:368504211028387. [PMID: 34231445 PMCID: PMC10450735 DOI: 10.1177/00368504211028387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brain arteriovenous malformation (BAVM) is an abnormality in the cerebral vascular system. Although the upregulation of the Notch signalling pathway is a deterministic factor in BAVM, the mechanism by which this pathway is upregulated in patients with BAVM is uncertain. The effects of serum starvation and vascular endothelial growth factor (VEGF) stimulation on the Notch signalling pathway in brain microvascular endothelial cells (MECs) and mouse embryonic stem (mES)/embryoid body (EB)-derived endothelial cells were investigated in this study. The duration of serum starvation and VEGF concentration were changed, cell viability was measured, and reasonable time and concentration gradients were selected for subsequent studies. Protein and mRNA expression levels of Notch signalling pathway components in both MECs and mES/EB-derived endothelial cells were detected using western blotting and real-time PCR, respectively. Expression levels of the Notch1, Notch4, Jagged1, delta-like ligand 4 (Dll4) and Hes1 proteins and mRNAs were upregulated by lower VEGF concentrations and shorter-term serum starvation but inhibited by higher VEGF concentrations and longer-term serum starvation. This study revealed effects of changes in the duration of serum starvation and VEGF concentration on the expression of Notch signalling pathway components in both MECs and mES/EB-derived endothelial cells, potentially contributing to BAVM formation.
Collapse
Affiliation(s)
- Liming Li
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiaqing Liu
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Mingguang Zhao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Peng Guo
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Haifeng Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
6
|
Naskou MC, Sumner S, Berezny A, Copland IB, Peroni JF. Fibrinogen-Depleted Equine Platelet Lysate Affects the Characteristics and Functionality of Mesenchymal Stem Cells. Stem Cells Dev 2020; 28:1572-1580. [PMID: 31637965 DOI: 10.1089/scd.2019.0070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fetal bovine serum (FBS) is widely used to culture mesenchymal stem cells (MSCs) in the laboratory; however, FBS has been linked to adverse immune-mediated reactions prompting the search for alternative cell culture medium. Platelet lysate (PL) as an FBS substitute has been shown to promote MSCs growth without compromising their functionality. Fibrinogen contained in PL has been shown to negatively impact the immune modulating properties of MSCs; therefore, we sought to deplete fibrinogen from PL and compare proliferation, viability, and immunomodulatory capacities of MSCs in FBS or PL without fibrinogen. We depleted fibrinogen from equine platelet lysate (ePL) and measured platelet-derived growth factor-beta (PDGF-β), transforming growth factor-beta (TGF-β) and tumor necrosis factor-alpha (TNF-α) through ELISA. First, we determined the ability of 10% ePL or fibrinogen-depleted lysate (fdePL) compared with 10% FBS to suppress monocyte activation by measuring TNF-α from culture supernatants. We then evaluated proliferation, viability, and immunomodulatory characteristics of bone marrow-derived MSCs (BM-MSCs) cultured in FBS or ePL with or without fibrinogen. Growth factor concentrations decreased in ePL after fibrinogen depletion. Lipopolysaccharide (LPS)-stimulated monocytes exposed to ePL and fdePL produced less TNF-α than LPS-stimulated monocytes in 10% FBS. BM-MSCs cultured in fdePL exhibited lower proliferation rates, but similar viability compared with BM-MSCs in ePL. BM-MSCs in fdePL did not effectively suppress TNF-α expression from LPS-stimulated monocytes compared with BM-MSCs in FBS. Depleting fibrinogen results in a lysate that suppresses TNF-α expression from LPS-stimulated monocytes, but that does not support proliferation and immune-modulatory capacity of BM-MSCs as effectively as nondepleted lysate.
Collapse
Affiliation(s)
- Maria C Naskou
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Scarlett Sumner
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Alysha Berezny
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Ian B Copland
- Emory Personalized Immunotherapy Center [EPIC], Emory University School of Medicine, Atlanta, Georgia
| | - John F Peroni
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
7
|
Luo MJ, Rao SS, Tan YJ, Yin H, Hu XK, Zhang Y, Liu YW, Yue T, Chen LJ, Li L, Huang YR, Qian YX, Liu ZZ, Cao J, Wang ZX, Luo ZW, Wang YY, Xia K, Tang SY, Chen CY, Xie H. Fasting before or after wound injury accelerates wound healing through the activation of pro-angiogenic SMOC1 and SCG2. Am J Cancer Res 2020; 10:3779-3792. [PMID: 32206122 PMCID: PMC7069085 DOI: 10.7150/thno.44115] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 12/26/2022] Open
Abstract
Healing of the chronic diabetic ulceration and large burns remains a clinical challenge. Therapeutic fasting has been shown to improve health. Our study tested whether fasting facilitates diabetic and burn wound healing and explored the underlying mechanism. Methods: The effects of fasting on diabetic and burn wound healing were evaluated by analyzing the rates of wound closure, re-epithelialization, scar formation, collagen deposition, skin cell proliferation and neovascularization using histological analyses and immunostaining. In vitro functional assays were conducted to assess fasting and refeeding on the angiogenic activities of endothelial cells. Transcriptome sequencing was employed to identify the differentially expressed genes in endothelial cells after fasting treatment and the role of the candidate genes in the fasting-induced promotion of angiogenesis was demonstrated. Results: Two times of 24-h fasting in a week after but especially before wound injury efficiently induced faster wound closure, better epidermal and dermal regeneration, less scar formation and higher level of angiogenesis in mice with diabetic or burn wounds. In vitro, fasting alone by serum deprivation did not increase, but rather reduced the abilities of endothelial cell to proliferate, migrate and form vessel-like tubes. However, subsequent refeeding did not merely rescue, but further augmented the angiogenic activities of endothelial cells. Transcriptome sequencing revealed that fasting itself, but not the following refeeding, induced a prominent upregulation of a variety of pro-angiogenic genes, including SMOC1 (SPARC related modular calcium binding 1) and SCG2 (secretogranin II). Immunofluorescent staining confirmed the increase of SMOC1 and SCG2 expression in both diabetic and burn wounds after fasting treatment. When the expression of SMOC1 or SCG2 was down-regulated, the fasting/refeeding-induced pro-angiogenic effects were markedly attenuated. Conclusion: This study suggests that fasting combined with refeeding, but not fasting solely, enhance endothelial angiogenesis through the activation of SMOC1 and SCG2, thus facilitating neovascularization and rapid wound healing.
Collapse
|
8
|
Paim Á, Cardozo NSM, Tessaro IC, Pranke P. Relevant biological processes for tissue development with stem cells and their mechanistic modeling: A review. Math Biosci 2018; 301:147-158. [PMID: 29746816 DOI: 10.1016/j.mbs.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
A potential alternative for tissue transplants is tissue engineering, in which the interaction of cells and biomaterials can be optimized. Tissue development in vitro depends on the complex interaction of several biological processes such as extracellular matrix synthesis, vascularization and cell proliferation, adhesion, migration, death, and differentiation. The complexity of an individual phenomenon or of the combination of these processes can be studied with phenomenological modeling techniques. This work reviews the main biological phenomena in tissue development and their mathematical modeling, focusing on mesenchymal stem cell growth in three-dimensional scaffolds.
Collapse
Affiliation(s)
- Ágata Paim
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n Porto Alegre, Rio Grande do Sul 90040-040, Brazil; Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752. Porto Alegre, Rio Grande do Sul 90610-000, Brazil.
| | - Nilo S M Cardozo
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n Porto Alegre, Rio Grande do Sul 90040-040, Brazil
| | - Isabel C Tessaro
- Department of Chemical Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), R. Eng. Luis Englert, s/n Porto Alegre, Rio Grande do Sul 90040-040, Brazil
| | - Patricia Pranke
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752. Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Stem Cell Research Institute, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cell function for soft tissue regeneration. Oncotarget 2018; 7:35390-403. [PMID: 27191987 PMCID: PMC5085237 DOI: 10.18632/oncotarget.9360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/11/2016] [Indexed: 02/01/2023] Open
Abstract
Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering.
Collapse
|
10
|
Gholipourmalekabadi M, Sameni M, Radenkovic D, Mozafari M, Mossahebi‐Mohammadi M, Seifalian A. Decellularized human amniotic membrane: how viable is it as a delivery system for human adipose tissue-derived stromal cells? Cell Prolif 2016; 49:115-21. [PMID: 26840647 PMCID: PMC6496672 DOI: 10.1111/cpr.12240] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Human amniotic membrane (HAM) has been widely used in soft tissue engineering both in its fresh form and decellularized; its efficiency to aid treatment of burn injuries is well known. On the other hand, it has been reported clinically by several studies that human adipose-derived stem cells (hADSC) are a promising cell source for cell therapy for burns. Recently, we have reported a new technique for decellularization of HAM. In this study, potential of prepared decellularized HAM (dHAM) as a viable support for proliferation and delivery of hADSC was investigated. MATERIALS AND METHODS Amniotic membranes were collected, decellularized and preserved according to the protocol described in our previously published study. hADSC were obtained from the patients undergoing elective liposuction surgery and cells were then seeded on the decellularized membrane for various times. Efficiency of the decellularized membrane as a delivery system for hADSC was investigated by MTT, LDH specific activity, DAPI staining and SEM. RESULTS The results showed that dHAM provided a supporting microenvironment for cell growth without producing any cytotoxic effects. In addition, the cells were spread out and actively attached to the dHAM scaffold. CONCLUSION These results strongly suggest that dHAMs have considerable potential as 3D cell-carrier scaffolds for delivery of hADSC, in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- M. Gholipourmalekabadi
- Biotechnology DepartmentSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehran198396‐3113Iran
- Cellular and Molecular Biology Research CentreShahid Beheshti University of Medical SciencesTehran198396‐3113Iran
| | - M. Sameni
- Cellular and Molecular Biology Research CentreShahid Beheshti University of Medical SciencesTehran198396‐3113Iran
| | - Dina Radenkovic
- University College London (UCL) Medical SchoolLondonWC1E 6BTUK
| | - M. Mozafari
- Bioengineering Research GroupNanotechnology and Advanced Materials DepartmentMERCTehran14155‐4777Iran
| | - M. Mossahebi‐Mohammadi
- Department of Hematology and Blood BankingFaculty of Medical SciencesTarbiat Modares UniversityTehran14115‐111Iran
| | - A. Seifalian
- Centre for Nanotechnology & Regenerative MedicineUCL and Royal Free HospitalLondonNW3 2QGUK
- NanoRegMed LtdLondonEC1V 4PWUK
| |
Collapse
|
11
|
Tratwal J, Mathiasen AB, Juhl M, Brorsen SK, Kastrup J, Ekblond A. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells. Stem Cell Res Ther 2015; 6:62. [PMID: 25889587 PMCID: PMC4431456 DOI: 10.1186/s13287-015-0062-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/05/2014] [Accepted: 03/24/2015] [Indexed: 02/07/2023] Open
Abstract
Introduction Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns of ASCs. Methods Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow cytometry. Microarray gene expressions were obtained using the Affymetrix HT HG-U133+ GeneChip®. Gene set enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes and gene ontology terms. Transcription of selected genes of interest was confirmed by quantitative PCR. Results Compared to ASCs in complete medium, 190 and 108 genes were significantly altered by serum deprivation and serum deprivation combined with VEGF, respectively. No significant differences in gene expression patterns between serum-deprived ASCs and serum-deprived ASCs combined with VEGF stimulation were found. Genes most prominently and significantly upregulated by both conditions were growth factors (IGF1, BMP6, PDGFD, FGF9), adhesion molecule CLSTN2, extracellular matrix-related proteins such as matricellular proteins SMOC2, SPON1 and ADAMTS12, and inhibitors of proliferation (JAG1). The most significantly downregulated genes included matrix metalloproteinases (MMP3, MMP1), and proliferation markers (CDKN3) and GREM2 (a BMP6 antagonist). Conclusion The decisive factor for the observed change in ASC gene expression proves to be serum starvation rather than VEGF stimulation. Changes in expression of growth factors, matricellular proteins and matrix metalloproteinases in concert, diverge from direct pro-angiogenic paracrine mechanisms as a primary consequence of the used protocol. In vitro serum starvation (with or without VEGF present) appears to favour cardioprotection, extracellular matrix remodelling and blood vessel maturation relevant for the late maturation phase in infarct healing.
Collapse
Affiliation(s)
- Josefine Tratwal
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Anders Bruun Mathiasen
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Morten Juhl
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Sonja Kim Brorsen
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| |
Collapse
|
12
|
Jun-Jiang C, Huan-Jiu X. Vascular endothelial growth factor 165-transfected adipose-derived mesenchymal stem cells promote vascularization-assisted fat transplantation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1141-9. [PMID: 25812001 DOI: 10.3109/21691401.2015.1011808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the effect of vascular endothelial growth factor 165 (VEGF165) and adipose-derived mesenchymal stem cells (ASCs) in promoting the survival of fat grafts, and to provide new methods and theoretical evidence for increasing the survival rate of autologous fat particle grafts. METHODS The VEGF165 gene was recombined with the target fragment, and the recombinant gene was introduced into adenovirus pAdEasy-1 system; the virus was then packaged and the titer was detected. The control group received the same processing. ASCs were cultured and subcultured, and then identified with immunohistochemistry and adipogenic differentiation assay. The subsequent experiments were performed in three groups: the VEGF165 gene-virus group, blank virus group, and control group. After the viral solution was transfected into the ASCs, the viral transfection efficiency was detected using a tracing factor, EGFP. The expression of VEGF165 mRNA and protein in the transfected cells were determined. The proliferation of ASCs in each group was detected with the MTT assay. RESULTS (1) Recombinant adenoviral vector was constructed successfully in the two groups and the packaging was identified. The viral titer was 2.0 × 10(8) pfu/ml and 1.9 × 10(8) pfu/ml, which was in line with the requirements of the subsequent transfection experiments. (2) Immunohistochemistry and adipogenic differentiation results showed that the culture of ASCs was successful, and the cultured cells could serve as seed cells in this experiment. (3) The RT-PCR analysis showed that the relative optical density of VEGF165 mRNA expression was 0.76 ± 0.05 in the experimental group, and there were statistically significant differences compared with the values obtained for the other two groups (P < 0.05). (4) The western blot analysis showed that the relative optical density of VEGF165 protein expression in the experimental group was significantly higher than that in the other two groups (P < 0.05). (5) The proliferation of ASCs was significantly enhanced after transfection in the experimental group, relative to the other two groups (P < 0.05). This evidence indicated that VEGF165 significantly promoted the proliferation of ASCs. CONCLUSION After transfection with the VEGF165-adenoviral vector, ASCs demonstrate sustained expression of the target protein and obviously promote the proliferation of ASCs, which lay the foundation for the in vitro experiments on transplantation of VEGF165 combined with ASCs, for the treatment of tissue defects.
Collapse
Affiliation(s)
- Chen Jun-Jiang
- a Department of Human Anatomy , China Medical University , Liaoning , P. R. China
| | - Xi Huan-Jiu
- a Department of Human Anatomy , China Medical University , Liaoning , P. R. China
| |
Collapse
|
13
|
Effect of serum and oxygen concentration on gene expression and secretion of paracrine factors by mesenchymal stem cells. Int J Cell Biol 2014; 2014:601063. [PMID: 25614742 PMCID: PMC4295344 DOI: 10.1155/2014/601063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/31/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells (MSC) secrete paracrine factors that may exert a protective effect on the heart after coronary artery occlusion. This study was done to determine the effect of hypoxia and serum levels on the mRNA expression and secretion of paracrine factors. Mouse bone marrow MSC were cultured with 5% or 20% serum and in either normoxic (21% O2) or hypoxic (1% O2) conditions. Expression of mRNA for vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), MIP-1β, and matrix metalloproteinase-2 (MMP-2) was determined by RT-qPCR. Secretion into the culture media was determined by ELISA. Hypoxia caused a reduction in gene expression for MCP-1 and an increase for VEGF (5% serum), MIP-1α, MIP-1β, and MMP-2. Serum reduction lowered gene expression for VEGF (normoxia), MCP-1 (hypoxia), MIP-1α (hypoxia), MIP-1β (hypoxia), and MMP-2 (hypoxia) and increased gene expression for MMP-2 (normoxia). The level of secretion of these factors into the media generally paralleled gene expression with some exceptions. These data demonstrate that serum and oxygen levels have a significant effect on the gene expression and secretion of paracrine factors by MSC which will affect how MSC interact in vivo during myocardial ischemia.
Collapse
|
14
|
Porous Membranes Promote Endothelial Differentiation of Adipose-Derived Stem Cells and Perivascular Interactions. Cell Mol Bioeng 2014. [DOI: 10.1007/s12195-014-0354-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|