1
|
Lu S, Huang J, Zhang J, Wu C, Huang Z, Tao X, You L, Stalin A, Chen M, Li J, Tan Y, Wu Z, Geng L, Li Z, Fan Q, Liu P, Lin Y, Zhao C, Wu J. The anti-hepatocellular carcinoma effect of Aidi injection was related to the synergistic action of cantharidin, formononetin, and isofraxidin through BIRC5, FEN1, and EGFR. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117209. [PMID: 37757991 DOI: 10.1016/j.jep.2023.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aidi injection (ADI) is a popular anti-tumor Chinese patent medicine, widely used in clinics for the treatment of hepatocellular carcinoma (HCC) with remarkable therapeutic effects through multiple targets and pathways. However, the scientific evidence of the synergistic role of the complex chemical component system and the potential mechanism for treating diseases are ignored and remain to be elucidated. AIM OF THE STUDY This study aimed to elucidate and verify the cooperative association between the potential active ingredient of ADI, which is of significance to enlarge our understanding of its anti-HCC molecular mechanisms. MATERIALS AND METHODS Firstly, the anti-HCC effect of ADI was evaluated in various HCC cells and the zebrafish xenograft model. Subsequently, a variety of bioinformatic technologies, including network pharmacology, weighted gene co-expression network analysis (WGCNA), meta-analysis of gene expression profiles, and pathway enrichment analysis were performed to construct the competitive endogenous RNA (ceRNA) network of ADI intervention in HCC and to establish the relationship between the critical targets/pathways and the key corresponding components, which were involved in ADI against HCC in a synergistic way and were validated by molecular biology experiments. RESULTS ADI exerted remarkable anti-HCC in vitro cells and in vivo zebrafish model, especially that the Hep 3B2.1-7 cell showed substantial sensibility to ADI. The ceRNA network revealed that the EGFR/PI3K/AKT signaling pathway was identified as the promising pathway. Furthermore, the meta-analysis also demonstrated the critical role of BIRC5 and FEN1 as key targets. Finally, the synergistic effect of ADI was revealed by discovering the inhibitory effect of cantharidin on BIRC5, formononetin on FEN1 and EGFR, as well as isofraxidin on EGFR. CONCLUSION Our study unveiled that the incredible protective effect of ADI on HCC resulted from the synergistic inhibition effect of cantharidin, formononetin, and isofraxidin on multiple targets/pathways, including BIRC5, FEN1, and EGFR/PI3K/AKT, respectively, providing a scientific interpretation of ADI against HCC and a typical example of pharmacodynamic evaluation of other proprietary Chinese patent medicine.
Collapse
Affiliation(s)
- Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiaqi Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiaoyu Tao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Meilin Chen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiaqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Libo Geng
- Guizhou Yibai Pharmaceutical Co. Ltd, Guiyang, 550008, Guizhou, China.
| | - Zhiqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Qiqi Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Pengyun Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yifan Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chongjun Zhao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
2
|
Kleszcz R. Advantages of the Combinatorial Molecular Targeted Therapy of Head and Neck Cancer-A Step before Anakoinosis-Based Personalized Treatment. Cancers (Basel) 2023; 15:4247. [PMID: 37686523 PMCID: PMC10486994 DOI: 10.3390/cancers15174247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The molecular initiators of Head and Heck Squamous Cell Carcinoma (HNSCC) are complex. Human Papillomavirus (HPV) infection is linked to an increasing number of HNSCC cases, but HPV-positive tumors generally have a good prognosis. External factors that promote the development of HPV-negative HNSCC include tobacco use, excessive alcohol consumption, and proinflammatory poor oral hygiene. On a molecular level, several events, including the well-known overexpression of epidermal growth factor receptors (EGFR) and related downstream signaling pathways, contribute to the development of HNSCC. Conventional chemotherapy is insufficient for many patients. Thus, molecular-based therapy for HNSCC offers patients a better chance at a cure. The first molecular target for therapy of HNSCC was EGFR, inhibited by monoclonal antibody cetuximab, but its use in monotherapy is insufficient and induces resistance. This article describes attempts at combinatorial molecular targeted therapy of HNSCC based on several molecular targets and exemplary drugs/drug candidates. The new concept of anakoinosis-based therapy, which means treatment that targets the intercellular and intracellular communication of cancer cells, is thought to be the way to improve the clinical outcome for HNSCC patients. The identification of a link between molecular targeted therapy and anakoinosis raises the potential for further progress in HPV-negative HNSCC therapy.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Str., 60-781 Poznan, Poland
| |
Collapse
|
3
|
Pan C, Su Z, Xie H, Ning Y, Li S, Xiao H. Hsa_circ_0081069 facilitates tongue squamous cell carcinoma progression by modulating MAP2K4 expression via miR-634. Odontology 2023; 111:474-486. [PMID: 36181561 DOI: 10.1007/s10266-022-00746-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023]
Abstract
It has been demonstrated that circular RNA (circRNA) is involved in the progression of tongue squamous cell carcinoma (TSCC). The aim of this study was to investigate the intrinsic mechanism of circ_0081069 in TSCC progression. The expression levels of circ_00081069, miR-634, and mitogen-activated protein kinase kinase 4 (MAP2K4) in TSCC tissues and cells were detected by quantitative real-time PCR (qRT-PCR). Cell counting kit 8 assay, Edu assay, and flow cytometry assay were used to detect cell proliferation and cell cycle distribution. Transwell assay was used to detect cell migration and invasion abilities. Western blot analysis was performed to detect the protein expression. Dual-luciferase reporter assay was used to detect the targeting relationships of circ_0081069, miR-634 and MAP2K4. Immunohistochemical staining was used to measure MAP2K4-positive cells in tissues. The effect of circ_0081069 silencing on tumor formation in TSCC in vivo was explored by xenograft tumor assay. Circ_0081069 was highly expressed in TSCC tissues and cells. Silencing of circ_0081069 inhibited cell proliferation, cell cycle progress, cell migration and invasion in vitro, as well as hindered tumor growth in vivo. Mechanistically, circ_0081069 targeted miR-634 to negatively regulate miR-634 expression, and inhibition of miR-634 was able to weaken the inhibitory effect of circ_0081069 knockdown on proliferation, migration, and invasion of TSCC cells. MiR-634 targeted MAP2K4 and negatively regulated MAP2K4 expression, and overexpression of miR-634 inhibited TSCC cell proliferation, migration, and invasion, while co-overexpression of MAP2K4 was able to reverse the effects of miR-634 in TSCC cells. Circ_0081069 is involved in the regulation of proliferation, cycle progress, migration, and invasion of TSCC cells through the miR-634/MAP2K4 axis and has the potential to serve as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Chao Pan
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China
| | - Zhijian Su
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China
| | - Honghui Xie
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China
| | - Yanyang Ning
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China
| | - Shuangjing Li
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China
| | - Haibo Xiao
- Department of Endodontics, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha City, 410008, Hunan Province, China.
| |
Collapse
|
4
|
Jia Y, Chen X, Zhao D, Ma S. SNHG1/miR-194-5p/MTFR1 Axis Promotes TGFβ1-Induced EMT, Migration and Invasion of Tongue Squamous Cell Carcinoma Cells. Mol Biotechnol 2022; 64:780-790. [PMID: 35107755 DOI: 10.1007/s12033-021-00445-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
Tongue squamous cell carcinoma (TSCC) is a common malignancy with aggressive biological behaviors. Mitochondrial fission regulator 1 (MTFR1), is aberrantly expressed in head and neck squamous cell carcinoma (HNSC), but its role in TSCC remains unclear. We aimed to explore the role of MTFR1 in TSCC. The expression of long non-coding RNA small nucleolar RNA host gene 1 (SNHG1), microRNA-194-5p and MTFR1 in TSCC cells was measured by RT-qPCR. Luciferase reporter assay and RNA pull down assay were applied to confirm the binding capacity between miR-194-5p and SNHG1 (or MTFR1). TSCC cell invasion and migration were accessed by Transwell assays. The protein levels of MTFR1 and epithelial-mesenchymal transition (EMT) markers were examined by western blot. MTFR1 had high expression level in TSCC. MTFR1 knockdown inhibited transforming growth factor β1 (TGFβ1)-induced EMT, migration and invasion of TSCC cells in vitro. MiR-194-5p targeted MTFR1 and negatively regulated its expression. In addition, SNHG1 upregulated the expression of MTFR1 by binding with miR-194-5p. Importantly, SNHG1 promoted EMT, invasion and migration of TSCC cells by upregulating MTFR1. SNHG1/miR-194-5p/MTFR1 axis promotes TGFβ1-induced EMT, migration and invasion of cells in TSCC, which could be potential targets for treating TSCC patients.
Collapse
Affiliation(s)
- Yonglu Jia
- Department of Stomotology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, No. 118 Wansheng Street, Suzhou Industrial Park, Suzhou, 215028, Jiangsu, China
| | - Xiaojuan Chen
- Department of Stomotology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, No. 118 Wansheng Street, Suzhou Industrial Park, Suzhou, 215028, Jiangsu, China
| | - Dayong Zhao
- Department of Stomotology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, No. 118 Wansheng Street, Suzhou Industrial Park, Suzhou, 215028, Jiangsu, China
| | - Sancheng Ma
- Department of Stomotology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, No. 118 Wansheng Street, Suzhou Industrial Park, Suzhou, 215028, Jiangsu, China.
| |
Collapse
|
5
|
Kleszcz R, Skalski M, Krajka-Kuźniak V, Paluszczak J. The inhibitors of KDM4 and KDM6 histone lysine demethylases enhance the anti-growth effects of erlotinib and HS-173 in head and neck cancer cells. Eur J Pharm Sci 2021; 166:105961. [PMID: 34363938 DOI: 10.1016/j.ejps.2021.105961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022]
Abstract
Novel therapeutics are required to improve treatment outcomes in head and neck squamous cell carcinoma (HNSCC) patients. Histone lysine demethylases (KDM) have emerged recently as new potential drug targets for HNSCC therapy. They might also potentiate the action of the inhibitors of EGFR and PI3K signaling pathways. This study aimed at evaluating the anti-cancer effects of KDM4 (ML324) and KDM6 (GSK-J4) inhibitors and their combinations with EGFR (erlotinib) and PI3K (HS-173) inhibitors in HNSCC cells. The effect of the inhibitors on the viability of CAL27 and FaDu cells was evaluated using resazurin assay. The effect of the chemicals on cell cycle and apoptosis was assessed using propidium iodide and Annexin V staining, respectively. The effect of the compounds on gene expression was determined using qPCR and Western blot. The changes in cell cycle distribution upon treatment with the compounds were small to moderate, with the exception of erlotinib, which induced G1 arrest. However, all the compounds and their combinations induced apoptosis in both cell lines. These effects were associated with changes in the level of expression of CDKN1A, CCND1 and BIRC5. The inhibition of KDM4 and KDM6 using ML324 and GSK-J4, respectively, can be regarded as a novel therapeutic strategy in HNSCC.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Marcin Skalski
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland.
| |
Collapse
|
6
|
Song A, Wu Y, Chu W, Yang X, Zhu Z, Yan E, Zhang W, Zhou J, Ding X, Liu J, Zhu H, Ye J, Wu Y, Zheng Y, Song X. Involvement of miR-619-5p in resistance to cisplatin by regulating ATXN3 in oral squamous cell carcinoma. Int J Biol Sci 2021; 17:430-447. [PMID: 33613103 PMCID: PMC7893581 DOI: 10.7150/ijbs.54014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are major post-transcriptional regulators responsible for the development of human cancers, including OSCC. The specific role of miR-619-5p in OSCC, however, is rarely reported. Cisplatin is one of the mostly applied chemotherapy drugs of OSCC. Nevertheless, drug resistance of cisplatin following the initial chemotherapy largely restricts its clinical benefits, and the mechanism of cisplatin resistance is unclear. This study intends to explore the biological function of miR-619-5p in the development of cisplatin resistance in OSCC cell lines and a xenograft model, as well as the potential molecular mechanism. Our results showed that miR-619-5p was down-regulated in OSCC samples and cisplatin-resistant OSCC cells. Ectopically expressed miR-619-5p inhibited proliferative, migratory and invasive abilities of OSCC cisplatin-resistant cells. The putative target gene ATXN3 was predicted by bioinformatic analysis and confirmed by dual-luciferase reporter assay. Importantly, ATXN3 was responsible for the regulatory effects of miR-619-5p on biological behaviors of cisplatin-resistant OSCC cells. Moreover, miR-619-5p mimics and ATXN3-siRNA significantly enhanced ATXN3 knockdown in both HN6/CDDPR and CAL27/CDDPR cells and inhibited expression of PI3K and AKT. In vivo evidences demonstrated that intratumoral injection of miR-619-5p agomir remarkably slowed down the growth of OSCC in xenograft mice. Collectively, microRNA-619-5p was the vital regulator for regulating cisplatin resistance of OSCC, which may be served as a potential therapeutic target.
Collapse
Affiliation(s)
- An Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Weiming Chu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Xueming Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Stomatology, the Affiliated People's Hospital of Jiangsu University, Zhenjiang 21200, Jiangsu Province, China
| | - Zaiou Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Enshi Yan
- Department of Anesthesiology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jie Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hongxia Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Wang F, Long S, Zhang J, Yu J, Xiong Y, Zhou W, Qiu J, Jiang H. Antioxidant activities and anti-proliferative effects of Moringa oleifera L. extracts with head and neck cancer. FOOD BIOSCI 2020; 37:100691. [DOI: 10.1016/j.fbio.2020.100691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Zheng Y, Wang C, Song A, Jiang F, Zhou J, Li G, Zhang W, Ye J, Ding X, Zhang W, Du Y, Zhang H, Wu H, Song X, Wu Y. CMTM6 promotes cell proliferation and invasion in oral squamous cell carcinoma by interacting with NRP1. Am J Cancer Res 2020; 10:1691-1709. [PMID: 32642284 PMCID: PMC7339282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023] Open
Abstract
Previous studies have identified that both CKLF-like MARVEL transmembrane domain-containing member (CMTM6) and Neuropilin-1 (NRP1) played an essential part in regulating tumorigenesis and immune response. However, the potential connection between CMTM6 and NRP1 in oral squamous cell carcinoma (OSCC) remains unknown. In this study, we investigated the clinicopathologic significance of CMTM6 and NRP1 in OSCC. We examined the co-expression of CMTM6 and NRP1 in both OSCC tissues and cell lines. Co-overexpression of CMTM6 and NRP1 was generally highly expressed in cancer tissues and is associated with poor prognosis. Gain- and loss-of-function assays confirmed the oncogenic properties of CMTM6 in OSCC cells. Depletion of NRP1 abrogated tumorigenesis induced by CMTM6. By performing co-immunoprecipitation (co-IP), we discovered a potential interaction between CMTM6 and NRP1. Meanwhile, the stability of CMTM6 was significantly decreased in the NRP1-silencing cells, indicating the involvement of NRP1 in the degradation process of CMTM6. The crosstalk between CMTM6 and NRP1 provided a new insight into the progression of OSCC, which may indicate an alternative strategy for OSCC treatment.
Collapse
Affiliation(s)
- Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Chundi Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - An Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Feng Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine HospitalNanjing, China
| | - Gang Li
- Department of Stomatology, Affiliated Hospital of Xuzhou Medical UniversityXuzhou, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical UniversityNanjing, China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No. 1 Peoples HospitalXuzhou, China
- Department of Stomatology, Affiliated Xuzhou Municipal Hospital of Xuzhou Medical UniversityXuzhou, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical UniversityNanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomotology, Nanjing Medical UniversityNanjing, China
| |
Collapse
|
9
|
Identification of extracellular vesicles-transported miRNAs in Erlotinib-resistant head and neck squamous cell carcinoma. J Cell Commun Signal 2020; 14:389-402. [PMID: 32157550 DOI: 10.1007/s12079-020-00546-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Erlotinib is an oral tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR) pathway. Although our previous study has proved the efficacy of Erlotinib in head and neck squamous cell carcinoma (HNSCC), it has also demonstrated poor clinical response rates and disappointing results in clinical trials for HNSCC to date. In this study, we discovered elevated cell proliferation and invasion ability in erlotinib-resistant HNSCC cells. The contributions of miRNAs within extracellular vesicles (EVs) during the formation of chemoresistance were investigated in this study. Among up-regulated miRNAs in EVs derived from resistant cells, miR-7704, miR-21-5p and miR-3960 showed the most pro-tumorigenic alterations after transfection. Conversely, let-7i-5p, miR-619-5p and miR-30e-3p demonstrated tumor suppressive effects. By performing qRT-PCR and Western blot analysis, we found Vimentin played a pivotal role in modulating erlotinib resistance. Additionally, immune system was highlighted in the GO and KEGG analyses. Transfection of miR-7704, miR-21-5p significantly elevated CTLA-4 and LAG3 mRNA levels. Meanwhile, miR-3960 increased the relative mRNA expression of TIM3 in HNSCC cells. Transfection of let-7i-5p, miR-619-5p and miR-30e-3p decreased these checkpoint factors. To conclude, the present study described the roles of EVs-transmitted miRNAs on erlotinib resistance. Targeting the disregulated immune system could be the effective method to overcome erlotinib-resistance in HNSCC cells.
Collapse
|
10
|
Zheng Y, Wang Z, Xiong X, Zhong Y, Zhang W, Dong Y, Li J, Zhu Z, Zhang W, Wu H, Gu W, Wu Y, Wang X, Song X. Membrane-tethered Notch1 exhibits oncogenic property via activation of EGFR-PI3K-AKT pathway in oral squamous cell carcinoma. J Cell Physiol 2018; 234:5940-5952. [PMID: 30515785 DOI: 10.1002/jcp.27022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/26/2018] [Indexed: 01/15/2023]
Abstract
Notch proteins are highly conserved cell surface receptors which play essential roles in cellular differentiation, proliferation, and apoptotic events at all stages of development. Recently, NOTCH1 mutations have been extensively observed in oral squamous cell carcinoma (OSCC) and are hinted to be Notch1-inactivating mutations. However, little is known about the biological effect of these reported mutations in OSCC. To mimic the inactivation of Notch1 due to inappropriate mutations and to determine the potential mechanisms, we utilized wild-type Notch1 vectors (Notch1WT ) or mutant Notch1 vectors (Notch1V1754L ) to transfect into OSCC cell lines. Membrane-tethered Notch1 induced by mutation was analyzed by immunofluorescence staining. γ-Secretase inhibitor PF-03084014 was utilized to determine the phenotype in the absence of endogenous Notch1 activation. Here we demonstrated that membrane-tethered Notch1 inactivated the canonical Notch1 signaling and oncogenic phenotypes were identified by promoting cell proliferation and invasion and by inducing epithelial-to-mesenchymal transition in cells. The γ-secretase inhibitor PF-03084014 also showed distinct oncogenic property after treatment. Importantly, both membrane-tethered Notch1 and PF-03084014 inhibitor activated the epidermal growth factor receptor (EGFR)-phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway, which has been confirmed as an overwhelming modulator in OSCC. This was the first time that we clearly simulated the mutated Notch1 activities and determined the oncogenic phenotypes of membrane-tethered Notch1. Compared with wild-type Notch1, membrane-tethered Notch1 was strongly associated with activated EGFR-PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Yang Zheng
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Zhao Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Australian Institute for Bioengineering and Nanotechnology (AIBN) Corner College and Cooper Rds, The University of Queensland, Brisbane, QLD, Australia
| | - Xianbin Xiong
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Zhong
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Yibo Dong
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Jialiang Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Zaiou Zhu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Heming Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) Corner College and Cooper Rds, The University of Queensland, Brisbane, QLD, Australia
| | - Yunong Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Wang
- Department of Stomatology, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaomeng Song
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Dong Y, Zheng Y, Wang C, Ding X, Du Y, Liu L, Zhang W, Zhang W, Zhong Y, Wu Y, Song X. MiR-876-5p modulates head and neck squamous cell carcinoma metastasis and invasion by targeting vimentin. Cancer Cell Int 2018; 18:121. [PMID: 30181714 PMCID: PMC6114268 DOI: 10.1186/s12935-018-0619-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Local or distant metastasis remains the main course of death in head and neck squamous cell carcinoma (HNSCC) patients. MicroRNAs (miRNAs) have been implicated in metastasis of HNSCC, but the mechanisms of their action are mainly undocumented. Through public head and neck cancer miRNA expression datasets, we found that miR-876-5p was a novel potential tumor suppressor targeting HNSCC metastasis. METHODS Clinical significance and mechanism of miR-876-5P was systematically analyzed in HNSCC. Quantitative RT-PCR was used to evaluate miR-876-5p levels in HNSCC cell lines and in 20 pairs of HNSCC with associated regional nodal metastases and HNSCC without metastatic primary tumors. Scratch and invasion assays were evaluated to determine the role of miR-876-5p in the regulation of HNSCC cell migration and invasion, respectively. Western blotting was used to investigate the mechanism by which miR-876-5p suppresses HNSCC cell invasion and migration. Luciferase assays were performed to assess miR-876-5p binding to the vimentin gene. The animal model was used to support the in vitro experimental findings. RESULTS MiR-876-5p mimics inhibited HNSCC cell migration and invasion. Vimentin protein and mRNA levels were decreased in the miR-876-5p mimics group but increased in the miR-876-5p inhibitors group, which demonstrated that miR-876-5p inhibits vimentin expression in HNSCC cells. By directly targeting the vimentin 3'-UTR, we used dual-luciferase reporter assays to verify that vimentin is a functional downstream target of miR-876-5p. Importantly, increased vimentin expression promoted cell migration and invasion, and co-transfection with miR-876-5p mimics and vimentin restored cell aggressiveness to the original level. Moreover, miR-876-5p overexpression significantly downregulated vimentin expression level and inhibited the distal metastasis of HNSCC cells in vivo. CONCLUSIONS miR-876-5p, which functions as a tumor suppressor in HNSCC, inhibits metastasis by targeting vimentin and provides a novel therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Yibo Dong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Chundi Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Laikui Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral Pathology, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Yi Zhong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral Pathology, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140, Hanzhong Road, Nanjing, 210029 China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, 136, Hanzhong Road, Nanjing, 210029 China
| |
Collapse
|
12
|
Ding X, Zheng Y, Wang Z, Zhang W, Dong Y, Chen W, Li J, Chu W, Zhang W, Zhong Y, Mao L, Song X, Wu Y. Expression and oncogenic properties of membranous Notch1 in oral leukoplakia and oral squamous cell carcinoma. Oncol Rep 2018; 39:2584-2594. [PMID: 29620248 PMCID: PMC5983926 DOI: 10.3892/or.2018.6335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/16/2018] [Indexed: 01/07/2023] Open
Abstract
Notch1 signaling is essential for tissue development and tumor progression. This signaling pathway has also been implicated in oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC). However, the role of Notch1 expression in OL and its malignant transformation is unknown. This study aimed to examine the Notch1 expression patterns by immunohistochemistry (IHC) in a cohort of 78 Chinese patients with OL and to analyze the relationship between the patterns and progression of OL to OSCC. Strong Notch1 staining was observed in 10 (13%) of the 78 OL patients, but it was not associated with any of the clinicopathological parameters. However, we observed membranous Notch1 expression in 24 (31%) of the OL samples. Membranous Notch1 expression was significantly associated with the severity of dysplasia (P<0.001) and development of OSCC (P=0.003). By multivariate analysis, membranous Notch1 expression was found to be the only independent factor for OSCC development in the patient population (P=0.019). Among the 24 patients with membranous Notch1 expression, 11 (46%) developed OSCC compared to 8 (15%) of the 54 patients without such expression (P=0.001, determined by log‑rank test). Furthermore, we established a 4‑nitroquinoline‑1‑oxide (4NQO)‑induced murine OSCC model and studied the Notch1 expression patterns in different stages of carcinogenesis. We observed that the extent of expression of membranous Notch1 increased during carcinogenesis. These data indicated a relationship between membranous Notch1 expression and OSCC risk in patients with OL and suggested that membranous Notch1 served as a biomarker for assessing OSCC risk.
Collapse
Affiliation(s)
- Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yibo Dong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Jiang Li
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Weiming Chu
- Department of Stomatology, Northern Jiangsu People's Hospital, Jiangsu 225001, P.R. China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi Zhong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Mao
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
13
|
Zheng Y, Wang Z, Ding X, Dong Y, Zhang W, Zhang W, Zhong Y, Gu W, Wu Y, Song X. Combined Erlotinib and PF-03084014 treatment contributes to synthetic lethality in head and neck squamous cell carcinoma. Cell Prolif 2017; 51:e12424. [PMID: 29232766 DOI: 10.1111/cpr.12424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) is characterized by high mortality and low survival rates. As an epidermal growth factor receptor (EGFR) inhibitor, Erlotinib has been approved for treatment of various tumours. PF-03084014 is a selective inhibitor of Notch1 signalling. This study aimed to explore new approaches for simultaneously targeting EGFR and Notch1 signalling to attenuate tumour growth and improve survival. MATERIALS AND METHODS Cell proliferation was determined by CCK-8 assay and Flow cytometry. Cell invasive ability was determined by Transwell assay. Western blot was used to test the expression of Notch1 and EGFR pathway. Cleaved Caspase-3 staining and TUNEL assay were used to verify the apoptosis through combined treatment. RESULTS We first confirmed proliferative inhibition and cell death in HNSCC with combined Erlotinib and PF-03084014 treatment. Moreover, we found PF-03084014 reversed the increased invasion induced by Erlotinib. In a preclinical therapeutic drug trial in vivo, combined treatment effectively abrogated tumour growth. Most importantly, one mechanism was found that PF-03084014 alone could activate the PI3K/AKT signalling, the downstream of EGFR signalling, and Erlotinib alone could activate the intracellular domain of Notch1 (NICD), while combined treatment of PF-03084014 and Erlotinib suppressed the HNSCC growth. CONCLUSIONS These results suggested that concomitant inhibition of the Notch1 and EGFR pathways represented a rational strategy for promoting apoptosis in HNSCC and overcoming treatment resistance.
Collapse
Affiliation(s)
- Yang Zheng
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Zhao Wang
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, China.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld., Australia
| | - Xu Ding
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Yibo Dong
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, China.,Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Zhong
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, China.,Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld., Australia
| | - Yunong Wu
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomeng Song
- Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute of Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|